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ABSTRACT

Single- f estimation methods, including pitch trackers and
melody estimators, have historically been evaluated using
a set of common metrics which score estimates frame-wise
in terms of pitch and voicing accuracy. “Voicing” refers
to whether or not a pitch is active, and has historically
been regarded as a binary value. However, this has lim-
itations because it is often ambiguous whether a pitch is
present or absent, making a binary choice difficult for hu-
mans and algorithms alike. For example, when a source
fades out or reverberates, the exact point where the pitch
is no longer present is unclear. Many single- f estimation
algorithms select a threshold for when a pitch is active or
not, and different choices of threshold drastically affect the
results of standard metrics. In this paper, we present a re-
finement on the existing single- f, metrics, by allowing the
estimated voicing to be represented as a continuous like-
lihood, and introducing a weighting on frame level pitch
accuracy, which considers the energy of the source pro-
ducing the fj relative to the energy of the rest of the signal.
We compare these metrics experimentally with the previ-
ous metrics using a number of algorithms and datasets and
discuss the fundamental differences. We show that, com-
pared to the previous metrics, our proposed metrics allow
threshold-independent algorithm comparisons.

1. INTRODUCTION

Single- f; estimation algorithms, including pitch trackers
and melody or bass extraction algorithms, predict funda-
mental frequency (fp) over time for an audio file. How-
ever, there can be time intervals where there is no (target)
fo value present, for example during silent regions. To
account for this, single-f; estimation methods addition-
ally estimate the voicing over time - i.e. when a given
frame contains an active pitch or not. Choosing when
the estimated voicing should be active/voiced (1) or inac-
tive/unvoiced (0) often involves choosing a threshold on
a confidence value. Single-f; estimation algorithms are
evaluated by comparing the accuracy of the estimated fj
and voicing sequence against a reference fy and voicing
sequence. The choice of threshold to estimate voicing has
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a critical effect on the resulting metrics; the threshold is
often treated as a hyperparameter and is chosen on a vali-
dation set. Any confidence information used to determine
voicing is discarded and not considered in the evaluation
metrics.

The perceptual salience of a pitch is affected by a num-
ber of factors, including the volume, the frequency content,
the duration and the presence of interference from other
sources [12, 18,21,27]. In some cases, the brain can per-
ceive a pitch even when the fj is not physically present,
for example when one short time segment in the middle of
a longer pitch sequence is set to be silent [9]. The effect
of these factors can be different for each listener, making
the task of “objectively” determining if a pitch is present or
not a difficult one. Additionally, in polyphonic mixtures,
a pitch can be masked by other sources. In the current
metrics, algorithms are equally penalized for mistakes on
salient and non-salient f; values.

We propose a generalization of the existing metrics
which (1) allows an algorithm to report voicing as a con-
tinuous value (between 0 and 1), and (2) allows frames to
be weighted by a reward, which more heavily penalizes
mistakes in frames where the energy of the source produc-
ing the fo is high compared to the rest. These changes
remove the need for making a strict decision on whether or
not a pitch is present, allowing threshold-independent al-
gorithm comparisons, and allow an optional weighting to
be added to reflect frame importance. We also show that
when the provided voicing is binary, the proposed metrics
are equivalent to the existing metrics. The proposed met-
rics are to be seen as complementary to the classic ones,
which remain useful for measuring performance for ap-
plications where a binary threshold is needed in practice.
However, binary thresholds are not needed for a number of
applications, including pitch informed source separation or
melodic similarity.

Additionally, generalized metrics would also help mit-
igate non-uniformity in decisions made when annotating
datasets (e.g. inclusion of delays and reverb as part of the
annotation or not), by rewarding correct pitch estimations
proportionally to the energy of the pitched signal to be de-
tected. Furthermore, they provide information about the
confidence of the estimators, which is useful for many ap-
plications.

For reproducibility, the code used for this in this paper
is available online ' .

l'github.com/juanjobosch/continuousfleval
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2. VOICING DETERMINATION

Historically, single-f; estimation methods need to deter-
mine whether a given frame contains a pitch or not. To per-
form this binary decision, algorithms have commonly used
a (static or dynamic) threshold on e.g. energy, salience or
pitch likelihood [1, 3, 13—15,23]. For instance, melody ex-
traction algorithms may exploit pitch contour salience dis-
tributions and use heuristics [24], or a threshold on melody
contour probabilities produced by a discriminative model
[4,7]. Durrieu et al. [14] first perform source separation
on the melodic source, and subsequently estimate the en-
ergy of the separated signal frame by frame; frames with
energy above a threshold are determined to be voiced. The
threshold is empirically selected such that 99.95% of the
leading instrument energy is contained in voiced frames.
Fuentes et al. [15] also use an energy threshold (of -12dB)
on a low-pass filtered separated melody signal. The ideal
threshold typically depends on the difference in intensity
between melody and accompaniment.

Some methods bypass the use of an explicit threshold
and deal with voicing estimation using a classifier, for in-
stance by adding an “unvoiced” class to the set of possible
pitch outputs [2]. Other approaches model singing voice
detection separately from pitch estimation, and even try
to exploit information from neighboring frames (e.g. with
LSTMs) for making a decision on the presence of melody
on a given frame [17,23]. Finally, some of the state of the
art algorithms provide a measure of confidence on their es-
timations. However, traditional evaluation metrics do not
consider this information.

3. CLASSIC EVALUATION METRICS

Pitch estimation methods have commonly been evaluated
using metrics derived from information retrieval, com-
monly focused on pitch-related accuracy and seldom con-
sider voicing [11, 16]. Melody extraction algorithms are
evaluated using similar metrics to pitch estimation, but
voicing also takes an important role.

Symbol | Description
n | sample index € {0,...,N — 1}
fn | reference frequency (Hz) at sample n
vy, | reference voicing € {0, 1} at sample n
Ty, | pitch estimation reward € [0, 1] at sample n

fn | estimate frequency (Hz) at sample n

U, | estimate voicing € [0, 1] at sample n

Table 1. Definition of symbols.

For melody estimation in particular, several metrics are
commonly used in the literature [22,26]. Raw Pitch Ac-
curacy (RP2A) and Raw Chroma Accuracy (RCA) measure
pitch-related estimation quality. Let the reference and es-
timate fo and voicing sequences be defined as in Table 1.
RPA measures the percentage of melody frames in the ref-
erence for which the estimated pitch is considered correct
(usually within half a semitone of the reference). RCA also
measures pitch accuracy, but both estimated and reference

pitches are mapped into one octave, forgiving octave mis-
takes.

N-—1 N-—1
nZZ:O T}, 1. HXZ:O 05, 1.
RPA="=0—— — RCA=""——— (1)
Z Un Z Un
n=0 n=0

where the “correct pitch” indicator function is defined as:

1 |dg(fu, f2)] < 0.5
7}n7fﬂ. = { (2)

0 |ds(fn, fn)| > 0.5

and the difference ds between two frequency values in
semitones is defined as:
R _ f n
ds(fns fn) = 121og, A 3)

Similarly, the “correct chroma” indicator function is de-
fined as:

U |do(fs f)] <05
o, , — {1 lelhnt) @
o 0 |do(fn, fn)| >0.5
and the single-octave pitch difference d,, is defined as:
n i ds A’ru n
ol Fu f) = el Fun f) — 12 {(fuf) " 0.5J )

Voicing estimation is evaluated with Voicing Recall rate
(VR) and Voicing False Alarm rate (VFA). VR measures
the percentage of frames labeled as voiced in the reference
which are also estimated as voiced by the algorithm. On
the other hand, VFA measures the percentage of frames
labeled as un-pitched in the reference that are mistakenly
estimated as melody frames by the algorithm.

N-1

N-1
Z QA)n’Un Z {)n(l Un)
— n=0 _n=0_
VR= V7, VFA= —/— (6)
Z Un (1 - Un)
n=0 n=0

Finally, Overall Accuracy (OR) is used as a single ag-
gregate measure to evaluate algorithms, as it accounts for
both pitch and voicing estimation accuracy. In particular,
OA measures the percentage of frames that were correctly
labeled in terms of both pitch and voicing.

N—-1
1 7 A~
OA = N Z U7zvn7-fn7fn + (1 — Un)(l — vn) (7)

n=0

In order to allow each of the metrics to give insights
about different aspects of methods, the traditional evalua-
tion methodology allows algorithms to report “negative”
pitch values, which are only considered for the compu-
tation of RPA and RCA. This was an attempt to evaluate
voicing estimation performance separately from pitch esti-
mation performance, and therefore make the result of RPA
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Metric | Classic (r, = v,, binary v,,) Generalized (continuous 7, and v,,)
RPA | average pitch accuracy in voiced frames weighted average pitch accuracy in voiced frames
RCA | average chroma accuracy in voiced frames weighted average chroma accuracy in voiced frames

VR | fraction of voiced frames estimated as voiced
VFA

fraction of unvoiced frames estimated as voiced
OA | fraction of frames with correct voicing and pitch

average voicing likelihood in voiced frames
average voicing likelihood in unvoiced frames
weighted average correctness of each frame

Table 2. Description of the meaning of the metrics in the classic and generalized cases. Note that two possible cases are
not described: binary ©,, with a continuous reward r,,, and continuous v,, with r,, = v,,.

and RCA independent of the voicing estimation. However,
many algorithms do not actually report negative pitches,
and furthermore due to the inner functioning of some meth-
ods (e.g. Melodia [24]), increasing the number of reported
pitches (either positive or negative) not only has an effect
on voicing estimation accuracy but also on pitch accuracy.

Other metrics have been proposed to give further in-
sights, such as the continuity of the correctly estimated
pitches (either in pitch or chroma), which is relevant for
tasks such as automatic transcription, source separation or
visualization [8]. Metrics related to user satisfaction have
also been studied in the context of melody extraction: dif-
ferent kind of errors have a different impact in the quality
perceived when users listen to synthesized melodies that
have been extracted automatically [20]. However, most
single- fy estimation literature does not consider the influ-
ence of the energy of the signal under study (or its relation
to the accompaniment) in the evaluation. Some excep-
tions [6,25] present an evaluation of pitch salience func-
tions, which are commonly correlated to the energy of the
signals. Bosch et al. [8] also study the influence of the pre-
dominance of the melody over the accompaniment for dif-
ferent algorithms in the context of symphonic music, and
monophonic pitch estimators have been evaluated in the
presence of different noise levels [16,28]. However, in the
classic single- f; estimation metrics, all frames contribute
equally to the results, even though in many cases the pres-
ence or absence of a (melody) pitch may be unclear for
both humans and algorithms.

4. GENERALIZED METRICS

This section presents a generalization of the traditional
metrics, in order to deal with the previously introduced
limitations: voicing estimates must be binary, and all
frames receive equal importance. The proposed metrics
(1) allow algorithms to report voicing v,, as a continuous
rather than a binary quantity, representing the likelihood
that the frame is voiced, and (2) optionally weight the pitch
accuracy in voiced frames using a reward r,, € [0,1], al-
lowing mistakes in less important frames to count less than
mistakes in important frames.

In the following metrics, we require that (1) r,, = 0 if
and only if v, =0, Q) v, =0if f, =0and 3) v, =0
if fn = 0. Note that we may have fn # 0 and 0, = 0,
allowing the metrics to score pitch accuracy when voicing
mistakes are made.

Equation 8 presents the proposed generalization of RPA
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and RCA, which aggregate the pitch/chroma accuracy pro-
portional to the reward r,,. This makes the generalized
metrics more forgiving on unimportant frames, and more
demanding on important frames in comparison to previous
metrics.

N-1 N-1
ZO 75, 1, ZO &g
__ n= n=
RPA = N1 , RCA = N1 (8)
Tn Tn
n=0 n=0

Generalized versions of VR and VFA remain the same
as in Equation 6, however v,, need not be binary. In both
cases, VR is simply the average of ¢,, in voiced frames
(v, = 1), and similarly VFA is the average of 0, in un-
voiced frames (v, = 0).

Finally, we propose a generalized version of OA in
Equation 9, which scores voiced frames proportionally to

Uy, weighted by r,, and scores unvoiced frames propor-
N—1

tionally to 1 — ©,,. Let V' = Y v, the number of voiced
n=0

frames in the reference annotations. The generalized OA

becomes:

N—-1 R N-—-1 N
S raonT; S (1=vn)(1—on)

VIS (N = V)
X, £, (A=vn)
OA = = n=
N &)

In this generalized OA, voicing “mistakes” are penal-
ized according to the confidence of the estimator, which
is softer than in the binary case where mistakes are “all
or nothing”. When r,, = v, (equal reward in all voiced
frames) and 9., is binary, each of the generalized metrics
is equivalent to the metrics defined in the binary case. For
RPA, RCA, VR and VFA the equivalence is straightforward.
For OA, substituting 7,, by v,,, plugging in the given equa-
tion for V, and simplifying the resulting quantity shows
equivalence. Table 2 gives summaries of the metrics in the
classic and generalized cases.

4.1 Behavior on Artificial Examples

Figure 1 shows the behavior of the proposed metrics for
a few simple examples. For instance, the different results
obtained in plots (a), (b), (e) and (f) show that if the pitches
are correct, VR and OA get the best results with highly con-
fident estimations. Plot (a) also shows that errors in the
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OA: 0.80, RPA: 1.00
VR: 0.80, VFA: 0.20

OA: 0.95, RPA: 1.00
VR: 0.74, VFA: 0.00

OA:
VR:

0.24, RPA: 0.00
0.20, VFA: 0.04

OA: 0.59, RPA: 0.45
VR: 1.00, VFA: 0.00

OA: 1.00, RPA: 1.00
VR: 1.00, VFA: 0.00

OA: 0.40, RPA: 1.00
VR: 0.20, VFA: 0.00
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Figure 1. Artificial examples of different combinations of f;,, 7, fn, and ¥y, and the behavior of the generalized metrics.

voicing estimation are less penalized if the estimate confi-
dence is low. In this example, VFA is relatively low (0.2),
while if the algorithm had used a very low threshold to de-
termine a binary voicing value ©0,,, VFA would be equal
to 1 (the worst possible score), since all unvoiced frames
would have been estimated as voiced. Plot (d) shows the
effect of having perfect voicing estimation but incorrect
pitch estimation — the estimator is penalized in OA and
RPA. Plot (c) shows a completely wrong pitch estimation,
which gets a small score for voicing recall, due to the low
estimated confidence. In the same plot, VFA is very low
due to the correctly identified unvoiced frames, and the er-
rors between 0.4 and 0.5 s are not heavily penalized due to
the low reported confidence.

5. COMPUTING PITCH ESTIMATION REWARDS

In order to create the pitch estimation reward (r,) for
single fo datasets, we propose the computation of Root-
Mean-Square (RMS) energy in frames over time. The
first step is to compute the RMS of the source pro-
ducing the fo (RMSy,) and the RMS of the mixture
(RMS,,,) in frames. The second step deals with a frame-
wise normalization, in order to obtain a reward signal:
rn = (RMSy, )/(max(RMS,)+RMS,, ), where n cor-
responds to the index of the frame. In frames where there is
no pitch annotation (f,, = 0), we set r,, = 0, as illustrated
in Figure 2.

A mismatch between the energy of the melodic source
and the voicing derived from pitch annotations (if the fj
is non zero) could happen due to several factors. One of
them is the fact that there may be energy due to a melodic
instrument but actually no pitch, for instance in transient
percussive sounds, or with unpitched vocal sounds (e.g.,
many of the consonants). Another possible factor is that
the procedure followed during the annotation did not con-
sider echos or reverberation, while they might be clearly
present in the signal.

5.1 Isolated Sources

For datasets where isolated sources are available, we can
simply compute the frame-wise RMS of the signals over
time. For instance, in a melody extraction dataset, we
would use the RMS of the source playing the melody in
each frame to derive RMSy,. Note that this is compatible
with multiple melody definitions, even allowing different
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Figure 2. The reference frequency and the estimated re-
ward values. Frames where no reference frequency is pro-
vided may have non-zero reward estimates (in blue) - in
these cases the reward is set to O (in black).

instruments to play the melody sequentially in a given mu-
sic excerpt [5,8]. RMS,,, is computed from the instruments
which are not playing the melody pitch in each frame, and
the reward computed following the methodology from sec-
tion 5. A simpler case corresponds to monophonic pitch
estimation datasets, where RMS,,, is zero, so the raw re-
ward in each frame is equal to the RMS y, normalized by
its maximum RMS value in the example.

5.2 Sources in Polyphonic Mixtures

When isolated sources are not available, it is more difficult
to compute RMSy, and RMS,,,. For these cases, we pro-
pose the use of pitch-informed source separation [8, 14] in
order to obtain an estimate of the energy of the source and
accompaniment. We test the effectiveness of this approach
using the iKala dataset by comparing the difference in the
reference reward when computing it using isolated vocals,
and using the results of pitch informed source separation
on the mixture signal.

Figure 3 shows the results of “Melody-A” (see Sec-
tion 6, for all metrics, with the confidence computed both
using source separation and in the ideal case (having ac-
cess to the isolated sources). As we can observe, VR and
VFA have the same values, and OA, RPA, and RCA present
some small differences but which are statistically signifi-
cant, according to a paired t-test (v = 0.05). However, in
Figure 3 (right) we see that for each metric, the distribu-
tion of differences in comparison to “Melody-B” is very
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Figure 3. (Left) Metrics for “Melody-A” on iKala for
confidence computed using both source separation and in
the ideal case. (Right) The difference in score between
“Melody-A” and “Melody-B” per track for both confidence
measures on iKala.

similar when using confidence computed on both the ideal
case and with source separation. This suggests that using
source separation as a proxy to get the confidence measure
would not have an impact on the ranking of algorithms,
and therefore the methodology proposed would be useful
to compare different algorithms. We leave the improve-
ment of pitch-informed source separation for obtaining a
better reward, i.e. more similar to the values obtained if
the isolated sources were available, as future work.

6. PROPOSED METRICS ON REAL DATA

In order to show the behavior of the metrics with real data
and algorithms, we create variants of four established algo-
rithms: two monophonic pitch estimators “Pitch-A” (based
on CREPE [16]) and “Pitch-B” (based on pYIN [19])
and two melody extraction algorithms “Melody-A” (based
on Deep Salience [3]) and “Melody-B” (based on Melo-
dia [24]). Note that the main objective is not to actu-
ally evaluate/compare these algorithms, but show the be-
haviour and give further insights about the proposed met-
rics. Therefore the arbitrarily taken decisions about the
estimators such as the normalization, or using default pa-
rameters, should not be regarded as important.

In order to test our metrics, we need each algorithm
to produce a continuous voicing estimate ¥,,. ‘Pitch-A”
and “Melody-A” predict confidence values as part of the
algorithm, which we use directly as v,,. ‘“Pitch-B” and
“Melody-B” do not directly predict confidence values, but
determine which frames are voiced and unvoiced using
thresholds on signals computed internally. We derive a
value of 9,, for these algorithms using normalized versions
of these signals (the maximum probability of the pitch can-
didates for “Pitch-B”, and the contour confidence measure
for “Melody-B”). Note that not all algorithms currently
provide a confidence value as an output, but all of them de-
termine voicing at some level, and the steps used to make
this decision can typically be used to create a measure of
voicing confidence.

We use three melody extraction datasets in our ex-
periments: iKala [10], MedleyDB [5] and Orchset [8].
iKala comprises 252 30-second excerpts sampled from 206
songs. MedleyDB contains 108 melody annotated files,
which are mostly full-length songs between 3 and 5 min-
utes long, and cover a variety of instrumentation and gen-
res. For our experiments, we use the melody 2 definition:
the fo curve of the predominant melodic line drawn from
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Figure 4. Classic voicing metrics (VR - red, VFA - blue)
as a function of threshold. Dashed horizontal lines show
the value of the generalized metrics computed with con-
tinuous ¥y,. (Top) Threshold 74 for “Melody-A” (Bottom)
Threshold 75 for “Melody-B”.

multiple sources. Finally, Orchset contains 64 short audio
excerpts (between 10 and 30 s.) of symphonic music. For
pitch tracking, we use a dataset derived from MedleyDB,
with 103 tracks of solo, monophonic instruments. In the
two datasets for which we have isolated sources readily
available, MedleyDB-Pitch and iKala, we compute the ref-
erence reward using the method described in Section 5 us-
ing a hop size of 256 and a window size of 4096 for a
sample rate of 44100 Hz.

6.1 Voicing Estimation Metrics

We first examine the difference in the generalized versus
the classic metrics for VR and VFA. In the classic met-
rics, the choice of voicing threshold has a major effect
on VR and VFA. Figure 4 shows the classic metrics as a
function of the voicing threshold as dots for VR (red) and
VFA (blue) for “Melody-A” and “Melody-B” on the three
melody datasets. The dashed horizontal lines show the
value of the generalized metric, which is computed inde-
pendently of the threshold. We see that the value of the
generalized metrics is close to the average value of the met-
rics for all thresholds.

Pitch-A: MedleyDB-Pitch Melody-A: iKala

RPA Classic Th
mmm Generalized
RCA |3:l.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Score Score
Pitch-B: MedleyDB-Pitch Melody-B: iKala
—e—
P
RPA T3
— g —
RCA ol
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Score Score

Figure 5. Generalized vs Classic RPA and RCA for four
algorithms. r,, is used for the reference datasets. Boxplots
show statistics across tracks for each metric.
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6.2 Pitch Accuracy Metrics

Figure 5 shows the generalized and classic RPA and
RCA on iKala (for “Melody-A” and “Melody-B”) and
MedleyDB-Pitch (for “Pitch-A” and “Pitch-B”). We can
see that the values of the generalized metrics are higher in
all cases, which confirms that algorithms commonly make
more errors when the reference reward is lower (more dif-
ficult cases). The difference between the classic and gener-
alized metrics is larger on “Melody-B” (+0.08 on average
for RPA) than “Melody-A” (+0.05 on average for RPA),
which suggests that “Melody-A” is less prone to pitch esti-
mation errors when the melody is less predominant.

6.3 Overall Accuracy

Finally, we compare the generalized metrics with the clas-
sic metrics for OA. It is most often used as a single mea-
sure to compare the performance of two algorithms, but in
the classic metric, the choice of each algorithm’s voicing
threshold can change the relative ranking of OA. In Fig-
ure 6, the middle and right columns show the classic OA as
a function of threshold for two algorithms, and the left col-
umn shows the relative ranking of the classic OA for each
combination of thresholds; when a cell is red, the algo-
rithm in the middle gets a higher value for this metric, and
vise versa when a cell is blue. We see that for all datasets,
a pair of threshold values can be chosen which rank one
algorithm higher than the other. This makes the compar-
ison of two algorithms in terms of the classic OA highly
dependent on the choice of threshold.

We see that when algorithms are ranked based on the
generalized OA, the algorithm which is ranked higher is al-
ways the algorithm which is also more often ranked higher
for the classic OA (i.e. the dominant color in Figure 6,
left). The ordering of the generalized OA is also consistent
with the highest possible value of the classic OA (the “star”
marker in Figure 6). This suggests that the generalized OA
provides a threshold independent way to fairly rank algo-
rithms. Comparing the generalized metrics with and with-
out r,, (Figure 6, horizontal dashed and solid lines), we see
that overall the behavior of OA is similar, but harsher when
r, 1s not used.

7. CONCLUSIONS

This paper presents a generalization of traditional single-
fo estimation metrics, which allows estimators to provide
a continuous voicing estimate and introduces a weighting
on pitch accuracy. We perform an experimental compari-
son of the proposed metrics using both monophonic pitch
estimators and melody extraction algorithms and show that
the generalized metrics provide a threshold-independent
way of comparing algorithms. Additionally, we propose
a methodology for the annotation of the reference reward
r, based on the energy of the isolated sources and also
propose a promising variant for the case when only poly-
phonic mixtures are available, based on pitch-informed
source separation. One of the limitations of the proposed
method for estimating the reference reward is that it does
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Figure 6. (Left column) difference in overall accuracy be-
tween two algorithms. Red: algorithm B gets a higher
OA, Blue: algorithm A gets a higher OA, White: They
are the same. (Middle and Right Columns) OA as a func-
tion of threshold for “Melody-B” (middle) and “Melody-
A” (right) for rows 1-3, and for “Pitch-B” (middle) and
“Pitch-A” (right) in row 4. Dashed lines show the gen-
eralized OA computed with r, = v,, and continuous ¥,
solid lines show the generalized OA computed with con-
tinuous r,, and continuous v,,. Solid lines are missing for
two datasets because the isolated melody sources are not
available so we cannot accurately compute continuous 7, .

not explicitly consider aspects related to pitch perception,
which we leave for future work. Finally, the proposed
evaluation framework could also be extended to multiple
pitch estimation metrics. The concept of confidence and
reward, in this case, would be related to each of the in-
dividual pitches present, and the methodology would still
hold.

While this paper focuses on the generalization of the
classic metrics, we also foresee the creation of new met-
rics, including the adaptation of metrics from the Infor-
mation Retrieval literature (such as the ROC-AUC score).
The current work only considers voicing confidence for es-
timators and a kind of “pitch confidence” for references,
however pitch confidence for estimators and voicing con-
fidence for references could also be incorporated. Future
work could also experiment with metrics based on differ-
ent types of rewards 7, such as metrics that examine pitch
accuracy in difficult frames.
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