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ABSTRACT

Musical pattern discovery algorithms find instances of
repetition in symbolic music, allowing for some user-
specifiable amount of variation between identified repeti-
tions; however, they can yield an intractably large num-
ber of discovered patterns when allowing for even small
amounts of variation. This is commonly addressed by
defining some heuristic notion of pattern significance, and
returning only the most significant patterns. This paper de-
velops a method of pattern discovery that models human
judgement of what constitutes a significant pattern by in-
corporating annotations of repeated patterns, avoiding the
need to design heuristics.

We take pattern discovery as a clustering task, where
the input is a set of passages of monophonic music, rep-
resented as vectors of extracted features, and the output
clusters correspond to discovered patterns. The human an-
notations are used to train a neural network to learn a low-
dimensional embedding of the feature space that maps pas-
sages of music close together when they are occurrences of
the same ground-truth pattern. The results of this approach
match up with the annotations significantly better than the
results of an approach using clustering without subspace
learning. We provide examples of the types of patterns
that this method tends to discover and discuss its feasibility
and practicality as a tool for extracting useful information
about repetitive structure in music.

1. INTRODUCTION

To discover patterns in a piece of music is, loosely speak-
ing, to find passages that are similar to other passages, and
to cluster these passages into inter-related groups. This is
done with the goal of producing motivic analyses [34], au-
tomated composition systems [6], or as a single step to
provide information for some larger Music Information
Retrieval application [17]. Humans can perceive repeti-
tion between two musical passages even when the passages
vary somewhat, so it is important to incorporate some al-
lowable margin of variation between members of a single
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pattern; unfortunately, this causes a combinatorial explo-
sion, returning many more patterns than are useful for any
application. Inexact repetition simply occurs in music too
often by chance; as [29] put it, “Most repetitions in music
are not interesting.” For this reason, discovery of patterns
cannot be reduced to the problem of finding passages of
music within a single piece that are similar to one another.
Limiting the number of patterns found by a pattern dis-
covery algorithm in a systematic way means explicitly or
implicitly defining some measure by which one pattern can
be judged as “more significant” than another; we refer to
these as pattern significance measures.

Previous work by Collins et al. [10] suggests that an-
alysts judge pattern significance consistently, based on
quantifiable features of the musical surface. By analyz-
ing ground-truth significant patterns, we can simultane-
ously learn a sense of what metric of melodic similarity
the annotators used (by comparing occurrences of a sin-
gle pattern) and a sense of the metric of pattern signifi-
cance used (by comparing significant patterns to insignif-
icant patterns), and use these findings to inform a pattern
discovery method. We use these insights to model pattern
discovery as a cluster analysis problem, where the input
data points are a set containing all possible passages of mu-
sic from the piece under investigation, and the output clus-
ters correspond directly to discovered patterns. There are
parallels between common issues in cluster analysis and
pattern discovery that make this a sensible choice of tech-
nique: it is rarely known in advance how many clusters (or
patterns) are present in a dataset (or piece), and validity
measures for particular clusterings (or sets of discovered
patterns) are the subject of ongoing investigation [15]. The
goal here is that our clustering approach learns some cri-
teria of what makes the particular patterns in the ground
truth significant, and uses that criteria to return a limited
number of patterns. Ideally, the model should be able to re-
discover all the ground truth patterns from the songs that
contain them, and not too many more.

The terms used to refer to sets of repeating musical pas-
sages vary widely throughout the literature. We will define
a pattern as any set of musical excerpts, and refer to these
excerpts as the pattern’s occurrences. Each pattern is la-
belled as either significant or trivial. We ascribe no exter-
nal meaning to a pattern’s significance; if an analyst deems
a pattern “significant,” we assume that to mean nothing
more and nothing less than “this analyst would consider
this pattern to be of particular interest in this piece.”
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2. RELATED WORK

Early musical pattern discovery algorithms were string-
based, dealing primarily with monophonic inputs [3, 12,
16, 22, 33, 34]. Geometric pattern discovery approaches
were developed to deal with polyphonic music, most often
representing music as sets of (onset time, MIDI pitch) or
(onset time, morphetic pitch) pairs [5, 9, 21, 29, 36].

There are many proposed methods of reducing the num-
ber of patterns that are discovered. An early heuristic was
based on the concept that patterns are more significant
when they are unexpected, and so should be given more
weight if their occurrences are statistically unlikely given
the distribution of pitches and duration values elsewhere
in the piece [11]. Other heuristics take inspiration from
information theory, reasoning that a pattern is significant
if it can be said to explain a great deal of the redundancy
of the piece containing it [?, 1, 23, 26–28]. Research by
Lartillot has attempted to emulate the cognitive processes
that cause a listener to associate present material with past
material stored in memory [18–20]. Velarde et al. use the
Haar wavelet transform to analyze symbolic music for pur-
poses of pattern discovery by considering the pitch of a
monophonic melody as a signal; implicit in this approach
is the assumption that this transform allows access to a
higher-level musical property that is more relevant to per-
ception of melodic similarity than raw pitch data [39, 40].
Clustering-based approaches are relatively uncommon, of-
ten using the clustering aspect for some form of visualiza-
tion [2,4,17]. Directly comparing the performance of these
algorithms is not straightforward. Evaluation against a set
of human annotations is standard for the MIREX task in
this area [8], but the ground truth used for evaluation there
is sparse and taken from several different areas, making it
difficult to extrapolate the accuracy of a single method to
the method’s quality as a whole.

The largest study that investigated human annotations
of pattern importance was performed by Collins et al. [10],
who asked 20 musically trained subjects to classify pat-
terns in one of Chopin’s Mazurkas based on how likely
they would be to discuss each pattern if asked to write an
essay analysing the whole piece. Principal findings from
this study were that a small number of features could be
used to explain 70% of the variation between the patterns’
importance ratings. The results from this study do not con-
stitute a pattern discovery method in and of themselves,
but they speak to the possibility that human significance
judgements might be consistent enough to inform a pattern
discovery method.

3. APPROACH

This section describes the setup necessary to define our
proposed approach. Three main steps are necessary: as-
sembly and feature extraction on the data set, defining a
training method that learns an embedding of our feature
space, and clustering on the embedded data set.

3.1 Dataset Assembly

The dataset under investigation is the Meertens Tune Col-
lection Annotated Corpus (MTC-ANN) [38], which com-
prises 93 patterns among 360 monophonic Dutch folk
songs in 26 tune families. Each pattern has, on average,
17.8 occurrences, and the average length of an occurrence
is 4.14 notes. The small size of the occurrences in this
corpus is worth concern; out of the 1657 total occurrences
identified across all patterns, 433 of them are three notes
long, and 323 of them contain only two notes. It is not
obvious that such short snippets of music permit the ex-
traction of useful information about pattern significance.
Additionally, these patterns were found as part of a larger
annotation process which emphasized finding features of
songs that are useful in separating the songs into tune fam-
ilies [37, 41]; our approach uses the assumption that the
same implicit significance measure was used for all anno-
tations, but the annotators may have changed their criteria
depending on the tune family under consideration. Still,
the high number of occurrences per pattern is beneficial for
our clustering method, since it is in general easier to detect
a denser cluster than a sparser one. Since MTC-ANN con-
tains only segment-like occurrences (i.e., occurrences that
contain every note within a single time interval) we will
deal only with this type of occurrence. Section 5 discusses
how more general subsets of notes might be used instead.

We must find some trivial patterns to compare with this
set of significant patterns. We operate under the assump-
tion that any pattern not specified as significant in MTC-
ANN is implicitly judged to be trivial. The SIARCT-C
(Structure Induction Algorithm for R superdiagonals with
Compactness Trawling and Categorization) algorithm, de-
scribed in [9] and distributed in the PattDisc software
toolkit [7], will be used to generate a set of negative ex-
amples. In MTC-ANN, patterns are discovered between
songs that lie in the same tune families; to match this, and
to avoid dealing with the gargantuan number of patterns
that would be found looking in 360 songs at once, we find
our trivial patterns strictly within the bounds of each tune
family. In this process, SIARCT-C will likely find some
of the motifs that were identified in MTC-ANN. We re-
move any pattern from our collection of trivial patterns if
it matches one of the significant patterns too closely, where
a match is registered if at least half of the occurrences are
identical.

We stated previously that pattern discovery could be de-
fined as a clustering problem by considering the input to be
“all possible passages of music” extracted from a given in-
put. The occurrences of these discovered trivial patterns
will serve as a stand-in for this set of all possible passages
to avoid having to work with it directly. This should not
cause any loss of generality, since the huge number of pat-
terns returned by SIARCT-C does not significantly help us
narrow down the search space. This run of SIARCT-C can
be interpreted as a pre-processing step on the set of all pos-
sible musical passages from the dataset, where passages
are removed if they do not repeat often enough to have a
chance at being part of a significant pattern.
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3.2 Feature Extraction

Instead of representing each occurrence of our patterns as
an ordered sequence of notes and durations, we represent
them as feature vectors, to allow the inclusion of infor-
mation about the context of each occurrence; for exam-
ple, we quantify how much its pitch range differs from
that of the song containing it. Most of the features we
extract are defined in the documentation of jSymbolic2, a
software tool for extraction of features from symbolic mu-
sic files [24, 25], but others were devised in previous work
specifically for the purpose of extracting useful informa-
tion from very short passages of music [13]. They fall into
five broad categories, here listed with the number of fea-
tures each contains:

• Pitch-Related: Features relating solely to the or-
dered pitch values of each note (n = 21).

• Rhythm-Related: Features relating solely to the or-
dered duration values and metrical positions of each
note (n = 10).

• Contour-Related: Features using both pitch and
duration values to describe how the sequence
changes over time (n = 6).

• Histograms: Multi-valued features indicating the
raw number of notes with a particular pitch class or
duration (n = 31).

• Context-Related: Features comparing properties of
the occurrence to properties of the song containing
it (n = 38).

All together, this yields a feature set of size 106. A
detailed list of features and their definitions is provided in
the supplementary material to this paper.

3.3 Learning an Embedding

We now have a dataset containing 11,471 short passages of
music, each represented as a 106-dimensional feature vec-
tor. 1,657 of these are categorized into one of 93 significant
patterns, where all members of a single pattern are consid-
ered similar to one another and dissimilar to members of
any other pattern. 9,814 of our data points are from trivial
patterns, and we consider each of these to be dissimilar to
every other data point.

The neural network used to learn the embedding is
a fully-connected feed-forward network with two hidden
layers, each containing 100 nodes, using dropout and batch
normalization, and an output layer of size five. The train-
ing process for this network takes pairs of data points as
input. We use three types of pairs, in equal measure: pairs
where both points are members of the same ground-truth
pattern (labelled as similar), where both points are mem-
bers of different ground-truth patterns (labelled as dissimi-
lar), and where one point is from a ground-truth pattern and
one is from a trivial pattern (labelled as dissimilar). Both
data points are fed separately through the hidden layers,
transforming them both into lower-dimensional vectors of

length 5, and then their difference is taken; the L1 norm of
this difference is the output of the network. Training im-
plements a hinge loss that encourages the output to be near
zero if the two input data points are labelled as similar, and
encourages the output to be above some margin value (here
set to 1) if the points are labelled as dissimilar. Training is
halted when the loss on a validation set does not decrease
for 1,000 epochs.

The effect of this process is to train the network to learn
an embedding of the 106-dimensional feature space into a
5-dimensional space where occurrences of significant pat-
terns are clustered together, and all clusters are placed far
away from one another.

3.4 Clustering

We use the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm to cluster our trans-
formed data points [14]. DBSCAN labels sparser areas of
the dataset as containing unlabelled noise, which is ideal
for this application, as we expect that most data points will
represent musical content not part of significant patterns.

DBSCAN takes two parameters; a minimum cluster
size, which we set to 3 based on the size of the smallest
patterns in our ground truth, and a value ε which, roughly,
characterizes how close together points must be near the
centers of the discovered clusters. Choosing an optimal ε
is not straightforward; too high and the data will be parti-
tioned into a few large clusters, but too low and most points
in the dataset will be taken as noise. The designers of the
algorithm recommend the use of a k-dist graph to estimate
an optimal value. The k-dist graph of a dataset is formed
by finding the k-th nearest neighbor of each data point, cal-
culating the distance between each point and its identified
neighbor, and sorting these distances in descending order.
On a dataset well-suited to clustering, this sequence of dis-
tances should form a curve with a single sharp bend; to
one side of this bend, where the distances are high, most
points are noise points not part of any cluster, and on the
other side of the bend, most points are close to their k-
nearest neighbor and are likely members of well-defined
clusters. The recommended value for ε is the value of the
graph at this point of bending. Since most points in our
dataset might be considered noise, we will evaluate our
method over a range of values for ε that are further down
the curve than this bending point, which will force clusters
to be more tightly packed.

An image of the k-dist graph for one of the experiments
run in Section 4 is included in the supplementary material
to this paper.

4. EVALUATION

We use cross-validation to evaluate the method’s perfor-
mance. The data is split into training / validation / testing
sets based on tune family, to ensure that we train the clus-
tering method on the patterns contained in a particular set
of songs and then test that method by discovering patterns
in a totally separate set of songs. Each set includes all pat-
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Num. Clusters Median Cluster All Points Significant Points
Ratio Size Homogeneity Completeness Homogeneity Completeness

Embedding
ε5 2.14 ± 0.39 6.50 ± 0.40 0.25 0.12 0.37 0.62
ε10 4.76 ± 1.02 5.90 ± 0.21 0.44 0.13 0.63 0.67
ε15 6.68 ± 1.37 6.00 ± 0.28 0.53 0.13 0.69 0.66
ε20 8.66 ± 1.67 5.20 ± 0.18 0.54 0.12 0.69 0.63
ε25 10.15 ± 2.02 5.10 ± 0.08 0.56 0.12 0.61 0.64

PCA
ε5 2.70 ± 0.76 4.50 ± 0.20 0.15 0.13 0.21 0.53
ε10 4.97 ± 1.23 4.60 ± 0.21 0.28 0.13 0.37 0.58
ε15 6.94 ± 1.39 4.40 ± 0.22 0.37 0.14 0.47 0.60
ε20 8.42 ± 1.70 4.40 ± 0.21 0.45 0.14 0.55 0.61
ε25 10.96 ± 2.33 4.40 ± 0.22 0.52 0.12 0.63 0.62

Table 1: Results of the experiments described in Section 4. Plus-minus signs (±) indicate the standard error of a statistic
over the five test sets. Standard errors for the homogeneity and completeness statistics are consistently � 0.05 and are
omitted for readability.

terns, significant and trivial, that lie in its designated tune
families.

The training and validation sets must be assembled into
pairs before the neural network can take them as input. We
generate three sets of pairs corresponding to the categories
defined in section 3.3. We take all possible unique pairs
of the first category that our training set permits—that is,
all possible pairs involving two distinct occurrences of the
same significant pattern—and reduce the next two cate-
gories to the same size as the first through random sam-
pling without replacement. The total number of data point
pairs generated via this process varies depending on which
tune families are selected from MTC-ANN for validation
and training, since every tune family has a different num-
ber of identified patterns, but in practice this number lies
in the range from 20, 000 to 40, 000.

Once the network has been trained on this set of pairs,
we use it to reduce the test set into vectors that lie in the
learned subspace. We run DBSCAN with five different val-
ues of ε, which are estimated by building a k-dist graph on
the test set with k=3. For all test sets, this graph has a very
sharp bend near the 5th percentile. Denoting the value at
the nth percentile of the k-dist graph as εn, we test DB-
SCAN with values of ε5, ε10, ε15, ε20, and ε25. Each of
these clusterings can finally be compared directly with the
patterns in the test set.

We contrast this method with one that uses Principal
Component Analysis (PCA) to reduce the dimensionality
of the dataset instead of a learned embedding. The test sets
are processed with PCA and the five components of highest
magnitude are retained. DBSCAN is used to cluster the
result, with the same procedure for estimating ε as before,
using a k-dist graph built on the PCA-reduced data.

Testing proceeds with 5-fold cross-validation. This
does not evenly divide the number of tune families (26),
but each tune family has a different number of patterns,
and each pattern has a different number of occurrences,

so no truly equitable division is possible anyway. The
neural network is implemented using PyTorch 1.0 [30],
while the implementation of DBSCAN is from scikit-
learn [31]. Code for running these experiments is avail-
able at https://github.com/timothydereuse/
musical-pattern-clustering.

4.1 Results

In Table 1, the Num. Clusters Ratio column compares the
number of clusters obtained in each experiment to the num-
ber of ground-truth patterns in each test set. The Median
Cluster Size represents the median number of occurrences
within each pattern, averaged over all test sets. This some-
what awkward metric is necessary because using a straight
average would skew too high to accurately represent the
data; on every test set, both the PCA and embedding ap-
proaches tend to return one or two large patterns with hun-
dreds of “noisy” occurrences, a phenomenon further dis-
cussed in Section 4.2.

Traditional metrics of classification accuracy such as
precision and recall are not applicable in a clustering task
where the number of classes is itself being predicted.
The metrics used here are homogeneity and completeness,
two complementary measures of clustering validity which
compare a clustering to a ground-truth [35]. The homo-
geneity of a clustering measures the degree to which clus-
ters in the output are comprised of a single class, assign-
ing a score of 1 if every pattern in the output contains
data points from only a single ground-truth pattern, even
if some patterns are split apart. Similarly, the complete-
ness measures the degree to which classes in the input
are mapped to a single cluster of the output, assigning a
score of 1 if every pattern in the input stays unbroken when
mapped to patterns in the output, even if some patterns get
merged together. We evaluate these two metrics against the
ground truth in two different ways: first, considering all
points in the test set, and then considering only the points
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Figure 1: These four two-note occurrences are part of different patterns in MTC-ANN, but the embedding method merges
all of their patterns into one.

(a) Three occurrences from a pattern in MTC-ANN erroneously included in a large, noisy cluster by the embedding method.

(b) Three occurrences from the same pattern in MTC-ANN correctly clustered together by the embedding method.

Figure 2

Figure 3: This pattern found by the embedding method is not present in MTC-ANN; however, there is a short three-note
pattern (marked by boxes) included in MTC-ANN whose occurrences lie within this pattern.
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that correspond to significant patterns in the ground truth.
Note the very low score for completeness across both the
embedding and PCA methods; because the majority of the
points in the dataset are labelled as noise, misclassifying
any of them into clusters effectively “breaks up” the noise
class and lowers the completeness. If we ignore the noise
and focus solely on where significant patterns are clus-
tered, we note that they are mostly preserved. The sup-
plementary material to this paper contains an additional
table showing the effects of excluding individual feature
categories (as defined in Section 3.2) on the clustering.

4.2 Examples

We pick one of the test sets from the row ε15 of Table 1
to investigate further. This particular clustering finds 21
patterns within six tune families that together contain a to-
tal of 77 songs; within these six tune families, MTC-ANN
notes 18 significant patterns. Most of the 21 patterns in this
clustering do not correspond to patterns in MTC-ANN. In
particular, two of the patterns have over 800 occurrences
each, almost entirely containing longer occurrences from
trivial patterns, with some longer occurrences from signif-
icant patterns scattered in as well. In each figure, occur-
rences are marked with black notes, whereas greyed-out
notes show the context in which each occurrence lies.

Only six of the 21 identified patterns have significant
overlap with the patterns in MTC-ANN. One reason for
this low number is that the clustering method has merged
some of the identified patterns together. Figure 1 shows
four occurrences from one of these six clusters; all four
of these occurrences lie in different patterns of the ground
truth, and the full cluster (not shown here, for lack of
space) comprises the union of these four original ground-
truth patterns. Since all of these occurrences contain only
two notes, it is likely that these particular patterns were
designated as significant due to their metrical placement
in their original songs. It is incorrect that these patterns
were merged together, but the fact that only these pat-
terns were merged together is notable. The trivial patterns
found by SIARCT-C have no shortage of descending in-
tervals that the algorithm might have added to this par-
ticular cluster, and yet it contains only descending inter-
vals that were marked as significant by human annotators.
This suggests that our subspace-learning neural network
has learned something from the “context-related” features
mentioned in Section 3.2 that relates to how the human an-
notators decided which two-note intervals in the original
songs merited significance: not enough to separate these
four patterns from each other, but enough to separate them
from the rest of the dataset as a group.

Figure 2b shows another notable error made in this clus-
tering. One of the ground-truth patterns in this test set is
quite large and heterogeneous, comprising 20 occurrences
each containing eight or nine notes. Where the occurrences
have a relatively simple contour, the clustering correctly
groups them together, but it groups the more complicated
occurrences with other unclassifiable, long passages in the
size-800 clusters mentioned above. It is likely that, given

the small size of the dataset, the learned subspace does
not encode a particularly complex conception of melodic
similarity, which means that longer patterns are unlikely
to cluster together unless their similarities are quite pro-
nounced. Compare the three occurrences in Figure 2a to
those in Figure 2b, which were successfully clustered into
a single pattern, likely as a result of their more uniform
contour, and those in Figure 3, where similarity in contour
appears to have caused the embedding method to extend a
pattern existing in MTC-ANN.

5. CONCLUSIONS

We have demonstrated an approach to discovering patterns
in symbolic music that maps passages of music onto a
low-dimensional subspace where significant patterns form
clusters, using an embedding learned from human anno-
tations of repeated patterns. This method outperforms a
traditional dimensionality reduction algorithm on common
metrics used to validate clustering results against ground
truth. There is evidence that the method is capable of learn-
ing some notions of pattern significance from the human
annotations; though the agreement is far from perfect, and
the number of returned patterns is still high, the current
state of the art in pattern recognition struggles to agree with
human annotations at all [32]. To more rigorously validate
this approach in future research, it would be informative to
compare a clustering learned from human annotations with
a clustering that uses a distance measure derived from an
existing melodic similarity metric.

If we continue to restrict ourselves to segment-like oc-
currences, then extending this approach to polyphonic mu-
sic would require only a feature set capable of encoding in-
formation about polyphonic occurrences. However, to be
able to find patterns within polyphonic sources more gen-
erally, we must consider occurrences as subsets of notes
instead, which is combinatorially infeasible; for a piece of
music with n note onsets, there are O(n2) possible seg-
ments, but O(2n) possible subsets. To address this, it
would be necessary to impose limits on the time-extent
and number of notes in each occurrence, or to use an ex-
isting polyphonic pattern discovery algorithm as a p re-
processing step, as we do here with SIARCT-C.

More ground-truth annotations would undoubtedly in-
crease the accuracy of this approach, but annotations of
repeated patterns are expensive to acquire, and informa-
tion from one set of annotations might not generalize well
to other genres. The ability to extract useful information
from small sets of repeated patterns would be a more valu-
able tool for development of practical pattern significance
measures. A hypothetical use case for this research would
be an interactive pattern-discovery interface where, in lieu
of changing the parameters of a manually designed heuris-
tic, users could view a list of patterns and mark some as
significant, whereupon the algorithm would re-train on that
small set and use its findings to reduce the number of pat-
terns returned to the user.
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