
UNMIXER: AN INTERFACE FOR EXTRACTING AND REMIXING LOOPS

Jordan B. L. Smith Yuta Kawasaki Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Japan

ABSTRACT

To create their art, remix artists would like to have seg-
mented stem tracks at their disposal; that is, isolated in-
stances of the loops and sounds that the original composer
used to create a track. We present Unmixer, a web ser-
vice that will analyze and extract loops from any audio
uploaded by a user. The loops are presented in an inter-
face that allows users to immediately remix the loops; if
users upload multiple tracks, they can easily create mash-
ups with the loops, which are automatically matched in
tempo. To analyze the audio, we use a recently-proposed
method of source separation based on the nonnegative
Tucker decomposition of the spectrum. To reduce inter-
ference among the extracted loops, we propose an extra
factorization step with a sparseness constraint and demon-
strate that it improves the source separation result. We also
propose a method for selecting the best instances of the ex-
tracted loops and demonstrate its effectiveness in an eval-
uation. Both of these improvements are incorporated into
the backend of the interface. Finally, we discuss the feed-
back collected in a set of user evaluations.

1. INTRODUCTION

Professional and amateur composers across the world en-
joy creating remixes and mashups. Remixes are pieces of
music that are composed, in whole or in part, using snip-
pets of another audio recording, whereas mashups juxta-
pose snippets of two or more recordings [8]. Creators of
official remixes usually have access to the stem tracks for
a recording, but these resources are not typically available
to amateur remixers. Unofficial remixes, sometimes called
‘bootlegs’, can still be created using clips of the down-
mixed recording of the song [8], but this presents two chal-
lenges: first, it is time-consuming to manually segment
an audio track to select the most prominent or interesting
bars or sounds. Second, because the sources in the origi-
nal audio recording are down-mixed, the artist may have to
use equalization (i.e., filtering out certain frequencies) to
achieve a simple separation of sources.

We present Unmixer 1 , an interface that accomplishes

1 Available at: https://unmixer.ongaaccel.jp

c© Jordan B. L. Smith, Yuta Kawasaki, Masataka Goto. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Jordan B. L. Smith, Yuta Kawasaki, Masa-
taka Goto. “Unmixer: An interface for extracting and remixing loops”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

Figure 1. Screenshot of Unmixer interface with two songs
loaded. In its current state, two loops from each song are
playing.

both of these tasks for the user, using a source separation
technique instead of equalization (see Fig. 1). The inter-
face allows a user to upload any song; it then processes
the audio and returns a set of loops. The user can then
play with the loops on the spot, re-combining the loops
live. If the user uploads more songs, they can also juxta-
pose loops from different songs, which are automatically
tempo-matched, to create live mash-ups. Finally, users can
download the loops to remix offline.

The website was inspired in part by Adventure Ma-
chine 2 , a Webby-nominated site designed to promote an
album by the musician Madeon. That site allowed visi-
tors to remix stem samples from a Madeon track, and it
attracted significant traffic, according to the designers 3 .
The thought that inspired us was: what if visitors could
populate a remixing interface with samples from any track

2 https://www.madeon.fr/adventuremachine
3 https://developers.google.com/web/showcase/

2015/adventuremachine

824



they own? With Unmixer, we aim to achieve this vision.
In the next subsection, we discuss alternative methods

of extracting loops. In Section 2, we explain the features
of the interface and some design considerations. In Sec-
tion 3, we explain the algorithm which supports it [22] and
propose an extension and improvement to it. Both contri-
butions are evaluated. In Section 4, we present a usability
study, and we end with a discussion (Section 5).

1.1 Tools for extracting loops and creating remixes

Existing interfaces for creating live remixes from a li-
brary of samples include AdventureMachine and Beat-
Sync-Mash-Coder [7], but these do not allow you to pop-
ulate the interface with automatically extracted loops. The
web application Girl Talk in a Box 4 cuts any song into
chunks for a user and offers novel resequencing options,
but does not separate sources or allow the users to play
multiple chunks at once. Advanced users can always use
a Digital Audio Workstation (DAW), which is the most
powerful and flexible way to compose a remix, but they
will need to do the work of extracting loops on their own.
That said, software exists to support this tedious task, such
as [3] and [18], both of which require users to guide the
algorithm by indicating regions of the spectrum to ignore
or focus on. In sum, we are not aware of another interface
that, given an input song, extracts source-separated loops
and presents them to the user for remixing.

To extract repeating patterns, two broad approaches
are popular: kernel-additive modeling [10], including
harmonic-percussive source separation (HPSS) [4] and
REPET, a method of foreground-background separation
that models a looping background, and its variants [17].
However, these are binary separations: only two sources
are obtained. The family of non-negative matrix fac-
torization (NMF) approaches includes NMF [21], NMF
deconvolution [19], and non-negative tensor factorization
(NTF) [5]. All take advantage of redundancies in the
signal—repeating spectral templates, transpositions, stereo
dependence, etc. By applying NMF iteratively, [20] sepa-
rated layers of electronic music that built up progressively,
but did not model the extracted sources in terms of loops.
This is a drawback shared by all of these algorithms: they
produce full-length separated tracks. To obtain short, iso-
lated loops, some extra step is required. However, a re-
cent NTF system [22] models the periodic dependencies
in the signal and is thus suitable for extracting loops di-
rectly; it forms the basis for our system and is described
in Section 3. An orthogonal approach to extracting loops
is that of [12], which seeks only to extract drum breaks
(short drum solos that are desirable for remixes) by devis-
ing a percussion-only classifier.

2. WEB SERVICE AND INTERFACE

The purpose of the interface is to allow users to remix and
mash-up the songs they love, and to perform automatically

4 http://girltalkinabox.playlistmachinery.com

the work of isolating loops, normally done through editing
and equalization or source separation.

The interface has just a few, simple features, all visi-
ble in the screenshot (see Fig. 1). To begin, a user must
upload a song from their hard drive, using the box at the
bottom of the page. They may adjust the number of loops
to extract using the drop-down list, with possible values be-
tween 3 and 10. The audio is processed on the web server
using the algorithm outlined in Section 3; once the audio
has been analyzed, the interface is populated with a set of
loop ‘tiles’, each tile bearing a waveform sketch. The pos-
sible actions are then:

1. click on loop tiles to activate or deactivate them;
2. change the global tempo (drop-down list at top-right

of the interface);
3. pause playback (button at top-left);
4. download a zip archive containing all the loops for a

given song;
5. choose an additional song (and number of loops to

extract) using the box at the bottom of the page.

Uploading and processing a new file can take a while (cur-
rently between 5 and 10 minutes), but users can still use
the other functions (playing tiles and changing the tempo)
while waiting for the next batch of tiles. Users can add any
number of songs to a single workspace.

All the loops have the same duration (equivalent to two
bars of audio), and the playback of the loops is synchro-
nized so that the downbeats align, no matter when the user
activates them. When a user uploads the first song, the
global tempo is set to the detected tempo. New songs
added to the workspace are tempo-shifted to match the
global tempo.

The interface was built as a web application using Re-
act 5 , making it available on any web-accessible device
through a browser. To handle audio playback, we use the
Web Audio API, making it easy to synchronize playback
of all the tiles and control the playback rate. The audio
analysis is run on our server, using the algorithm described
in the next section. The web server keeps a log of up-
loaded audio files and the analysis computed for each. To
save time, if the system recognizes an uploaded audio file,
it re-uses the old analysis. However, it does not re-use the
old audio; it re-extracts the component loops from the new
audio to return to the user, thereby avoiding any copyright
issues related to redistributing audio.

3. LOOP EXTRACTION

Our approach to extracting loops is based on [22], but
we make two contributions: first, we suggest and evaluate
methods for selecting individual loops; second, we propose
and evaluate an extra “core purification” step.

3.1 Review of NTF for source separation

The pipeline for our system, based on the work of [22],
is shown in Fig. 2. First, the mono spectrogram X is di-

5 https://reactjs.org/

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

825



(a) X = X

(b) X ≈ C⊗ (W ⊗H ⊗D)

Figure 2. Overview of system, using example ‘125_acid’
[11]. (a) Spectrum of 8-bar song reshaped into ten-
sor. (b) Tucker decomposition expresses song as product
of frequency templates W , rhythm templates H , repeti-
tion templates D, and a core tensor C. In this example,
(M,P,Q) = (1025, 661, 8) and (rw, rh, rd) = (32,20,4).

vided into downbeat-sized windows using a beat-tracker.
(Unmixer uses the madmom system [1], but the illustrated
example uses the known downbeats.) The M × P -shaped
spectrogram windows (one for each bar) are stacked into a
new dimension, creating an M ×P ×Q tensor X (Fig. 2a).
Then, using Tensorly [9], we compute the non-negative
Tucker decomposition (NTD) with ranks (rw, rh, rd), ap-
proximating the tensor as the outer product X ≈ C⊗ (W ⊗
H ⊗ D) (Fig. 2b). In plain terms, the NTD models the
spectrum with three meaningful components: a set of spec-
tral templates W (the sounds), a set of within-bar time-
activation templates H (the rhythms), and a set of loop-
activation templates D (the layout, i.e., the arrangement of
loops in the song). In Fig. 2b, a decomposition of an arti-
ficial 8-bar (W = 8) stimulus [11] has been approximated
using rd = 4 loop templates, giving a good estimate of the
layout of the piece (shown in Fig. 6). The templates are
diverse: some sounds are monophonic, others polyphonic;
some rhythms are percussive, others sustained.

The sparse core tensor is C; a non-zero element C[i,j,k]

indicates that sound i is played with rhythm j, and this pat-
tern is repeated according to layout template k. To separate
the contribution of the kth loop, use the kth row of D to
take the outer product C⊗(W⊗H⊗Dk) ≈ Xk, and unfold
the tensor into Xk. The reconstructed real-valued spec-
trum Xk is not sufficient to recreate the signal; we must
apply softmasking (as outlined in [17] and implemented in
librosa [13]) and use the original phase:

yk = ISTFT(phase(X) ·mag(X) ·
Xp

k

Xp
k + Xp

) (1)

where p is the power of the softmask operation. As noted

Figure 3. Example reconstruction of spectrum for a sin-
gle loop (#2) from multiple (freq, rhythm) combinations
(above), and for a single bar (#4, also indicated in Fig. 2)
from multiple loops (below).

by [6], using softmask filters is convenient, although not
necessarily optimal, for non-negative approaches like ours.

The core tensor can be interpreted as a set of “recipes”
for building the loops, the recipe for the kth loop being the
rw×rh slice of the core tensor C[:,:,k]. To see how, note that
Wi ⊗ Hj , the outer product of the ith sound with the jth

rhythm, is an M × P spectrum of a single bar. The outer
product C[:,:,k] ⊗ (W ⊗H) thus represents a sum of such
one-bar spectra, leading to the kth loop template. Fig. 3
shows how the 2nd loop template is the sum (in descending
order of magnitude) of individual Wi ⊗ Hj components.
Each bar in the piece will be a superposition of several
loops: the bottom part of the figure shows how the 4th bar
consists of copies of each loop.

3.2 Loop selection

The output of the algorithm in [22] is a set of full-length
tracks, each corresponding to the contribution of one loop.
For remixing purposes, we only want a bar-length version
of each loop, as cleanly separated as possible. The plain
approach is to extract the full-length track, then excerpt a
single bar, but the question is then: which bar to select?

There are at least two factors to consider: how loud
a given loop instance is, and how strongly that instance
stands out from the other parts. Loudness can be maxi-
mized by choosing the bar that takes the maximum value in
the loop activation matrix: i.e., to select the best bar for the
kth loop, choose argmax(D[k,:]). To minimize cross-talk,
we consider two approaches. First, we may normalize the
columns of D by choosing argmax(D[k,:] − D̄), where D̄
is a vector of the column means of D.

Alternatively, the coefficients from the softmask oper-
ation could estimate how prominently a given loop stands
out from the background. In this approach, we compute
the softmask coefficients for each bar (i.e., the fractional
part of Equation 1), and then select the bar which maxi-
mizes the total value of the mask. That is, if Mk,i gives the
softmask matrix for the ith bar for the kth loop, we select
argmax(

∑
Mk,:). Finally, we may combine any or all of

these decision criteria.
Evaluation To determine the most reliable selection

method, we tested them on a set of stimuli assembled
by [11]. The test set contains 7 compositions, each con-
taining 4 loops arranged in the same 8-bar layout (shown

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

826



1. Loudness 2. Normalized 3. Mask 4. Loudness * Mask
Decision criteria

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Av
er

ag
e 

su
cc

es
s w

he
n 

m
ax

im
izi

ng
 m

et
ric Quality metric

SDR
SIR
SAR
mean

Figure 4. Main effect of bar selection strategies.

in the bottom part of Fig. 6). We ran the NTD algorithm
on all the stimuli (with (rw, rh, rd) = (32, 40, 4)), and
then measured the reconstruction quality of each loop in
each bar. We measured reconstruction quality using SDR,
SIR and SAR, the source-to-distortion, -interference, and -
artefact ratios, respectively, calculated using mir_eval [16].
(For each metric, higher is better.) Then, we tested how
frequently the optimal bars were selected by maximizing
each criterion. The four tested criteria were: loudness
only (D[k,:]); normalized loudness (D[k,:]− D̄); mask only
(M[k,:]); and loudness times mask (D[k,:] ·M[k,:]).

The main effect of the choice of criterion is shown in
Fig. 4, which shows how often a given strategy (e.g., “se-
lect the loudest bar”) correctly found the bar that maxi-
mized a given metric. Using loudness alone (1), the opti-
mal bar was selected at least two-thirds of the time. Nor-
malizing the matrix D to diminish cross-talk (2) was too
coarse, with the best bar selected less than 60% of the time.
However, multiplying the loudness by the mask (4) to di-
minish cross-talk led to the best overall result, with the op-
timal bar selected around 80% of the time. The choice of
criterion depends slightly on the quality metric (SDR, SIR
or SAR) being maximized: if the priority is to maximize
SAR, using the mask alone (3) may be advised, but using
the loudness-and-mask criterion worked best overall, and
it is the criterion used in the Unmixer system.

3.3 Loop purification

As reported by [22], a problem with the algorithm is that
the extracted loops can be redundant. For example, sup-
pose a song contains a drum pattern A and a synth pattern
B, which are independent, but where B never occurs with-
out A. Instead of modeling the independent patterns A and
B, the algorithm is likely to learn one pattern for A and
another for A + B. This error is not fixed by changing the
number of loop templates that the model should learn.

The problem would be avoided if the core tensor were
estimated with a sparsity constraint. Note that sparsity is
only desired in the 3rd dimension, to prevent the rw × rh
slices (the loop ‘recipes’) from being too similar. Dense-
ness is still desirable in the other dimensions; indeed, al-
lowing different sources (frequency templates) to share

Figure 5. Illustration of core tensor purification. WC and
HC are estimated using NMF with HC constrained to be
sparse.

rhythms (time activation templates), and vice versa, was
a motivation to use NTD to begin with, since it allows an
accurate and meaningful reconstruction without the model
size becoming infeasibly large.

Algorithms for sparsity-constrained tensor factoriza-
tions exist [14], but we are not aware of any existing tensor
decomposition packages that implement them. 6 There-
fore, we propose to follow regular NTD with a “core-
purification” step, using sparsity-constrained NMF to sim-
plify the core tensor.

The process is illustrated in Fig. 5, supposing a decom-
position of initial rank (10, 5, 6). First, we take C(3), the
third-dimension unfolding of the core tensor C, so that
each horizontal slice of C is reshaped into a row in C(3).
Then, we apply sparse NMF (using the SNMF function in
Nimfa [23]) to model C(3) ≈WC×HC , imposing sparsity
on HC only. (It is also possible to use simple NMF, with-
out the sparsity constraint; this is tested later as a baseline.)
The rows of HC give a new set of maximally independent
vectors; when the matrix HC is refolded, it gives C′, a set
of maximally independent recipes. The matrix WC tells us
in what proportion to add the previous 6 templates to each
other to obtain the new set of 4 templates; hence, we use it
to transform the original layout D into WC ×D = D′.

An example showing the promise of this method is
shown in Fig. 6. First, we computed the NTD of a song
using ranks (10, 5, 4); second, we computed a new NTD
with ranks (10, 5, 6), and purified the core so that the final
shape was (10, 5, 4). The 4 slices of each core are shown in
parts (a) and (b) of the figure, along with the correspond-
ing layouts: first, the loop activation matrix D; second,
the revised matrix D′. Each is an estimate of the ground
truth layout at bottom. Whereas there is a clear redun-
dancy among loops 2 and 3 in the first set (plain NTD),
the redundancy has been reduced in the second (NTD with
purification). The reconstruction error for the second set
is actually a little higher (0.186 compared with 0.185), but
the separated audio will be of higher quality. In the actual
example (where we used ranks (32, 40, 4) and (32, 40, 6)),
the mean SDR and SIR for the 4 estimated loops climbed
from 1.98 and 9.96 to 6.85 and 16.16, respectively, while

6 NB: factorization of ‘sparse’ tensors is often a supported feature, but
not the estimation of sparse outputs.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

827



Figure 6. Comparison of (a) core estimated with plain
NTD vs. (b) NTD with purification (core purified from
6 to 4), using stimulus ‘125_acid’ [11]. The pixel at (4, 7)
which appears redundantly in loops 2–4 in (a) has been
subdued in (b). Each subfigure’s pixels are linearly scaled
between its min and max.

Figure 7. Main effect of loop purification and runtime
strategies.

SAR only decreased from 17.97 to 17.38. (These metrics
are explained in the next section.)

Evaluation We evaluated the effectiveness of the pro-
posed purification approach on the same dataset used in
Section 3.2. We ran a fully-factorial design, exploring the
following parameters and settings:

1. Plain NTD vs. purification;
2. Purification method: unconstrained NMF vs. the

proposed SNMF approach;
3. Initial rank: 5 or 6 for purification methods only;
4. Tolerance: stopping criterion for computation of ini-

tial tensor (0.001, 0.0005 or 0.0001).

We use the known downbeat locations, and the final rank
was always set to 4, the true number of loops in the exam-
ples. Although these must be estimated in a real-life sce-
nario, we can still evaluate the impact of the purification
method, initial rank, and tolerance. The reported metrics
are SDR, SIR and SAR, as before.

Fig. 7 shows the main effects. We see that the purifi-
cation step increased SDR and SIR, with only a minor de-

crease in SAR. This was the hoped-for result: less inter-
ference among the extracted signals (SIR), even if some
reconstruction quality is sacrificed (more artefacts, SAR).
However, we found that there was little difference between
the proposed SNMF-R approach and a simpler NMF ap-
proach. We also see that purifying an estimate to rank 4
from rank 5 gave slightly better results than from rank 6.
To put these effects in context, we also show the effect of
reducing the tolerance, i.e., allowing the tensor factoriza-
tion to run for longer. The purification step increased SIR
nearly as much as did reducing the tolerance by 90%.

4. USER EVALUATIONS

To assess the usability of the system and solicit feedback
about the audio quality and enjoyability of app, we con-
ducted a user evaluation. We solicited 8 participants (4
men and 4 women), all between 25 and 40 years old. The
study had three components:

1. A background questionnaire covering: their musical
training (using the standard Goldsmiths MSI short
test [15]); their experience with audio editing in-
terfaces and audio production; and their familiarity
with the songs used in the study.

2. A 10-minute test of the interface. Participants were
asked to upload a song, familiarize themselves with
the interface, then upload 2–5 more and explore the
combinations of sounds.

3. A feedback questionnaire with Likert-scale and free-
text questions focused on usability, audio quality, en-
joyment, and potential new features. Usability ques-
tions were adapted from the standard Systems Us-
ability Scale [2]).

We limited participants to a set of 11 audio files that the
system had already seen, which greatly sped up the pro-
cessing time: users did not have to wait the typical 5–10
minutes for the Tucker decomposition to converge; they
only needed to wait for the system to receive the audio,
use the pre-existing decomposition to extract new audio
files, and load said audio files into the interface, all of
which takes roughly 30 seconds per file. Otherwise, the
system they used is the same that is available live, now at
unmixer.ongaaccel.jp. The ranks of the analysis
are (rw, rh, rd) = (50, 40, 30) (with rd purified to 25 using
SNMF-R), and the NTD is solved with tolerance 0.0001.

User background: The 8 user testers included musical
experts and novices: 5 played musical instruments, and 6
had experience editing audio files. Of those 6, 4 also had
some experience either using a DAW or creating a remix
or mashup. According to the MSI test, the musical so-
phistication of 4 users was within a standard deviation of
average [15], with 1 user above this range and 3 below.

Usability: There was unanimous agreement that the
system was “easy to use” and that users thought “most peo-
ple would learn to use this system very quickly.” In fact, in
the free response, ease of use was cited by 7 users as one
of the best things about Unmixer, especially for “musical
novices” or “a beginner [like] myself”. One aspect of the

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

828



interface that users found inconvenient, though, was the
inability to anticipate what a loop would sound like. One
wrote that “you need to guess what’s in each loop based on
the waveform and sometimes it’s not what you expected
or wanted”, and suggested a short text label (e.g., ‘vox’,
‘drum’, ‘synth’) to indicate the content; another suggested
visual hints. One user also noted that they did not know
what the impact on the loop content or quality would be if
they changed the number of loops to extract.

Sound quality: Asked whether “the sound quality of
the loops was poor”, users were divided, with 4 each agree-
ing and disagreeing. However, one disagreer later ex-
plained that while “audio quality of some samples was not
great, ...it was possible to find good quality ones.” The
quality of source separation was appreciated: 6 agreed that
“most loops isolated a single source (e.g., drums, vocals,
synth, bass)”, and 5 agreed that “loops within one song
had a nice variety” (with 2 disagreeing). No one agreed
that the “loops from different songs were too similar”.

Enjoyment: 6 agreed that “the combination of loops
was often interesting”, and 4 agreed that they would “like
to use Unmixer frequently” (with 2 disagreeing). The inter-
face struck users as novel: none agreed that the “interface
was similar to others I’ve used before”. Four agreed that
“a remix artist could build a good song from these loops”
(with 2 disagreeing); however, among users with experi-
ence using DAWs or creating mashups, opinion on this
was split 2-against-2. Users saw different reasons to enjoy
the interface: one “enjoyed the experience of doing some-
thing new”; another wrote that “it was very easy to try out
new ideas very quickly”. Opinon also varied on what users
would use Unmixer for, with responses including: generat-
ing mashups “for interludes or as backing music”; “using it
to prototype [remix] ideas quickly”; “having fun at a house
party—home-DJ style”; creating “nice effects for a video”;
and “taking some of my own music” and generating “new
ideas from it.”

Potential features: To understand what future devel-
opments for the interface would be most desirable, we
polled users’ opinions on a list of 7 suggested features:
controls for (1) loudness, (2) pitch-shifting and (3) equal-
ization (e.g., to boost the bass or mid-range); (4) keyboard
shortcuts for activating loops; (5) allowing more than 10
loops; and colour-coding loops by (6) type (e.g, vocals,
synth) or (7) tonality. Users expressed broad approval for
all of these except for (5), although if loops were colour-
coded, it might become more desirable to have more loops
available. Almost all users indicated that they had already
thought of feature (1). When asked what change in Un-
mixer would make it more usable or useful, two users sug-
gested a timeline functionality so that repeating sequences
of loops could be made; two also wanted to be able to
‘save’ or ‘download’ the combinations they had created.

5. DISCUSSION

Our user feedback confirmed for us the usability of the sys-
tem: without supervision, all participants completed the
steps of the user study. The positive comments assure us

that the app holds promise as a tool for exploring interest-
ing remix possibilities. However, to be most useful and
engaging, we need to improve the sound quality of the ex-
tracted audio. The interface as it is may even be too simple:
we expect that with a few changes, like adding keyboard
shortcuts and having the tiles give some visual hint as to
their content, we can increase user enjoyment and satisfac-
tion. On the other hand, we should not implement all of
the features discussed; to do so would be to program an
in-browser, fully-functional DAW, whereas our focus is to
provide users with loops extracted from songs and allow
them to experiment with combinations.

The user study differs from the live experience in a few
ways: (1) It allowed a choice among 11 pre-selected tracks,
although real users are free to choose any music from their
library; and (2) it featured a streamlined experience with
minimal waiting for the system to analyze the files. We
must collect more feedback from realistic scenarios to un-
derstand the system usability. If we cannot speed up the
algorithm, we may need to adjust the interface to maintain
the feeling of interactivity. For instance, we could provide
the user with a quick-and-dirty set of extracted loops, and
refine them in the background while the user experiments.
Also, the current version kept fixed the ranks of the analy-
sis and the amount of purification. We hope to make these
tuneable, or have the system predict the optimal values.

There remain several ways to improve the source sep-
aration quality. We have reconstructed the signals using
softmask filtering, but we could realize further improve-
ments, and even speed up the algorithm, by using newer
masking methods, such as the divergence-based masks
proposed by [6]. To improve the system’s output, we could
use equalization to refine the separated loops. As noted in
the introduction, creators of unofficial remixes often use
equalization to separate sources in lieu of source separation
algorithms. We could blindly apply equalization or HPSS
to create, say, bass, treble and percussive versions of each
loop, or use a set of instrumentation-detection functions
(similar to [12]) to select the best ones.

To evaluate these proposed improvements, it is impor-
tant to collect more expansive test sets. The small test set
of [11] was sufficient to assess the best bar-picking strategy
and whether the purification step was useful. However, fu-
ture work on this task ought to treat more diverse stimuli—
more genres, loops per song, and loop layouts—to gauge
how the system copes with realistically complex pieces.

6. CONCLUSION

We developed Unmixer, a web-app where users can upload
music, extract loops, remix them, and mash-up loops from
different songs. Expert and novice users found it easy to
use; many also found it a novel way to develop remix ideas,
although higher-quality audio output may be required for
polished remixes. The backend uses the NTD-based source
separation algorithm from [22]; we proposed and tested
techniques to select the best reconstructed loop excerpts,
and techniques to refine the loop layout, measurably im-
proving on the baseline system output.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

829



7. ACKNOWLEDGMENTS

This work was supported in part by JST ACCEL Grant
Number JPMJAC1602, Japan.

8. REFERENCES

[1] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
rian Krebs, and Gerhard Widmer. madmom: a new
Python Audio and Music Signal Processing Library.
In Proc. of the ACM International Conference on Mul-
timedia, pages 1174–1178, Amsterdam, The Nether-
lands, November 2016.

[2] John Brooke. SUS: A ‘quick and dirty’ usability scale.
In Patrick W. Jordan, Bruce Thomas, Bernard A.
Weerdmeester, and Ian L. McClelland, editors, Usabil-
ity Evaluation in Industry, pages 189–194. Taylor and
Francis, London, UK, 1996.

[3] Nicholas J Bryan, Gautham J Mysore, and Ge Wang.
ISSE: An interactive source separation editor. In Proc.
of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 257–266. ACM, 2014.

[4] Derry FitzGerald. Harmonic/percussive separation us-
ing median filtering and amplitude discrimination. In
Proc. of the International Conference on Digital Audio
Effects, Graz, Austria, September 2010.

[5] Derry FitzGerald, Matt Cranitch, and Eugene Coyle.
Sound source separation using shifted non-negative
tensor factorisation. In Proc. of the IEEE ICASSP, vol-
ume 5, Toulouse, France, 2006.

[6] Derry Fitzgerald and Rajesh Jaiswal. On the use of
masking filters in sound source separation. In Proc. of
the International Conference on Digital Audio Effects,
York, UK, 2012. Dublin Institute of Technology.

[7] Garth Griffin, Youngmoo E. Kim, and Douglas Turn-
bull. Beat-sync-mash-coder: A web application for
real-time creation of beat-synchronous music mashups.
In Proc. of the IEEE ICASSP, pages 437–440, Dallas,
TX, USA, 2010.

[8] Sheena D Hyndman. No money, mo’ problems: The
role of the remix in restructuring compensation for
producers of electronic dance music. MUSICultures,
41(1):57–72, 2014.

[9] Jean Kossaifi, Yannis Panagakis, Anima Anandku-
mar, and Maja Pantic. Tensorly: Tensor learning in
python. The Journal of Machine Learning Research,
20(1):925–930, 2019.

[10] Antoine Liutkus, Derry Fitzgerald, Zafar Rafii, Bryan
Pardo, and Laurent Daudet. Kernel additive models for
source separation. IEEE Trans. on Signal Processing,
62(16):4298–4310, 2014.

[11] Patricio López-Serrano, Christian Dittmar, Jonathan
Driedger, and Meinard Müller. Towards modeling and
decomposing loop-based electronic music. In Proc. of
the ISMIR, pages 502–508, New York, NY, USA, 2016.

[12] Patricio López-Serrano, Christian Dittmar, and
Meinard Müller. Finding drum breaks in digital music
recordings. In Proc. of the International Symposium
on Computer Music Multidisciplinary Research, pages
68–79, Matosinhos, Portugal, 2017.

[13] Brian McFee, Colin Raffel, Dawen Liang, Daniel El-
lis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
librosa: Audio and music signal analysis in python. In
Proc. of the Python in Science Conference, 2015.

[14] Morten Mørup, Lars Kai Hansen, and Sidse M Arn-
fred. Algorithms for sparse nonnegative tucker de-
compositions. Neural Computation, 20(8):2112–2131,
2008.

[15] Daniel Müllensiefen, Bruno Gingras, Jason Jiří Musil,
and Lauren Stewart. The musicality of non-musicians:
An index for assessing musical sophistication in the
general population. PLOS One, 9(2), 2014.

[16] Colin Raffel, Brian McFee, Eric J. Humphrey, Justin
Salamon, Oriol Nieto, Dawen Liang, and Daniel PW
Ellis. mir_eval: A transparent implementation of com-
mon MIR metrics. In Proc. of the ISMIR, pages 367—
372, Curitiba, Brazil, 2014. Citeseer.

[17] Zafar Rafii, Antoine Liutkus, and Bryan Pardo. REPET
for background/foreground separation in audio. In
G. R. Naik and W. Wang, editors, Blind Source Sepa-
ration, Signals and Communication Technology, pages
395–411. Springer-Verlag, 2014.

[18] Zafar Rafii, Antoine Liutkus, and Bryan Pardo. A sim-
ple user interface system for recovering patterns re-
peating in time and frequency in mixtures of sounds.
In 2015 IEEE ICASSP, pages 271–275. IEEE, 2015.

[19] Mikkel N. Schmidt and Morten Mørup. Nonnegative
matrix factor 2-d deconvolution for blind single chan-
nel source separation. In International Conference on
Independent Component Analysis and Signal Separa-
tion, pages 700–707. Springer, 2006.

[20] Prem Seetharaman and Bryan Pardo. Simultaneous
separation and segmentation in layered music. In Proc.
of the ISMIR, pages 495–501, New York, NY, USA,
2016.

[21] Paris Smaragdis. Non-negative matrix factor decon-
volution: Extraction of multiple sound sources from
monophonic inputs. In Independent Component Anal-
ysis and Blind Signal Separation, volume 3195 of
Lecture Notes in Computer Science, pages 494–499.
Springer-Verlag, Berlin, Heidelberg, 2004.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

830



[22] Jordan B. L. Smith and Masataka Goto. Nonnegative
tensor factorization for source separation of loops in
audio. In Proc. of the IEEE ICASSP, pages 171–175,
Calgary, AB, Canada, 2018.

[23] Marinka Zitnik and Blaz Zupan. Nimfa: A python li-
brary for nonnegative matrix factorization. Journal of
Machine Learning Research, 13:849–853, 2012.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

831


