A HOLISTIC APPROACH TO POLYPHONIC MUSIC TRANSCRIPTION
WITH NEURAL NETWORKS

Miguel A. Roman
U.IL. for Computing Research
University of Alicante, Spain
mroman@dlsi.ua.es

ABSTRACT

We present a framework based on neural networks to ex-
tract music scores directly from polyphonic audio in an
end-to-end fashion. Most previous Automatic Music Tran-
scription (AMT) methods seek a piano-roll representation
of the pitches, that can be further transformed into a score
by incorporating tempo estimation, beat tracking, key es-
timation or rhythm quantization. Unlike these methods,
our approach generates music notation directly from the
input audio in a single stage. For this, we use a Convo-
lutional Recurrent Neural Network (CRNN) with Connec-
tionist Temporal Classification (CTC) loss function which
does not require annotated alignments of audio frames with
the score rhythmic information. We trained our model us-
ing as input Haydn, Mozart, and Beethoven string quartets
and Bach chorales synthesized with different tempos and
expressive performances. The output is a textual repre-
sentation of four-voice music scores based on **kern for-
mat. Although the proposed approach is evaluated in a
simplified scenario, results show that this model can learn
to transcribe scores directly from audio signals, opening a
promising avenue towards complete AMT.

1. INTRODUCTION

Automatic music transcription (AMT) aims to convert
acoustic music signals into any sort of music notation.
Most of the music we listen today is polyphonic, where
simultaneous sound events produced by different audio
sources (i.e., instruments) are combined in a single acous-
tic waveform. This aggregation process entails loss of in-
formation, making the transcription task very challenging
even for trained musicians. Moreover, the different sound
events are highly correlated in time and frequency due to
the rhythmic and harmonic patterns usually found in mu-
sic, which complicates sound separation even further as we
cannot rely on the statistical independence of the source
signals. Therefore, in order to produce a proper music
score from an audio signal, multiple complex sub-tasks

© Miguel A. Romdn, Antonio Pertusa, Jorge Calvo-

Zaragoza. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Miguel A. Roman, Antonio
Pertusa, Jorge Calvo-Zaragoza. “A holistic approach to polyphonic music
transcription with neural networks”, 20th International Society for Music
Information Retrieval Conference, Delft, The Netherlands, 2019.

Antonio Pertusa
U.IL for Computing Research
University of Alicante, Spain
pertusa@dlsi.ua.es

731

Jorge Calvo-Zaragoza
U.IL for Computing Research
University of Alicante, Spain

jcalvo@dlsi.ua.es

must be involved such as multi-pitch estimation, note on-
set/offset detection, source separation, as well as other mu-
sical context information retrieval tasks like metering and
tonality estimation.

As pointed out by [2], there are many approaches to
tackle AMT, yet most works focus on solving only one in-
termediate goal of the whole problem. Frame-level tran-
scription, also known as multi-pitch estimation, aims to
detect which fundamental frequencies are present at each
time step of the input signal. Note-level transcription goes
a step further by estimating the notes characterized by their
pitch and clock-time duration (onset and offset times), pro-
ducing a piano-roll representation of the music. Stream-
level transcription extends the note-level approach by as-
sociating each note with its originating instrument based
on its timbre. Lastly, the notation-level transcription is the
final goal of AMT, aiming to produce a music score with
enough information to interpret the original recording.

In this work, we denote the notation-level transcription
as Audio-to-Score (A2S) task, where the audio signal is
processed to be converted into a symbolic music score.
Even with a perfect transcription, the output of any A2S
system cannot faithfully represent the music that was orig-
inally played. It must be considered that musical audio
signals are often expressive performances, rather than sim-
ple mechanical translations of notes read from a staff. A
particular score can be performed by a musician in many
different ways, and similarly there are several ways to rep-
resent the same musical excerpt with standard music no-
tation (e.g., a dotted half note is “the same” as a half note
tied to a quarter note). Music scores can only be seen as
guides to aid musicians, highly correlating but never fully
explaining musical experience. This makes A2S a rather
ill-defined problem without unique solutions.

Despite the above, our work aims to demonstrate that
the A2S task can be performed in a single step. To this
end, we make use of a deep neural network that is trained
in an end-to-end fashion to produce a sequence of musi-
cal symbols that describes a feasible polyphonic score out
of the input audio. Our experiments are conducted using
Haydn, Mozart, and Beethoven string quartets and Bach
chorales synthesized with different tempos and expressive
performances. ! Although the analysis of the current per-
formance requires a deeper reasoning regarding evaluation

I'The source code and data are available at https://github.
com/mangelroman/audio2score.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

metrics, we provide some results that account for the good
performance of the proposed model and allow us to be op-
timistic about this line of research.

1.1 Related Work

There are recent AMT approaches using deep neural net-
works for the multi-pitch detection task [8, 11, 12]. For
this, Short-Term Fourier Transform (STFT), log-frequency
STFT or Mel spectrograms are usually fed to Convolu-
tional Neural Networks (CNN) to extract piano-roll rep-
resentations as output. Other works focus on producing
music scores from unquantized MIDI representation [4].

One of the few methods aiming to extract a complete
score directly from audio is that of [14]. In this work,
a multi-pitch detection method with note tracking is used
to get a piano-roll representation that is further converted
into a quantized MIDI file by using a rhythm quantization
method [15]. Afterwards, a score typesetting software such
as MuseScore can be used to get a MusicXML file from the
MIDI output.

To the best of our knowledge, there are only two ap-
proaches that perform A2S in a single stage, directly con-
verting the input audio into any music notation format.
This has the advantage that a wrong detection in a given
stage (such as the multi-pitch detection) is not propagated
through the next processing stages, avoiding error cascad-
ing. The only works addressing notation-level AMT in an
end-to-end manner are those of [3] and [17]. Both works
follow a supervised learning approach with deep neural
networks to solve the AMT task in one step. Although they
bring promising results, the proposed models include sev-
eral limitations (e.g. monophonic audio in [17] and fixed
input length in [3]) that cannot be disregarded when ad-
dressing the notation-level AMT problem as a whole.

In [3], authors show how a Convolutional-Recurrent
Neural Network architecture (CRNN) [19] can learn all the
basic tasks involved in notation-level AMT, but it is only
a very limited proof of concept that cannot address most
of the possible scores. In the second of these works [17],
the AMT problem was addressed as an Automatic Speech
Recognition (ASR) problem. By using monophonic au-
dio as input and a sequence of symbols (analogously to
the written language characters) as output, several methods
that were originally developed for ASR can be used. In
particular, [17] adopted an architecture inspired in Deep-
Speech2 [1], which learns to map audio frames to a se-
quence of characters without any alignment.

Training with unaligned data, i.e. without needing the
input audio frames to be aligned with the music symbols, is
a clear advantage as much more data can be gathered with-
out going through the tedious task of manually annotating
the location of the output symbols in their corresponding
input audio frames. Nevertheless, monophonic audio tran-
scription does not exhibit the essential challenge coming
from simultaneous sound events. The present work goes
one step beyond by showing that a similar formulation can
also be reliable for polyphonic music.

732

Manual ____...... Adtomated e,

humdrum- humdrum-| §

i | Fix Errors +
H Add Tempo

Cleanup +
Split 3-6

Sequence

> FixTies [—» goacole

data
@GitHub

Chorales
MP

data
Fixed

Chorales

Remove

repetitions. MP3

Shortened [~

i Log- B
hum2mid + . :
i_’ Fuiasyntn] SPaced bin [——> X

3
@Stanford

Figure 1: Data acquisition pipeline showing the manual
and automated steps required to build the ground truth.

2. DATA

Our notation-level AMT approach, namely A2S, seeks to
estimate which music score, modeled as a structure con-
taining symbols from a fixed alphabet of music notation,
would likely define that audio.

Let X be the domain of audio files and 3 the alphabet
of music score symbols. The aim of our A2S is to com-
pute a function that maps any audio file into a sequence of
symbols, i.e., a function f : X — X*.

2.1 Input Representation

The input representation of our model is the spectral infor-
mation of the raw audio waveform over time, based on the
STFT with log-spaced bins and log-scaled magnitude. In
this type of spectrogram, frequency bins are aligned with
equal-tempered music scales using 440Hz as the reference
for A4 pitch. The sampling rate of the input audio files
was 22,050Hz, and STFT was calculated with a Hamming
window with size 92.88ms (2048 samples) and a hop of
23.22ms (512 samples). Only frequencies between pitches
C2 and C7 were considered, extracting 48 bins per octave.

2.2 Output Representation

The output music notation of our model is a single se-
quence of symbols that can be used to render a multi-part
western music score. These symbols represent both notes
and rests with their corresponding duration, barlines, ties
between notes, and fermatas. It is important to remark that
in the context of the A2S task, notes are not the same as
pitches. For example, pitch 349.23Hz can be represented
as F4, Ef4 or Gbb4 depending on the key signature.

We are not including clefs in our output representation,
as they are only intended to aid in the score visualization
and do not carry any musical information we can extract
from the audio. For the sake of simplicity, we are also
not including time signatures in the output sequences as-
suming they can be inferred from the predicted barlines
for the type of scores in our training set. By the same ra-
tionale, key signatures are neither included assuming they
can also be inferred from the predicted notes. Moreover,
since most of our samples are made of fragments of much
longer scores, they may not carry enough information to
predict the correct key signature, therefore misleading the
training process. Other music notation symbols such as
slurs, grace notes, ornaments, and articulations marks are
also left out of the scope of this work.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

111COM: Mozart, Wolfgang Amadeus < <
1110TL: String Quartet No. 17 in B-flat Major Q = g S
!110MD: Allegro vivace assai o: % 5 5
triomv: 1 = —
**kern **kern **kern **kern

*I:cello *I:viola *I:violn *I:violn / AN
*k [b-e-] *k [b-e-] *k [b-e-] *k[b-e-]) %ﬁ [O7 Y7 N
*B-: *B-: *B-: *B-: L=l o1l L=l L=
*clefC *clefF *clefG *clefG L W
*M6/8 *M6/8 *M6/8 *M6/8 [oa=r] [oa=r] [oe=r] o=l g
8r 8r 8dd 8E£f i n I @
=1 =1 =1 =1 [EEEI M T T 3
4B- 4b- 8dd 8EE r * E_: F_:');l
. . 8b- 8dd Ll L ORI HR(z
8r 8f 8b- 8dd s M
4BB- 8f 8b- 8dd saa S 1! o [y @
. 8d 8f 8b- N L,,] IR
8r 8d 8f 8b- M MM ™ T8
g2 =2 =2 =2 T N AL T

4D 4d 4af 4b-

8BB- 8f 8b- 8dd 1l TN T Ny

4F 4.f 4a 4cc TTT® MmN LT

8D . 8b- 8dd il il il

=3 =3 =3 =3 s Rk N
4ac 8.g 4cc 8.ee- L T TN TR

. 16f . 16dd | ll._."
8r 8e- 8r 8cc el Ty el)
8E- de- 4.c 8g ay Y ol 2|
8C . . 8b- [-. l y]
8F 8c . 8a 1 | Il
-4 -4 -4 =4 k] e A
4D 8B- 4af 4b- 7 ™ M 7
8BB- 8f 8b- 8dd W <o e

4F 4f 4a 4cc e B | Al ™

8r 8r 8dd 8ff

=5 =5 =5 =5 el e N
4B- 4b- 16dd 16ff HH Il Il

. . l6ee- 16gg d _!.) ﬂ_]")
. . 8dd 8ff e T
8r 8f 8b- 8dd e i, k]S
4BB- 16f 16b- 16dd RN b 1,

. 1l6g lécc l6ee- I\ :1)

. 8f 8b- 8dd anr AN

8r 8d 8f 8b- nl » N hdi
=6 =6 =6 =6 - TH N R

4D 4d 4af 4b-

8BB- 8f 8b- 8dd e N 54,

4F 4.f 4a 4cc T MmN LT

8D . 8b- 8dd il il il

=17 =1 =7 =7 s RS, hS

4c 8.9 4cc 8.ee- N oy N ___.57
. 16f . l6dd T t'__ l'__ B
8r 8e- 8r 8cc e __" L __:
8E- 4.e- 4.c 8g 11 N

8c . . 8b- N MR b
8F . . 8a [l l—]
=8 =8 =8 =8 e A

Figure 2: Example of one score in **kern format (left)
representing the output of our model and the rendered
western music score (right).

2.3 Data Preparation

As previously mentioned, the fact that we do not require
data alignments is a clear advantage to easily build the
ground truth needed to train our model. However, the
majority of scores available in the public domain are usu-
ally in printed form, so we cannot automatically obtain the
symbolic representation we need unless we make use of an
Optical Music Recognition system. A lot of progress has
been made in this area of study but unfortunately it is still
insufficient to meet our precision needs, driving us to look
for existing text based scores instead. After some analy-
sis of the various types of music encoding formats within
reach, we chose the humdrum toolkit [9] due to its versa-
tility to represent polyphonic music.

The humdrum file format is a general-purpose human-
readable 2D representation of music information intended
to assist music researchers. The columns of the text file,
separated by the tab character, represent the sources of in-
formation that produce music-related events. The lines of
the text file represent the evolution of those events over
time. The humdrum syntax defines the skeleton that con-
tains other higher level schemes of music notation, like the
**kern format our ground truth is based on. The **kern
format is designed to encode the semantics of a western
musical score, rather than the visual aspects of its printed

Chorales Quartets
Number of samples | 352 34,512
Total duration 5.7%h 20.25h
Max duration 120s 30s
Data Augmentation | No Yes
Polyphony voices 4 4
Pipe organ Cello
Instruments V@ol'a
Violin
Flute
Pitch range C2-A5 C2-E7
Shortest note 1/16%" 1/64%"
Irregular groups None Triplets
Tempo o ~ [60,70] | & = [40,200]
Vocabulary Size 99 143
Train-test split % 80/20 70/30
Batch size 4 16

Table 1: Summary of the datasets’ characteristics.

realization, matching nicely with the purpose of this work.

An example of a music excerpt encoded in **kern no-
tation is shown in Figure 2 along with its associated sheet
music excerpt. In this format, columns are called spines
and they are associated with instruments, just like a penta-
gram in western sheet music. Spines may contain one sin-
gle sound event or the combination of various sound events
with the same canonical duration, namely a chord. Spines
can also be split into two spines when two independent
voices (excluding chords) occur for the same instrument.
The newly created spine can be rejoined back to the orig-
inal spine when the extra voice is no longer needed. This
level of flexibility gives almost no restrictions to the kind
of music it can support, making **kern a good candidate
to endure future work.

We created two datasets out of the **kern files avail-
able in the humdrum-data repository [18]: the chorales
dataset, containing 370 chorales of Bach, and the quartets
dataset, containing most of the string quartets of Haydn,
Mozart and Beethoven. In the chorales dataset we take
each chorale as one training sample, and we use audio
from expressive MIDI files synthesized with a high quality
pipe organ soundfont [7]. As we did not synthesize the au-
dio, we had to manually remove repetitions to ensure that
samples are not unnecessarily long. In the quartets dataset
we randomly split the scores in fragments of 3-6 measures
each, and we synthesized the corresponding MIDI file ob-
tained from the hum2mid tool, which converts **kern to
MIDI using dynamic spines and articulation marks when
available in the original **kern file. We removed grace
notes and ornaments from the score as they cannot be prop-
erly synthesized. We also removed split spines and upper
notes of all chords to ensure no more than 4 simultane-
ous voices were present at any given time. Samples with
double dots, double sharps or double flats are out of the
scope of this work and therefore discarded. On the train-
ing set only, we allow overlapping of fragments as a means
of data augmentation technique. Table 1 summarizes the
main characteristics of both datasets used in this work.

Figure 1 depicts the data acquisition pipeline we imple-
mented to build our ground truth. The major inconvenience

733

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

Largo Assai 40 Allegro Moderato 120
Largo 50 Poco Allegro 124
Poco Largo 60 Allegro 130
Adagio 71 Molto Allegro 134
Poco Adagio 76 Allegro Assai 138
Andante 92 Vivace 150
Andantino 100 || Allegro Vivace 160
Menuetto 112 || Allegro Vivace Assai | 170
Moderato 114 || Poco Presto 180
Poco Allegretto | 116 || Presto 186
Allegretto 118 Presto Assai 200

Table 2: List of metronome markings chosen for classical
music tempo annotations, given in number of quarter notes
per minute.

was dealing with multiple errors present in the **kern files,
such as invalid ties, wrong canonical duration of notes and
rests, and missing metronome markings. While these er-
rors do not prevent musical analysis of the scores, they be-
come noisy labels that hinder our training process. For that
reason, we had to revise all the scores manually to cor-
rect these errors and label the missing metronome mark-
ings, with the help of existing tempo annotations and the
conversion shown in Table 2. Adding metronome mark-
ings ensured the synthesized audio perform at reasonable
speeds according to the composer’s intention. Addition-
ally, a random scaling factor in the 6% range was applied
to each metronome marking to ensure tempo variability in
all training samples.

The resulting **kern scores after the preprocessing
stage were then encoded in a special symbolic notation
intended to reduce the number of characters and ease the
training process. Accordingly, each canonical duration for
notes and rests including their dotted version were encoded
with just one symbol of the vocabulary. Likewise, note
pitches were also encoded with one symbol condensing
name and octave. In our **kern dataset, barlines are al-
ways repeated for all spines, so only one barline is main-
tained in the output representation referring to all spines.
The rest of characters are preserved in the output represen-
tation in the same way, i.e. tabs, new lines, tie symbols,
fermatas and the “dot” character, which indicates that the
previous note/rest still affects the current row.

3. METHOD

Once the input and output representations are defined, we
can formulate the A2S task as retrieving the most likely
sequence of score symbols § given an audio file x € A

§= arggreung(ﬂx) (D

where X represents the set of characters necessary to en-
code the output as explained in the previous section (for in-
stance, including “tab”, “new-line”” and “dot”, among oth-
ers). Additionally, ¥ includes an “empty” symbol, denoted
by e, that is necessary to separate two or more instances of

the same symbol that occur in consecutive frames.

734

Following successful approaches in other pattern recog-
nition duties of similar formulation, we address this A2S
with a holistic approach based on statistical models.
Specifically, for learning the posterior probability provided
in Eq. 1, we resort to Convolutional Recurrent Neural Net-
works (CRNN).

A CRNN is composed of one block of convolutional
layers followed by another block of recurrent layers [19].
The convolutional block is in charge of learning how to ex-
tract relevant features from the input and the recurrent lay-
ers interpret these features in terms of sequences of musi-
cal symbols. The activations in the last convolutional layer
can be seen as a sequence of feature vectors representing
the input audio file, x. Let W be the width (number of
frames) of the input sequence x. The length of the result-
ing features after the convolutional layer will be L = W,
where v < 1 is implicitly defined by the specific config-
uration of the convolutional block (which usually includes
some type of down-sampling to reduce dimensionality).

The output activations of the convolutional block are
then fed to the first layer of the recurrent block, and the ac-
tivations of its last layer can be considered proper estimates
of the posterior probabilities per frame:

Plo|x,5), 1<I<L, ceX)

3.1 Training

Convolutional neural networks can be trained through gra-
dient descent using the well-known Back Propagation al-
gorithm. RNN networks can be trained similarly by means
of Back Propagation Through Time [21]. Therefore both
the convolutional and recurrent blocks of a CRNN can be
jointly trained by providing audio files annotated at the
frame level.

In this work, however, we follow a holistic or “end-
to-end” approach, which means that for each audio file
we only provide its corresponding target transcript into
score symbols, without any kind of explicit information
about its segmentation into frames. A CRNN can be uni-
formly trained without this information by using the so-
called Connectionist Temporal Classification (CTC) loss
function [6]. The CTC training procedure is a form
of Expectation-Maximization, similar to the backward-
forward algorithm used for HMM training [16], that dis-
tributes the loss among all the frames to maximize Eq. 1
with respect to the ground-truth sequence.

3.2 Decoding

In order to solve Eq. 1, the most likely symbol is computed
for each input feature vector of the recurrent block /, also
referred as greedy decoding:

6, = argma%(P(fﬂx,l), 1<I<L 3)
(4SS

Then, a pseudo-optimal sequence of musical symbols
is obtained as § ~ D(&), where 6 = &1...6 and
D : ¥* — X* is a function which first merges all the
consecutive frames with equal symbol, and then deletes all
“empty” symbols [6].

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

[CTC / Decoder]

[© OO0 0000 O™

saoh | (@=@=0=0=0=0=0=0) |~
& O T

QO O

Spectrogram

2D

Q)
O]“Convolution
)

Q
@)

(
1(
(

Figure 3: High-level architecture of the Convolutional-
Recurrent Neural Network used in our experiments.

3.3 Architecture

The main building blocks of the CRNN considered for our
experiments is illustrated in Figure 3.

The first two convolutional layers receive a 2D array
containing the audio spectrogram described in section 2.1
and apply 16 filters of 3 x 3 with a stride of 2 in the fre-
quency axis. We use filter striding to reduce the input di-
mensionality without the need of pooling layers.

For the Quartets dataset, output frames from the con-
volutional block are split in half, effectively doubling the
number of frames feeding the next recurrent block. This
is necessary to comply with the CTC loss function pre-
condition for which the number of input frames must be
greater or equal to the number of output symbols. Con-
sidering the high number of symbols per second in our
sequence-based representation of a polyphonic score of the
Quartets dataset, we apply this frame doubling technique at
a lesser computational cost than increasing the density of
the input spectogram.

The next two recurrent layers are based on Bidirectional
Long Short-Term Memory (LSTM) cells, with 1024 hid-
den units each. The fully connected layer at the end of the
recurrent block converts the output per-frame predictions
to the size of the output representation vocabulary.

With the purpose of reducing overfitting, Batch Nor-
malization layers [10] are added between any other layer
excluding the input and output layers, as well as Dropout
layers [20] added after all the convolutional layers and af-
ter the last recurrent layer, with a drop probability of 0.1
for the Quartets dataset and 0.2 for the Chorales dataset. A
higher drop probability is required for the Chorales dataset
since less data is available for training, which increases the
risk of overfitting.

4. EXPERIMENTS

To the best of our knowledge, there are few specific evalua-
tion metrics to measure the performance of a notation-level
AMT method. In [14] an evaluation metric for note-level
AMT is discussed, but it still cannot be directly applied to
our task (e.g. we do not have note onsets and offsets). [17]

adapts this metric to the A2S task by defining note dura-
tion errors instead of onsets/offsets errors. However, we
believe this metric is still insufficient to properly evaluate
a notation-level AMT method since, for instance, it does
not take into account barlines and their effect in subse-
quent predictions of note durations and ties. The MV2H
metric (Multi-pitch detection, Voice separation, Metrical
alignment, note Value detection, and Harmonic analysis)
was introduced in [13]. This metric is closer to our needs,
although its source code uses timing information in sec-
onds that is not provided by our method. We leave it as an
open point for future work to establish a proper notation-
level AMT metric.

In order to validate our method accuracy during train-
ing, we adopt the evaluation metrics from the ASR task
as in [17], namely Word Error Rate (WER) and Character
Error Rate (CER). They are defined as the number of el-
ementary editing operations (insertion, deletion, or substi-
tution) needed to convert the predicted sequences into the
ground-truth sequences, at the word and character level re-
spectively. Even though WER and CER are not specific
to AMT, they provide a good indication of how close our
score is to the ground-truth score.

In the context of our A2S task, we define words as
any group of characters representing notes (including ties),
rests and barlines in the output score. The “tab” and “new
line” characters act as word separators, and only contribute
to the CER calculation.

4.1 Training process

The models were trained for 100 epochs using mini-batch
Stochastic Gradient Descent (SGD) optimizer, with Nes-
terov momentum of 0.9. Our learning rate scheduling con-
sists of 2 cycles of 50 epochs each, starting at 0.0003 and
annealing by 1.1 at every epoch. After each epoch, the
WER and CER are calculated for the validation set, and
the model with the lowest WER is appointed as the best
model for testing purposes.

The Chorales dataset, whose samples are full-length
chorales, is trained with a batch size of 4. The Quartets
dataset, whose samples are small excerpts extracted from
the full-length quartets, is trained with a batch size of 16.
Figure 4 shows the evolution of the CTC loss, WER and
CER at training time on both datasets. Each figure also
highlights the epoch where the best model was obtained.

4.2 Results

The best model obtained after the training process is then
evaluated against the test set for both the Chorales and
Quartets datasets, giving a WER of 30.96% and CER of
18.10% for Chorales, and WER of 21.02% and CER of
13.53% for Quartets.

After analyzing all test predictions, we observe that the
model occasionally generates sequences that do not com-
ply with the **kern format. Nevertheless, we believe these
formatting errors can be solved by providing more sam-
ples to the training set or imposing syntax constraints. As
shown in Figure 5, most of the errors arise from wrongly

735

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

— WER CER Loss
100% T

90%

Epoch 80
WER 31.52%
CER 18.77%

80%

70%

60%

Error

50%

40%

30%

20%

10%

0%

0 10 20 30 40 50 60 70 80 90
Epoch

(a) Chorales dataset.

100

Error

— WER CER Loss

100% T

90%

Epoch 97
WER 24.57%
CER 16.26%

80%

70%

60%

50%

40%

30%

20%

10%

0% Y
0 10 20 30 40 50 60 70 80 90

100
Epoch

(b) Quartets dataset.

Figure 4: Evolution of loss, validation WER and CER during 100 epochs of training with a) Chorales dataset and b)
Quartets dataset. Chorales WER is 30.96% and CER is 18.10%. Quartets WER is 18.10% and CER is 13.53%.

:
!
= T T T T]
: i st

= S -

~ o .
| 1 . - .

;
| . U f ‘
| e g T e e S Y e]
| — L e & Tt et =
| Ty = 5 =% | & — =2 = s
i T f f ! 4 [! 4 L=

(a) Chorales dataset example

(b) Quartets dataset example

Figure 5: Excerpt of original (top row) and predicted scores (bottom row) from a test sample in a) Chorales dataset, b)
Quartets dataset. The differences between original and prediction are highlight in red.

estimated note durations and barlines. Exchanging notes
between voices is another common mistake our model
makes, specially when voice pitches are too close or even
when two voices cross their melodic lines.

The model struggles at predicting ties and triplets,
which requires further analysis to determine whether it is
related to barline errors, to the output representation for-
mat based on **kern, or to the lack of enough samples in
the training set (i.e., ties and triplets are very infrequent in
our training data compared to other symbols).

5. CONCLUSIONS

In this work, we focus on the A2S task, a hardly explored
formulation consisting of extracting a full score from an
audio file. Note that A2S resembles what a human would
expect to get if it intends to visualize the input audio as a
music score (e.g., MusicXML), unlike what most authors
consider AMT where the output sequence format is in-
tended to be further processed by a computer (e.g., MIDI).

The proposed methodology which performs the A2S
task has the following advantages over other AMT meth-
ods: 1) Frame-level alignment of the ground truth is not
needed; 2) The end-to-end approach avoids propagating

736

errors from one stage to the other; 3) The output of our
model is based on **kern format and can be straightfor-
wardly translated to a valid music score.

We are aware this simplified scenario used for evalua-
tion does not include real audio and some score symbols,
but we argue the results provide the basis to open a new
path of research towards notation-level AMT.

One of the main limitations of the proposed approach
is the maximum-length of input sequences due to mem-
ory constraints. For example, this prevents an end-to-end
training with complete songs, only allowing fragments of
2 minutes at a maximum on a typical training infrastruc-
ture. For this, we plan in a future work to explore other ar-
chitectures such as the Transformer XL [5], a sequence-to-
sequence model that can deal with much longer sequences.
Other future works include defining an evaluation metric
for A2S and building a dataset from real audio to validate
the approach with actual music performances.

6. ACKNOWLEDGMENT

This work was funded by the Spanish Ministerio de
Economia, Industria y Competitividad through HISPA-
MUS project (TIN2017-86576-R).

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

(1]

(2]

(3]

[4]

(5]

(7]

[10]

7. REFERENCES

Dario Amodei, Rishita Anubhai, Eric Battenberg,
Carl Case, Jared Casper, Bryan Catanzaro, Jingdong
Chen, Mike Chrzanowski, Adam Coates, Greg Di-
amos, Erich Elsen, Jesse Engel, Linxi Fan, Christo-
pher Fougner, Tony Han, Awni Hannun, Billy Jun,
Patrick LeGresley, Libby Lin, and Zhenyao Zhu. Deep
Speech 2: End-to-End Speech Recognition in En-
glish and Mandarin. Computer Research Repository,
abs/1512.02595, 2015.

Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and
Sebastian Ewert. Automatic Music Transcription: An
overview. IEEE Signal Procesing Magazine, 36(1):20—
30, 2019.

Ralf Gunter Correa Carvalho and Paris Smaragdis.
Towards End-to-end Polyphonic Music Transcription:
Transforming Music Audio Directly to a Score. In
IEEE Workshop for Applications of Signal Processing
to Audio and Acoustics (WASPAA). IEEE, 2017.

Andrea Cogliati, David Temperley, and Zhiyao Duan.
Transcribing Human Piano Performances into Music
Notation. In Proc. of the 17th International Society for
Music Information Retrieval Conference, ISMIR 2016,
New York, USA, 2016.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G.
Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive Language Models Beyond
a Fixed-Length Context. Computer Research Reposi-
tory, abs/1901.02860, 2019.

Alex Graves, Santiago Ferndndez, Faustino Gémez,
and Jirgen Schmidhuber. Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. In Proc. of the 23rd
International Conference on Machine Learning, Inter-
national Conference on Machine Learning, pages 369—
376. ACM, 2006.

Margaret Greentree. Chorale Harmonizations by
Bach. http://sporadic.stanford.edu/
Chorales/.

Curtis Hawthorne, Erich Elsen, Jialin Song, Adam
Roberts, Ian Simon, Colin Raffel, Jesse Engel, Sageev
Oore, and Douglas Eck. Onsets and frames: Dual-
objective piano transcription. In Proc. of the 19th Inter-
national Society for Music Information Retrieval Con-
ference, pages 50-57, 2018.

David Huron. The Humdrum Toolkit: Software for
Music Research. http://www.humdrum.org.

Sergey loffe and Christian Szegedy. Batch normaliza-
tion: accelerating deep network training by reducing
internal covariate shift. In Proc. of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July, pages 448-456, 2015.

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

737

Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Se-
bastian Bock, Andreas Arzt, and Gerhard Widmer. On
the potential of simple framewise approaches to piano
transcription. In Proc. of the 17th International Soci-
ety for Music Information Retrieval Conference, pages
475-481, 2016.

Rainer Kelz and Gerhard Widmer. An Experimen-
tal Analysis of the Entanglement Problem in Neural-
Network-based Music Transcription Systems. In Audio
Engineering Society Conference: AES International
Conference on Semantic Audio, Jun 2017.

Andrew McLeod and Mark Steedman. Evaluating au-
tomatic polyphonic music transcription. In Proc. of the
19th International Society for Music Information Re-
trieval Conference, ISMIR 2018, Paris, France, pages
42-49, 2018.

Eita Nakamura, Emmanouil Benetos, Kazuyoshi
Yoshii, and Simon Dixon. Towards Complete Poly-
phonic Music Transcription: Integrating Multi-Pitch
Detection and Rhythm Quantization. In IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing. IEEE, 2018.

Eita Nakamura, Kazuyoshi Yoshii, and Shigeki
Sagayama. Rhythm transcription of polyphonic pi-
ano music based on merged-output HMM for multiple
voices. IEEE/ACM Transactions on Audio Speech and
Language Processing, 25(4):794-806, 2017.

Lawrence Rabiner and Biing-Hwang Juang. Funda-
mentals of speech recognition. Prentice hall, 1993.

Miguel A. Romén, Antonio Pertusa, and Jorge Calvo-
Zaragoza. An End-to-End Framework for Audio-to-
Score Music Transcription on Monophonic Excerpts.
In Proc. of the 19th International Society for Music
Information Retrieval Conference, ISMIR 2018, Faris,
France, 2018.

Craig S. Sapp. humdrum-data. https://github.
com/humdrum-tools/humdrum-data.git.

Baoguang Shi, Xiang Bai, and Cong Yao. An End-to-
End Trainable Neural Network for Image-Based Se-
quence Recognition and Its Application to Scene Text
Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39:2298-2304, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929—
1958, 2014.

Ronald J. Williams and David Zipser. Gradient-based
Learning Algorithms for Recurrent Networks and
Their Computational Complexity. In Yves Chauvin
and David E. Rumelhart, editors, Backpropagation:
theory, architecture and applications, pages 433—486.
L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1995.

