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ABSTRACT

Machine learning allows automatic construction of gener-
ative models for music. However, they are learned from
only the succession of notes itself without explicitly em-
ploying domain knowledge of musical concepts such as
rhythm, contour, and fragmentation & consolidation. We
approximate such musical domain knowledge as a func-
tion, and feed it into our model. Then, two decoupled
spaces are learned: the extraction space that captures the
target concept, and the residual space that captures the
remainder. For monophonic symbolic music, our model
exhibits high decoupling/modeling performance. Control-
lability in generation is improved: (i) our interpolation
enables concept-aware flexible control over blending two
musical fragments, and (ii) our variation generation en-
ables users to make concept-aware adjustable variations.

1. INTRODUCTION

Listeners not only perceive the succession of notes itself,
but also respond to higher-level concepts in music. Two
critical components in melodic perception and memory are
scale and contour [5]. It is said that similarity between mu-
sical fragments is important in listeners’ emotional arousal
responses to music [18]. Listeners sense those similarities
through perceiving patterns of music constructs or trans-
formations such as rhythm, interval, and fragmentation &
consolidation (F&C) [20].

Music data processing, especially music generation and
analysis have attracted much attention. One of the ma-
jor methods exploits models that learn the latent space
[1,6,9,16,27-29]. These models learn compressed but
informative feature vectors of data samples and distribute
them in the multi-dimensional latent space. The spacial ar-
rangement represents the relation of data samples. Also,
numerous intermediate features—corresponding to sam-
ples hopefully not in the dataset—are yielded to fill in the
“holes” in the latent space. Then generation and analysis
are performed by bidirectional mapping of the latent space
and the data space. The latent space is, however, learned
from raw musical data without supervision. Therefore, the
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musical notions or concepts that are important for people
are not sufficiently organized on the latent space. Here-
inafter, we refer to such notions or concepts as musical
concepts, examples of which include rhythm, contour, and
F&C, as mentioned above.

How do we organize those musical concepts on the la-
tent space? People possess domain knowledge about mu-
sical concepts, although even the major concepts are not
necessarily defined clearly. In fact, various musical con-
cepts can be approximated as a function of raw musical
sequences. We input such domain knowledge to our model
in the form of a function, and then our model learns latent
spaces that capture the corresponding musical concepts.

Our model is called ExtRes (Extraction-Residual La-
tent Space Decoupling Model), and it aims at learning de-
coupled latent spaces, each of which is associated with a
musical concept. In other words, each musical concept
is learned as a latent-space concept that occupies a part
of the dimensions in the multi-dimensional latent space.
The concept-wise decoupled latent spaces allow us to mea-
sure similarity between musical fragments in terms of each
concept. The similarity is then used for e.g., pattern dis-
covery in a musical piece [17]. In generation, the control
over concept-wise latent features helps us to create musical
phrases as imagined or to compose patterns/structures in a
musical piece [23].

Our ExtRes has the following characteristics. (I)
Knowledge based: musical concepts can be incorporated
as function approximations on the basis of domain knowl-
edge. For monophonic musical sequences, various impor-
tant musical concepts can be incorporated such as rhythm,
chromatic/diatonic interval or pitch, step-leap/signed con-
tour, and F&C. This is possible because given an input se-
quence, these concepts can be approximated as other se-
quences with rules or algorithms [2, 19] to construct the
functions. (II) Complex concept and active learning:
complex concepts are actively learned without obtaining
attributes first [3, 4, 12, 14], where a set of attributes is
a concept. (III) Extraction-residual: aiming at compre-
hending complex data by repeatedly analyzing “one con-
cept versus the rest.”” The rest (residual) may capture the
useful concepts (e.g., scale for contour and “pitch order”
for rhythm). (IV) Coexisting latent spaces: depending on
the input domain knowledge, corresponding concepts are
captured in latent spaces. Users can exploit multiple mod-
els of ours—wherein latent spaces with different concepts
coexist—for handling many concepts.
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We apply our ExtRes to improving controllability in in-
teractive music generation. (i) Concept-axes interpola-
tion: this mechanism helps users to create musical phrases
as imagined. Users first input two musical fragments into
the system. Prior methods allow users to adjust the blend-
ing ratio of the two fragments uniformly regardless of con-
cepts [27, 28], whose blending is more musically mean-
ingful than the naive data space blending. Our concept-
axes interpolation offers more flexibility: enabling users
to blend only the factor of the desired concept in musical
fragments and to also adjust the blending ratio for each tar-
get/residual concept. (ii) Concept-aware variation gen-
eration: given a musical fragment, this mechanism al-
lows users to obtain variations, where the amount of vari-
ation for each concept is adjustable. When generating a
long structured piece of music, this mechanism helps to
faithfully realize either of the instructions of a song tem-
plate [23] or the user intention.

2. METHODOLOGY
2.1 Outline

We propose ExtRes, a generative model that allows learn-
ing reusable representation (as latent features and embed-
ding vectors) for a user-specified concept, given a function
based on domain knowledge on the concept (Sec.2.2). We
then instantiate our proposed ExtRes model for sequence
datasets (Sec.2.4). In Sec.2.5, musical concepts are ap-
proximated as functions on the basis of domain knowledge.
For applications of our ExtRes, we focus on meaning-level
controllability in generation. We consider the following
kinds of control: (i) altering in relation to other samples
(e.g., interpolation), (ii) altering a sample to another sam-
ple with similar but not the same meaning (e.g., varia-
tion), and (iii) altering individual concepts. ExtRes not
only puts (iii) into practice by free explorations in con-
cept spaces, but also allows hybridizing the meaning-level
controls (i-iii) for more intended controllability: Sec.2.3
Concept-Axes Interpolation is for bridging (i) and (iii),
Sec.2.3 Concept-Aware Variation Generation is for bridg-
ing (ii) and (iii).

2.2 Extraction-Residual Latent Space Decoupling
Model (ExtRes)

Let us consider a dataset D = {z(™}N_,, consisting of
N i.i.d. samples of stochastic variable x € X. Given
fext: X — ) that extracts information of a target concept
as y € Y from z, ExtRes is for learning latent spaces 2,
and Z,. that correspond to f.,;. Z. is called an extraction
space, which captures the extracted target concept, and Z,.
is called a residual space, which is expected to be decou-
pled from Z., aiming at capturing a concept corresponding
to all the rest. Figure 1 summarizes our model.

fext can be obtained e.g., by constructing rules or al-
gorithms on the basis of the data domain knowledge (for
musical sequences, see [2, 19]). Specific examples based
on musical domain knowledge are shown in Sec.2.5.

extraction model

residual model

o, (2r)

A
Ko, (i)

Figure 1: Graphical model of ExtRes.

First, we conduct data derivation: augmenting the
dataset D to obtain Dy, = {(z(™,y™)}N_,, through
the mapping ¥ = fest(x). Then, our approach is to
learn a generative model involving two latent variables:
ze € Z. for capturing variability in y and 2, € Z,. for
variability in z given y. We assume the dataset is gen-
erated from the following process: (i) zén) ~ o (Ze),
QN o (2), (i) y™ ~ Do (y\zén)), and (iii) (™) ~
pos (z|y™, z,(n)) Then we model this generative process
by maximizing marginal log likelihood log pg(Dgry) =
27]:[:1 log pe (™, y(™) with each term rewritten as:

%

log po(z,y) = log [ po, (z|y, zr)pe, (2r)dz,
+1log [ po, (ylze)po. (2e)dze. (1)

Since this is computationally intractable in general, we de-
rive an evidence lower bound (ELBO) [16]:

10gp9 (J), y) > Lyes + Lewts ()
where L5 = Eq¢7,(z,‘|x,y) [Ingﬂm (xlya Zr)]
—Dxkr. (g, (2|7, 9)||po, (21)),  (3)
and Leot = Eq, 2.1y [logpo, (y]2e)]
—Drcr (4s. (2e|y)||po. (z¢))- “

Here, D, denotes the Kullback-Leibler (KL) divergence.
We maximize the data likelihood of right hand side of
Eq.(2) for optimizing parameters {6, 0y, 60,,0c, ¢,, dc}.
We refer to the models corresponding to Eq.(3) and Eq.(4)
as the residual model and extraction model, respectively.

2.3 Controlling Generation

Concept-Axes Interpolation. With our decoupled latent
spaces, interpolation can be done for each latent space Z.
and Z,.. In the simplest linear case, interpolation between
two latent vectors [zéi); sz)] and [z.gj ) 2Y )] produces sam-
ples (e, ar) ~ po, (@[y(ce), zr(or)) with y(ae) ~
po, (ylze (o)), where z(ay) = 2" + ap(z” — =)
and z.(@.) = 20 4 ae(zéj) - zéz)) with (a,,a.) €
[0,1] x [0, 1].

Variation Generation Approach. Finding the boundary,
in a latent space, between variations and non-variations
is semi-automatically learned by defining that variations
of a given data sample are the samples that contain

enough information in terms of reconstruction error e,
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in expectation. For our ExtRes, the error € can be ad-
justed by introducing trade-off parameters in Eq.(3) and
Eq.(4) (see Sec.4.2). Intuitively, the latent vectors cap-
ture high-level features for the corresponding data sam-
ples, and given a data sample Z, the learned inference
distributions g, (2|2, fext(2)) and gy, (ze| fext (£)) spec-
ify feature-wise similar/dissimilar (i.e. variations/non-
variations) boundaries of the given sample. Therefore, our
approach is to generate variations z() of Z in accordance
with the boundaries as follows: z(?) ~ py. (ac|y(i),z£l))
with 3 ~ Do, (y\zgl)) and 2V ~ Gs, (zr |2, fext(Z)),
where 28" ~ g4 (ze| fot (2))-
Concept-Aware Variation Generation. We also propose
how to generate variations z(*) in a concept-wise manner
when the inference models are normal distributions. The
amount of variation is controlled for each concept in either
of the following ways: simply changing the ratio of the co-
variance scales of inference distributions, or ordering the
samples zéi) or zﬁi) on the basis of Mahalanobis distances:

Dy (29, 2) = /(20 = 5)TE-1(2() — 3), 5)

for (2, 2,%) € {(2, 2., 50), (24, 2, =),

where gy, (2e|fext (%)) = N (2e|2e, X)),
and gy, (2-|Z, feat(2)) = N (2|2, Z0).

Here, A denotes normal distribution.

2.4 Instantiation of ExtRes for Sequences

Throughout the rest of this paper, we consider the case
where x consists of a sequence of discrete variables s; i.e.
z = (s1,...,57). Here, each s; has a distribution over the
elements of a finite alphabet set A. Let f.,; be a func-
tion that maps a sequence of length 7' to that of length
T, ie. fem: AT — BT, where B is another alphabet
set. First, we conduct data derivation using feu(z(™) =
y™ = (agn), ...,a(T")). The given dataset D = {z(™}N_,
can be augmented to become Dy, = {(z(™, y(™)}N

n=1>
where 2™ = (s{, .. s} and y™ = (a{™, .. alM).
We refer to (agn), .,ap’) as an abstract sequence of
(s§”>, s s(T" )). Now, the inference models are
(hze,ta Cze,t) = LSTM(E(at)7 hze,tfla Cze,tfl), (6)

9o, (zelar.r)

= N (2¢|MLP(h., 1), diag(exp(MLP(h., 1)))), (7)
(hz,,.,h Czr,t)

= LSTM([E(St);E(a't)Lhzr,t—lyczT,t—l)7 (8)
q¢r(zr|51:T7a1:T)

= N (2,]MLP(h,, r),diag(exp(MLP (k. 1)))), (9)

where LSTM, E, and MLP denote a long short-term mem-
ory RNN (first, second, and third arguments of LSTM
are input, hidden state, and cell state, respectively) [13],
embedding layer, and multi-layer perceptron, respectively.
The generative model for the abstract sequence is

o, (2e) = N(2]0,7), (10)
(hml? Ca71) = LSTM([ECLO; Ze]v MLP(Ze)a Ca,O)a an
(ha,t7 ca,t) = LSTM([E(atfl); Ze]7 h’a,t717 ca,tfl)s (12)
o, (at]ai.t—1,ze) = Cat(as|o(MLP (hay))), (13)

po, (a1.7|2e) = Hthl o, (at]ai.s—1, ze), (14)
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where Cat and o denote the categorical distribution and
softmax function, respectively. Note that we use notation
po, (a1]a1.0,2¢) = po,(a1|zc) for brevity. The generative
model for the original sequence is

po, (zr) = N(2:]0,7), (15)
(h1,c1) = LSTM([Eso; E(a1); 2], MLP(2,.), o), (16)
(ht, Ct) = LSTM([E(Stfl), E(at), ZT]7 h,tfl, thl), (17)
Do, (St]81:4—1, @14, 2r) = Cat(st|o(MLP(hy))), (18)
po, (S1:7l|arT, 2r) = Hthl Po, (St|s1:4—1,a1:4, 27),  (19)

where we use the following notation for brevity:
Do, (s1l81:0, a1:1, 2r) = Po, (s1laz, z).

2.5 Formulating Musical Domain Knowledge

On the basis of musical domain knowledge, we approx-
imate musical concepts as fe.t(z) for monophonic se-
quences. As mentioned in Sec.l, given an input mu-
sical sequence, many abstract sequences expressing im-
portant musical concepts can be derived [2, 19]. Among
these, we demonstrate formulating two examples: rhythm
and contour. Our finding is that a concept of musical
transformations—fragmentation & consolidation, which is
the main characteristic of similarity in musical sequences
[20]—can also be approximated as a function, and we
demonstrate it. We use the real name of musical notes as
symbols (‘C3’, ‘D#4’, etc.) and use ‘R’ to represent a rest
symbol. We add an extra symbol ‘__’ representing that a
note is held and not replayed [11]. Then the alphabet set A
becomes a set of symbols listed above. Let O be a set of
symbols that has no pitch, i.e., O = {*__", ‘R’}. We use
the notation Sy.¢_1 = {s\™, ..., s{") }.

Rhythm. Let ‘N’ denote a symbol that represents any note.
Then the rhythm sequence for (s_%n)7 ceny sg? )) is defined as

(agn), s agf’)), where

a; =
‘N7

Thus, B = O U {'N’}. Now we define f..; for rhythm as:
fext(x) = (a17 [RED) aT)'
Contour. In this paper, we refer to a chromatic signed

contour with rhythm information as confour. Formally,
(n) (n)

(") € 0)

(otherwise)

the contour sequence for (sy ’, ..., sy ) can be defined as
@\, ...,a{"), where

s (s € 0)
al™ = { sp’ (s ¢ ONS141 C O)

sgn(Interval(sgn))) (otherwise)

Here ‘SP’ stands for Starting Pitch, sgn is a real sign
function, and Interval is a function that calculates the
chromatic pitch difference between the symbol of its ar-
gument and the previous symbol that has pitch. Then
sgn(Interval(s{™)) outputs whether the pitch of s\ is
higher than (‘1°), lower than (°-1), or the same as (‘0’)
the last symbol that has pitch. Thus, the alphabet set

B={‘_", ‘R’, ‘SP’, ‘I, -1, ‘0’}. Now we define fc,¢
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for contour as: feyi(x) = (a1, ...,ar).

Fragmentation and Consolidation (F&C). Fragmenta-
tion involves replacing one long note with several shorter
notes, whereas consolidation conversely involves replac-
ing several shorter notes with a single long note [20]. For-
mally, the F&C-invariant sequence for (sgn), s sgfl )) can

be defined as (agn), .

L _ {‘FC’ (s e 0 vs™ =1sp(s™))
i =9 .

8 (otherwise)

agzl) ), where

Here LSP stands for Last Symbol with Pitch, and
LSP(s{") = siln), where #, = max{u: s € Si.i_1 A
s{" & O}. Thus, the alphabet set B = {FC’} U A\ O.
Now we define f.,; for F&C as: feri(z) = (a1, ..., ar).

3. RELATED WORK

Conditional Models. Conditional deep generative models
are widely studied especially in the image domain [15,22].
Although our residual model is similar to this family of
models, their methods are different from ours in that (i)
the problem setting itself is different: data for conditioning
variable y is given in their method, (ii) condition y is not as
structured as ours (usually labels), and (iii) the latent space
of condition Z, is not learned (i.e., their method has no ex-
traction model of ours). In the music domain, conditions
of notes or chords are used for factoring out those informa-
tion from latent variables [7,28,29].

Disentangled Latent Spaces. In the image domain, some
approaches successfully disentangle latent space [3,4, 14].
The popular approach is regularizing each latent dimension
to be independent, hoping to obtain interpretable factors as
attributes. Meanwhile, an approach that permits disentan-
gling a latent space applicable to symbolic music has been
proposed [10], although this method assumes an attribute
has order.

Exploring Latent Space in Music. After learning the la-
tent space, some methods attempt to discover a meaningful
direction in a latent space [8,27]. These methods are also
useful for exploring within our individual concept spaces.
Variation Generation in Music. The differences between
our concept-aware variation generation and the variation
mechanism proposed by Pachet et al. [23] are (i) their
method is based on a Markov model; (ii) their method
controls variation generation in terms of edit operations,
while our method controls it in terms of musical concepts;
(>iii) our ExtRes tries to learn the notion of variation (see
Sec.2.3). Difference (iii) also differentiates our method
from the previous VAE method for generating melody vari-
ation, wherein simply Gaussian noises are added to the la-
tent vector to create perturbed latent vectors [29], although
their method could produce more diverse variations. One
can also use their method within our concept spaces.
Regularizing Latent Space in Music. Human dissimi-
larity ratings on timbre are utilized to regularize the latent
space for bridging audio analysis, perception, and genera-
tion [9].

4. EXPERIMENTS
4.1 Dataset

We conduct experiments using a leadsheet dataset intro-
duced by Pachet et al. [24] with more than 12,000 songs,
by hundreds of famous songwriters, covering several gen-
res of popular music: jazz, blues, pop, and rock. The
dataset has been used in music generation studies [21, 23,
25,26]. We extract all monophonic melody parts with time
signature 4/4, which are transposed in all possible keys if
the transposition remains within the midi pitch range of
[565, 84]. We choose to discretize time with 24 symbols in
a bar, where every beat has six symbols whose note-on tim-
ings in one beat are {0,1/4,1/3,1/2,2/3,3/4}. We then
extract all consecutive subsequences of length 7' = 24 (1
bar) or T' = 96 (4 bars). The total dataset is split into pro-
portion of {0.85,0.1,0.05} for train, validation, and test
data respectively.

4.2 Implementation Details

The numbers of dimensions for z, or z, are chosen to
be (16, 32) for the T = (24,96) model. 2-layer stacked
LSTMs are employed. We introduce trade-off parame-
ters $; for Eq.(3) and (5 for Eq.(4) to weight the sec-
ond terms [9, 27, 28]. Intuitively, the amount of infor-
mation required for each latent variable depends on the
target concepts: rhythm, contour, and F&C. Therefore,
we conduct a hyper-parameter search using the validation
dataset such that 5; and (5 are the maximum subject to
reconstruction accuracies being sufficiently high. Then,
B1 and (o for rhythm, contour, and F&C are chosen to
be (f1, B2) = (0.7,0.7), (1.0,0.7), and (0.9,0.7), respec-
tively. The number of training epochs is set to 20, KL-
annealing is used [1, 9], and teacher forcing is not used.

4.3 Model Performance

Decoupling Performance. We first sample sequences
{z@: i € {1,..,I}} and {29 (i,5) € {1,..,1} x
{1, ..., J}}, following the sampling procedure:

2 ~ py, (z]y®, Zﬁi))g 29~ pp (zly®, 29),
with Zr(’z) ~ per(z'l')7 Zﬁj) ~ Do, (ZT)7 and

Y@ ~ po, (y]2"), where 2 ~ p, (z.).

For (9 and (%9, we count
Ni,j = |{t € {17 --'7T}: fewt(x(i))t = fewt(x(i’j))tﬂ,(zo)

which is how many elements of the same index are the
identical symbol between abstract sequences of x(*) and
x(%7)_ Then, we define the accuracy for a pair (z(¥), 2(59))
as N, i,j / T.

Figure 2 illustrates the results of cumulative decoupling
accuracies for I = 1000 and J = 100. F&C accura-
cies are almost perfect. Even for rhythm and contour,
(T =24, T = 96) = (99.6,97.5)% and (85.0,37.6)%
of the samples have perfect accuracies, respectively. In-
terestingly, for rhythm and contour, the cumulative per-
centage of samples grows sharply if one symbol mistake
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Figure 2: Decoupling accuracy.

NLL Accuracy

T=24 T=96 T=24 T=96
VAE (5=1.0) 0.714 0.577 0.880 0.880
VAE (8=0.8) 0.730 0.586 0.935 0.913
VAE (8=0.7)  0.753 0.606 0.952 0.923
VAE (8=0.5) 0.792 0.660 0.974 0.956
VAE (5=0.3) 0.856 0.748 0.988 0.960
0412 0322 0967 0.969
0.335 0.274 0982 0.976
0.297 0.212 0.968 0.968
0468 0.405 0.973 0.938
0.141 0.130 0.978 0.975
0.630 0.497 0.963 0.950

Ours, Rhythm

Ours, Contour

Ours, F&C

Table 1: Negative log-likelihood and reconstruction accu-
racy. For our models, upper and lower rows denote the
residual model and extraction model, respectively.

is allowed. For instance, the percentage for confour grows
from (85.0,37.6)% to (97.6,66.3)%.

Modeling Performance. Table 1 shows negative log-
likelihoods (NLLs; per symbol and lower bound) and re-
construction accuracies (accuracies) for the test dataset.
We compare baseline variational auto-encoders (VAEs)
[16] (its model implementation and the training algorithms
are the same as our residual model without the condition y
except that the number of dimensions for the latent variable
is doubled for fair comparisons) with our three proposed
models. Each of our models is divided into two models
(residual/extraction model (see Sec.2.2)), whose individ-
ual NLLs and accuracies are shown in the table. The ad-
ditions of two NLLs for the residual/extraction model are
comparable to the NLLs for the baseline VAE. The mul-
tiplications of two accuracies for the residual/extraction
model are also comparable to the accuracies for the base-
line VAE.

4.4 Concept-Axes Interpolation

As depicted in Fig.4, given two musical fragments (top-
left and bottom-right) in each subfigure with 5 x 5 frag-
ments, the other 23 fragments “in between” are yielded
using concept-axes interpolation, whereas the interpola-
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tion in a traditional latent space [27, 28] would produce
only the three diagonal fragments. In these figures, hor-
izontal axes are the extraction space Z. axes, and mov-
ing towards the axes smoothly changes the extracted target
concepts (i.e., rhythm, contour, and F & C-invariant), while
generally not changing the residual concepts. On the other
hand, vertical axes are the residual space Z, axes, show-
ing smooth change in residual concepts and little change
in target concepts. Note that here we only show 5 X 5,
but interpolation of the two fragments could be arbitrarily
finer/coarser (at any positions of the subfigure) upon users’
demand. In Fig.4a, rhythm direction preserves “pitch ap-
pearing order,” showing that the Z,. successfully captures
concepts that are important but might be difficult to learn in
Z.. In Fig.4b, in non-contour direction, fragments tend to
transpose to match the “pitch set” of the bottom-right frag-
ment without changing contour, which captures the scale-
like concept. In contour direction, the fragments gradually
adopt the descending-like contour. In other words, only
the descending-like feature is retrieved from the bottom-
right fragment to generate fragments in the first row. For
Fig.4c, in F&C-invariant direction, the gradual altering of
fragmenting or consolidating notes is observed. Similar
analyses can also be done in longer sequences: Figure 3
shows results for 7" = 96 in piano roll representation with
each subfigure consisting of 3 x 3 musical fragments.

4.5 Concept-Aware Variation Generation

In Fig.5, our variation generation approach is applied to
ExtRes/VAE, which are for concept-aware/-unaware vari-
ation generations, respectively. In each column of the fig-
ure, the generated variations are sorted from top to bot-
tom in the ascending order of learned Mahalanobis dis-
tance (see Sec.2.3). Figure 5a depicts the variations for
rhythm. The second column shows the extraction space
Z, variations, where various rhythms are produced with-
out changing the other factors. In contrast, residual space
Z,. variations (the third column) all keep the rhythm un-
changed, whereas the other factors such as the “order of
used pitches” change. Variations by VAE (the fourth col-
umn) mix factors of rhythm/non-rhythm, without drastic
change in rthythm. Figure 5b depicts the variations for con-
tour. Z, variations have various contours without chang-
ing other factors. In contrast, Z, variations all keeps the
contour unchanged, whereas the scale-like concept “set of
used pitches” changes. VAE yields relatively conservative
variations with mixed contour/scale-like factors. Lastly,
variations for F&C are in Fig.5c. For the Z, variations,
melodies with different pitches are generated, while fix-
ing the concept of “the consecutive notes with the same
pitch” except the third row from the bottom. As for the
Z,. variations, F&C of notes are observed, which is not the
case in the fourth column except the second row from the
bottom, indicating that our ExtRes successfully captures
the notion of F&C. Note that the variations by ExtRes are
generated with simply (0, 1) or (1,0) variance scales for
two spaces to clearly explain the capabilities of ExtRes,
but one could interactively change the scale ratio to obtain
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Figure 3: Concept-axes interpolation (T=96, 0.5 stride). Vertical axis denotes MIDI note number, and horizontal axis
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Figure 4: Concept-axes interpolation (T'=24, 0.25 stride).

variations with desired mixing proportions of the concepts.

5. CONCLUSION AND FUTURE WORK

We presented a latent space decoupling model for learn-
ing concept spaces using domain knowledge. For mono-
phonic symbolic music, we experimented on three musi-
cal concepts. Controllability in generation was improved
by concept-axes interpolation and concept-aware varia-
tion generation. In future, other musical concepts men-
tioned in Sec.1 should also be tested on ExtRes. We believe
that this paper opens up possibilities for learning models
with concept-aware inference/generative processes to be
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Figure 5: Our variation generation approach is applied to
ExtRes and VAE. For each subfigure (a,b,c), left (first col-
umn): top is an original fragment and bottom is its recon-
struction; center left (second column): ExtRes extraction
space Z. variations; center right (third column): ExtRes
residual space Z, variations; right (fourth column): VAE
variations.

used for different information retrieval tasks or more con-
trolled and flexible generations.
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