
GENERATING STRUCTURED DRUM PATTERN USING VARIATIONAL
AUTOENCODER AND SELF-SIMILARITY MATRIX

I-Chieh Wei1 Chih-Wei Wu2 Li Su1

1Institute of Information Science, Academia Sinica, Taiwan
2Netflix, Inc., USA

sma1033@iis.sinica.edu.tw, chihweiw@netflix.com, lisu@iis.sinica.edu.tw

ABSTRACT

Drum pattern generation is a task that focuses on the rhyth-
mic aspect of music and aims at generating percussive se-
quences. With the advancement of machine learning tech-
niques, several models have been proven useful in produc-
ing compelling results. However, one of the main chal-
lenges is to generate structurally cohesive sequences. In
this study, a drum pattern generation model based on Varia-
tional Autoencoders (VAEs) is presented; Specifically, the
proposed model is built to generate symbolic drum pat-
terns given an accompaniment that consists of melodic se-
quences. A self-similarity matrix (SSM) is incorporated
in the process for encapsulating structural information.
Both the objective evaluation and the subjective listening
test highlight the model’s capability of creating musically
meaningful transitions on structural boundaries.

1. INTRODUCTION

Music generation has become an increasingly popular re-
search field as machine learning techniques continue to
thrive [3]. Generating symbolic music sequences us-
ing variants of deep neural networks (DNNs) has shown
promising results with various degrees of success [6, 9, 10,
19, 22]. In the meantime, drum pattern generation, a sub-
task that mainly concerns the creation of drum sequences,
receives relatively less attention. While some models de-
signed for melodic sequences could be applied to drums
directly [6,19], techniques developed specifically for drum
patterns are still in need of further exploration.

In Western music genres such as rock, pop, and jazz,
drums usually provide the rhythmic support to melodic in-
struments and reflect the structure of a song. For instance,
drum patterns within the same section (e.g., verse) are typ-
ically derived from the same rhythmic motif, and new pat-
terns such as drum fills would appear around the structural

c© I-Chieh Wei, Chih-Wei Wu, Li Su. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: I-Chieh Wei, Chih-Wei Wu, Li Su. “Generating Struc-
tured Drum Pattern Using Variational Autoencoder and Self-Similarity
Matrix”, 20th International Society for Music Information Retrieval Con-
ference, Delft, The Netherlands, 2019.

boundaries (e.g., from verse to chorus). In other words,
drum patterns not only enhance the rhythmic progression,
but also facilitate the structural segmentation. Addition-
ally, in order to achieve the rhythmic coherence, drum pat-
terns tend to correlate with other instruments (e.g., rhyth-
mic guitar and bass guitar). These particularities suggest
that the structural and rhythmic information from other
instruments is crucial for designing reasonable drum pat-
terns.

To build a model that accounts for the above consid-
erations, we explore the idea of using a self-similarity
matrix (SSM) as an intermediate structural representation
for drum pattern generation. Particularly, we utilize a
Variational Autoencoder Generative Adversarial Network
(VAE-GAN) to predict the corresponding drum SSM given
the SSM of polyphonic mixture of melodic instruments.
Subsequently, another VAE-based model generates MIDI
drum tracks based on the predicted drum SSM. The contri-
butions of this work include:

(i) a new way of incorporating structural information in
the context of drum pattern generation,

(ii) a novel bar selection mechanism that encourages
self-repetition in similar sections, and

(iii) the insights into the model’s capability of handling
transitions between structural sections.

2. RELATED WORK

Drum pattern generation involves the creation of rhythmic
patterns with all types of drums; it is an important subtask
in conditional music generation problems such as multi-
track and lead sheet generation [6, 14]. According to the
input and output representation, drum pattern generation
models can be roughly divided into (i) symbolic-domain
and (ii) audio-domain models.

Systems operating in symbolic-domain work exclu-
sively on discretized representations such as MIDI, a for-
mat that allows systems to concentrate on essential infor-
mation at the semantic level. The majority of prior studies
falls into this category. Some of the early systems adopt
Genetic Algorithms (GA) to create variants of rhythmic
patterns [2, 8, 11, 15] and explore new patterns through a
simulated evolution process. However, designing an effec-
tive fitness function is non-trivial and relies heavily on the

847

Figure 1. Block diagram of the proposed drum pattern generation system.

domain knowledge. In addition to GA, probabilistic mod-
els [16] and deep learning-based models [1,7,14] have also
been proposed; these methods generally avoid predefined
rules and learn from the data directly, but their performance
and generality would vary depending on the data source.

Systems operating in the audio domain directly deal
with continuous signals such as waveform. This type of
systems usually has a higher degree of freedom in terms of
the output. Training such systems requires a set of audio
signals with manual annotations. To automate the annota-
tion process, Automatic Drum Transcription (ADT) [21],
another on-going research topic, would be a necessary in-
termediate step. As a result, prior studies in this category
are relative scarce. Donahue et al. proposed to use gen-
erative adversarial network (GAN) for creating audio such
as electronic drum beats [5], yet still, the current resulting
pieces are short clips without long-term structure.

In this paper, we build our system in both audio and
symbolic domains. By utilizing the audio data synthesized
from the symbolic representation, we take advantage of a
large collection of symbolic data and reserve the possibility
of future extension to audio domain. To narrow down the
scope of this task, we focus on generating drum patterns in
Western music genres with a standard drum kit (e.g., Hihat,
Snare Drum, Kick Drum, Toms, etc.). Inspired by previ-
ous studies on structural analysis [17] and self-similarity
constraint for music generation [13], we use SSM to en-
capsulate the structural information and investigate its po-
tential impacts on the generated sequences. More details
are elaborated in the following sections.

3. METHOD

Figure 1 illustrates the flowchart of the proposed drum pat-
tern generation system. We focus on generating drum pat-
terns given a song as a conditional input. The goal of this
conditional generation is to generate drum patterns that are
both rhythmically and structurally compatible to the given
song. To facilitate the preservation of global structure,
we propose a system consisting of two generative models,

namely, the SSM generator and the drum pattern genera-
tor. In the training phase, the MIDI file is separated into
the drum track and the melodic track, followed by the cal-
culation of their corresponding SSMs. The SSM generator
is trained to predict drum SSM based on the given melodic
SSM, and the drum generator is trained to predict drum
patterns based on drum SSM and a bar selection mech-
anism. In the generation phase, two generators are used
sequentially to predict the drum SSM and drum patterns
given the melodic tracks.

3.1 Data preprocessing

The input of the proposed model is the audio rendered from
all the melodic tracks in the MIDI dataset using a software
synthesizer; 1 these audio signals are mono-channel sam-
pled at 44.1 kHz. The advantage of using synthesized au-
dio rather than symbolic data is to enable future adaptation
to real-world audio. The tempo of each song is normalized
to 120 BPM. Every spectrogram calculated from the audio
is denoted as a tensor Y in shape of (b, f, t), where b is the
number of bars, f is the number of frequency bins, and t
are the number of time frames in a one-bar spectrogram,
respectively. In this study, we set b = 8, f = 84, and
t = 96.

For each synthesized audio clip, we first compute the
constant-Q transform (CQT) spectrogram using LibROSA
library. Subsequently, we divide the spectrogram into bars
according to the beat and downbeat attributes in the MIDI
data, and normalize the time step to 96 frames per bar
through linear interpolation. The resulting size of each
single-bar spectrogram is therefore 84×96.

The drum patterns are represented in a binary-valued
matrix B ∈ {0, 1}i×t, where i and t denote the activated
instruments and the number of time steps respectively.

There are two types of SSM used in this work. The
first one is melodic SSM and the second one is drum
SSM. Both SSMs are 256×256 matrices computed using
pairwise Euclidean distance between two sets of bar-level

1 http://www.fluidsynth.org/, last access 2019/06/28

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

848

Figure 2. SSM examples of Can’t Buy Me Love by Bea-
tles. Left: melodic SSM. Right: drum SSM from origi-
nal MIDI drum track. In the two figures, each pixel rep-
resents a Euclidean distance value between two bar-level
spectrograms/symbolic drums and brighter color indicates
a shorter distance (i.e., higher similarity).

spectorgrams. Since different songs vary in length, we
zero-pad all the songs up to a uniform length of 256 bars.
It should be noted that melodic SSM is computed using
CQT spectrogram converted from synthesized audio do-
main data, whereas drum SSM is computed using symbolic
drum track data directly.

3.2 Drum SSM generator

The motivation of generating a drum SSM from a melodic
SSM is shown in Figure 2. It can be observed from Figure
2 that melodic and drum SSM are structurally correlated,
and drum SSM seems to provide a relatively clearer view
of structural boundaries. This difference could originate
from the distinctive roles of percussive versus melodic in-
struments in Western music. For example, in pop or rock
music, drum patterns tend to be homogeneous within a
musical section. Sudden changes of drum patterns usu-
ally occur before transitioning into a new musical section.
As a result, drum SSM could effectively reflect the global
structure. Based on these observations, we assume that (i)
it is possible to infer drum SSM given melodic SSM be-
cause they are highly correlated, and (ii) drum SSM pro-
vides more information about song structure information
than the melodic SSM does.

To explicitly capture structural information of the en-
tire song prior to drum pattern generation, a model that
infers the drum SSM from a melodic SSM is needed. In
this work, we propose a drum SSM generator based on
the VAE-GAN model in [12]. The VAE-GAN model is
a GAN consisting of a VAE-based Generator and a Dis-
criminator. In the training stage, the VAE-based SSM gen-
erator is trained to infer the drum SSM based on the input
melodic SSM, and the discriminator is trained to distin-
guish the VAE-generated drum SSM from the original one.
The model is optimized by minimizing the total loss func-
tion Lssm consisting of three loss terms, namely the recon-
struction loss, KL-divergence loss, and the adversarial loss
LD:

Lssm = −Ev∼qs(zs|sm)[log ps(sd|zs)]
+ KL(qs(zs|sm)‖p(zs)) + LD, (1)

Figure 3. Bar selection mechanism to pick spectrogram
data from the current and the other 7 relevant bars.

where sd represents the generated drum SSM, sm repre-
sents the input melodic SSM and zs is the latent space rep-
resentation of sm.

In the generation stage, we feed the melodic SSM into
the pre-trained generator and obtain the predicted drum
SSM, which will be used in the following bar selection
process.

3.3 Bar selection

To incorporate the structural information into drum pattern
generation, the drum SSM is used in a bar selection mech-
anism. The proposed bar selection mechanism is based on
an assumption that musical bars with higher similarities
are more likely to provide relevant information for gen-
erating compatible drum patterns. To achieve this goal,
we first find the k-nearest bars for every bar-level spectro-
gram according to the drum SSM. These bars are identi-
fied by finding the k smallest values in every column of
the drum SSM. The process is illustrated in Figure 3. In
our study, we set k = 7. The corresponding spectrograms
of these eight bars are weighted and then stacked into an
eight-channel feature representation, which will be used
as the input to the subsequent drum pattern generator (see
Section 3.4). The weighting coefficient of each channel
is 1− norm(d(k, ki)), where ki is the ith nearest bar, d is
the Euclidean distance, and norm represents normalization
over the column of the similarity matrix.

3.4 Drum pattern generator

Figure 4 illustrates the drum pattern generation model. The
model is modified from the VAE proposed by Larsen et
al. [12] The virtue of VAE is its capability of generating
diverse output through simple manipulation in the latent
space. For instance, drum patterns in-between two distinc-
tive rhythmic styles can be generated by morphing the la-
tent vector c and z.

To train this VAE model, we feed the encoder E with
spectrogram and use symbolic drum track data as ground
truth to minimizing the following loss function Ldrum:

Ldrum = −Ez∼q(z|y)[log p(x|z)]
+ KL(q(z|y)‖p(z)) + r(c; ĉ), (2)

where r(c; ĉ) := |c − ĉ|. x represents the generated drum

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

849

Figure 4. Illustration of the VAE-based drum pattern gen-
erator. The 8-bar spectrogram y is obtained from the bar
selection mechanism. The encoder maps the spectrogram
into two latent spaces, a Gaussian vector ẑ and a note den-
sity value ĉ. The values sampled from these two latent
spaces are fed to the decoder to generate drum patterns.

patterns, y is the input spectrogram, and c and ĉ are the
ground-truth and the estimated note density, respectively.

4. IMPLEMENTATION

4.1 Dataset

In this work, we use the Lakh pianoroll dataset (LPD-
5) [6], a collection from cleaned MIDI data in the Lakh
MIDI Dataset (LMD) [18]. LPD-5 contains 21,425 songs
and each song has five tracks (piano, guitar, string, bass,
and drums) extracted from the original MIDI data. The di-
mensionality of each bar in melodic tracks is 128 (pitch)×
96 (time step). For drum tracks, we process the data with
following steps: (i) remove MIDI pitches (representing dif-
ferent percussive instruments) that are relatively inactive
(e.g., less than 0.1% of all active drum notes); (ii) reduce
time steps from 96 to 16 (see Section 4.2 for more details);
(iii) apply binarization on each activated drum note, and
(iv) calculate the note count in each single bar as a proxy
for note density (rhythmic complexity). This procedure re-
sults in a down-sampled drum matrix with a dimensionality
of 46×16.

4.2 Data cleaning

Although the LPD-5 dataset has included a series of opera-
tions to clean up the original LPD [6], incomplete or noisy
examples can still be found. To further improve the data
integrity, we proceed with the following steps:

First, we remove songs with inconsistent duration after
synthesis. Some tracks contain only a few notes through-
out the entire file, and the empty bars are automatically
removed during synthesis. By excluding these songs, we
ensure the correctness of information regarding song pro-
gression (e.g., beat and downbeat locations).

Second, we remove songs with empty or noisy drum
tracks. Specifically, we estimate the distribution of note
count from drum tracks and exclude the ones that are out-
side of the two standard deviation range. This outlier re-
moval process reduces the noise and avoids issues that
might be induced by data sparsity.

Finally, we apply 16th beat quantization on drum tracks
and remove the notes that are largely shifted during the
quantization process. In LPD-5 dataset, 95% of activated

generation method cosine similarity
OMD 1.0000
ODS 0.9208
PDS 0.9164
NB 0.9056

Table 1. Similarity measure of drum SSMs from different
generation method, higher similarity value indicates less
deviation from original song structure after generation.

drum notes are ether on the 16th beat grid or within a tol-
erance range of 96th beat. Our experiment shows that less
than 5% of drum notes are affected by this data cleaning
process. Therefore, we believe that 16th beat grid is ap-
plicable to provide a compact data representation while re-
taining a meaningful temporal resolution.

4.3 Experimental setup

After the cleaning process, 9,907 songs remain in the
dataset. We randomly split the dataset into 90% and 10%
for training and testing, respectively. For each song, drum
and melodic parts are extracted accordingly. The melodic
tracks are rendered into wave format and transformed into
per-bar CQT spectrogram. For drum tracks, we segment
the data in bar-level and apply binarization. The training
process is done by minimizing the loss function as defined
in Section 3.3 and Section 3.4; the selected optimizer is
ADAM with a batch size of 64. The models are imple-
mented using Tensorflow.

A similar preprocessing procedure is applied to the data
in testing phase. The major difference between the training
and the testing is the source of drum SSM. During testing,
only the melodic SSM is available, and the drum SSM is
predicted using the pre-trained drum SSM generator.

4.4 Model parameters

Both the input and output dimensions of the drum SSM
generator (as described in Section 3.2) are 256×256. The
encoder is composed of eight convolutional (CONV) lay-
ers followed by three fully-connected (FC) layers with skip
connections. The FC layer is connected to a bottleneck
layer that generates a 32 dimensional latent vector. Simi-
larly, the decoder has the same layers in reverse order. The
discriminator is a network similar to the encoder with a
sigmoid output; this activation function is chosen for its
potential probabilistic interpretation.

For drum pattern generation, the architecture of our
VAE (i.e., no discriminator) is similar to the drum SSM
generator. The input and output dimensions are changed to
84×96×8 and 46×16×1, respectively. The total numbers
of parameters for the SSM generator and the drum pattern
generator are around 17M and 62M, respectively. The to-
tal training time for the two models is 84 hours on a single
2080 Ti GPU. More implementation details can be found
in our Github repository. 2

2 https://github.com/Sma1033/drum_generation_with_ssm

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

850

Figure 5. Head-to-head win rate between different models
in the listening test.

5. EVALUATION

5.1 Compared methods

To evaluate the quality of generated drum patterns of the
proposed model, we conduct both objective and subjective
tests on four different derived methods:

• (OMD) Original MIDI Drums are the drum pat-
terns predefined in the MIDI files. These drum pat-
terns are directly taken from the drum tracks and
serve as the oracle samples among all methods.

• (ODS) Original Drum SSM is the model that gen-
erates the drum patterns with our pre-trained drum
pattern generator. In this case, the drum SSM used
for bar selection is computed from the oracle drum
tracks (i.e., OMD).

• (PDS) Predicted Drum SSM is the model that gen-
erates the drum patterns with our pre-trained drum
pattern generator. In this case, a drum SSM used for
bar selection is predicted from melodic SSM using a
pre-trained SSM generator (see Section 3)

• (NB) Neighboring Bars is the baseline model. In-
stead of applying bar selection mechanism, this
model simply includes the neighboring bars (i.e.,
previous 4 bars, current bar, and subsequent 3 bars)
to create the 8-bar feature representation; no infor-
mation from SSM is used. This model ignores global
structure and incorporates local structure naively.

5.2 Objective test

In our objective test, we compute the similarity between
the oracle drum SSM (i.e., OMD) and the SSMs of the
drum patterns generated by ODS, PDS, and NB. This eval-
uation examines the general quality of drum patterns. Ide-
ally, the SSM with high similarity to oracle implies a better
preservation of the structural information. For simplicity,
we use a standard cosine similarity as our metric. We ran-
domly collect 100 drum tracks generated from the LPD
test set, and calculate the cosine similarity between the

Figure 6. Global win rate of different models in pairwise
listening test.

original and generated SSMs. The average of results are
presented in Table 1. Both drum SSM informed methods
(i.e., ODS and PDS) outperformed NB, which suggested
the competence for drum SSM to preserve structural in-
formation. Interestingly, NB can achieve a relatively high
similarity score without any additional information of the
global structure. This result implies the need for a better
and perceptually relevant evaluation.

5.3 Subjective evaluation - pairwise test

5.3.1 Experiment settings

In order to evaluate the perceptual quality of different mod-
els, we conducted a listening test to compare the above
mentioned four methods. In the test, various samples gen-
erated by different methods were presented to participants.
There are 10 trials per test; each trial consists of two dif-
ferent samples derived from the same melodic track. Af-
ter listening, the participants were asked to select the sam-
ple with higher rhythmic compatibility. 10 different songs
are included in the evaluation; 5 songs are randomly se-
lected from LPD-5 test set, and another 5 songs are ran-
domly collected online in order to test the generality of
the methods. In order to examine the model’s capability
of handling transitions, each sample contains a structural
boundary. Particularly, we select samples that include one
transition from the verse to the chorus, and the duration
is roughly 16 seconds. Listening examples are available
online. 3

5.3.2 Results

The evaluation for 1,350 listening pairs are provided by
135 respondents. 67.5% of the subjects have no music
composition experience, and 92% of the subjects have
never played drums. The listening test results are presented
in Figure 6 and Figure 5. Based on the results, the follow-
ing observations can be made:

First, OMD performs the best among all models. This
result is expected since OMD has the most stable and com-
pelling drum patterns compared to the others. However,
the margin between OMD and ODS is relatively small.
One possible explanation is that OMD tends to be highly

3 https://sma1033.github.io/drum_generation_with_ssm/

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

851

Figure 7. A 8-bar example of drum tracks from four different method in sec 5.1

consistent and predictable, and this can sometimes be re-
garded as conservative and even boring. On the contrary,
the unexpected instrumentation or sequences in other mod-
els may accidental attract the audience’s attention.

Second, it appears that both ODS and PDS outperform
NB. To verify the significance of these comparisons, the t-
tests of ODS/NB and PDS/NB pairs are conducted, which
produce the p-values of 0.0087 and 0.001. The results sug-
gest that incorporating SSM in drum pattern generation
models is a promising approach.

Third, the performance of PDS is comparable to ODS.
The statistics from pairwise listening test suggest that the
quality of drum patterns from PDS and ODS are similar
for general public. This result not only indicates the effec-
tiveness of the pre-trained SSM generator, but also shows
the viability of generating meaningful drum patterns based
on melodic SSM.

5.4 Subjective evaluation for professionals

Apart from the aforementioned pairwise test, we also con-
ducted another listening test on professional musicians.
The objective of this test is to collect descriptive feedback
from subjects with extensive experiences in music compo-
sition and drum performance. Two professional drummers
and one professional composer (with experience ranging
from 3 to 14 years) participated in this test. Each partici-
pants was invited to listen to 5 selected songs; each song
contains 3 different drum tracks (i.e., ODS, PDS, and NB)
presented in random order, resulting in a total number of 15
clips. To further investigate the long-term structure of the
generated drum patterns, the duration of each song is ex-
tended to 64 seconds. The participants were encouraged to
provide detailed comments after each trial. The thematic
analysis approach [4, 20] was applied to extract common
themes from their comments in a bottom-up manner. The
results of thematic analysis are described as follows.

The first theme regards the structural compatibility be-
tween the generated drum patterns and the melodic track.
From this perspective, ODS seems to receive the best feed-
back among three competing models. In many occasions,
the comments for ODS include "good distinction between

sections", whereas PDS and NB are rarely mentioned.
Moreover, for transition part between sections, ODS is re-
ported as having active rhythmic changes (e.g., drum-fills).
Overall, the professional listeners seem to prefer ODS in
terms of its structure.

The second theme regards the stability and variability of
the generation result. The comments from professional lis-
teners indicate NB’s ability of generating unstructured yet
unexpected patterns. ODS and PDS, on the other hand, do
not surprise the professional listeners. Figure 7 provides
a visual example of all methods. According to Figure 7,
ODS and PDS are visually more similar to OMD (e.g., bar
5 and bar 7). However, NB does provide unconventional
patterns at several locations, which could be interpreted as
"thinking outside of the box".

6. CONCLUSION

We have presented a conditional drum pattern generation
model to generate drum patterns based on given melodic
tracks. In particular, the model captures the global struc-
ture of melodic sequences using SSM and is capable
of producing structurally coherent drum sequences. Re-
sults from both the objective and subjective evaluation are
promising, and the comments from professional listeners
also highlight the strength of the model to incorporate
drum patterns with the melodic structure. Possible future
directions include:

1. Design a user-friendly control interface for general
public users. This could potentially encourage more
interactions among users and facilitate the music
creation process.

2. Generate genre-specific drum patterns according to
the input condition. With genre-specific contents,
users may customize the styles of outputs.

3. Develop a model that can ultimately perform drum
pattern generation in audio domain. This would en-
able more potential applications in real-world sce-
narios and increase the expressivity of the model.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

852

7. ACKNOWLEDGEMENT

We thank three professional musicians, Hsin-Ming Lin,
Ying-Shu Kuo, and Jian-Hong Chen, for their qualitative
assessment on generated drum patterns and our colleague,
Yu-Fen Huang, for her generous assistance on the thematic
analysis of the questionnaires. We would also like to ex-
press our gratitude to every participant of the subjective lis-
tening test for providing responses and constructive feed-
back.

8. REFERENCES

[1] Eric Battenberg and David Wessel. Analyzing Drum
Patterns Using Conditional Deep Belief Networks. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), pages 37–42, 2012.

[2] Gilberto Bernardes, Caros Guedes, and Bruce Penny-
cook. Style emulation of drum patterns by means of
evolutionary methods and statistical analysis. In Pro-
ceedings of the Sound and Music Computing Confer-
ence (SMC), pages 1–4, 2010.

[3] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pa-
chet. Deep learning techniques for music generation -
A survey. CoRR, abs/1709.01620, 2017.

[4] Kathy Charmaz and Linda Liska Belgrave. Grounded
theory. The Blackwell encyclopedia of sociology, 2007.

[5] Chris Donahue, Julian Mcauley, and Miller Puckette.
Adversarial Audio Synthesis. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR), pages 1–16, 2019.

[6] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-
Hsuan Yang. Musegan: Multi-track sequential gener-
ative adversarial networks for symbolic music gener-
ation and accompaniment. In Association for the Ad-
vancement of Artificial Intelligence (AAAI), 2018.

[7] Hamid Eghbal-zadeh, Richard Vogl, Gerhard Widmer,
and Peter Knees. A GAN based drum pattern genera-
tion UI prototype. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR),
2018.

[8] Damon Horowitz. Generating Rhythms with Genetic
Algorithms. In Association for the Advancement of Ar-
tificial Intelligence (AAAI), 1994.

[9] Cheng-zhi Anna Huang, Tim Cooijmans, Adam
Roberts, Aaron Courville, and Douglas Eck. Counter-
point by convolution. In Proceedings of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), 2017.

[10] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Noam Shazeer, Curtis Hawthorne, An-
drew M. Dai, Matthew D. Hoffman, and Douglas Eck.
Music transformer: generating music with long-term
structure. ICLR, 2019.

[11] Maximos A. Kaliakatsos-Papakostas, Andreas Floros,
Nikolaos Kanellopoulos, and Michael N Vrahatis. Ge-
netic Evolution of L and FL – systems for the Pro-
duction of Rhythmic Sequences. In Proceedings of the
Annual Conference Companion on Genetic and Evolu-
tionary Computation (GECCO), pages 461–468, 2012.

[12] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby,
and Ole Winther. Autoencoding beyond pixels using a
learned similarity metric. In International Conference
on Machine Learning (ICML), 2016.

[13] Stefan Lattner, Maarten Grachten, and Gerhard Wid-
mer. Imposing higher-level structure in polyphonic
music generation using convolutional restricted boltz-
mann machines and constraints. Journal of Creative
Music Systems., 2018.

[14] Hao-Min Liu and Yi-Hsuan Yang. Lead sheet genera-
tion and arrangement by conditional generative adver-
sarial network. 2018 17th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA),
pages 722–727, 2018.

[15] Cárthach Ó Nuanáin, Perfecto Herrera, and Sergi
Jordà. Target-Based Rhythmic Pattern Generation and
Variation with Genetic Algorithms. In Proceedings of
the Sound and Music Computing Conference (SMC),
2015.

[16] Jean-François Paiement, Yves Grandvalet, Samy Ben-
gio, and Douglas Eck. A Generative Model for
Rhythms. In Neural Information Processing Systems
(NIPS), Workshop on Brain, Music and Cognition,
2007.

[17] Jouni Paulus, Meinard Müller, and Anssi Klapuri.
Audio-based music structure analysis. In Proceedings
of the International Conference on Music Information
Retrieval (ISMIR), pages 625–636, 2010.

[18] Colin Raffel. Learning-Based Methods for Comparing
Sequences, with Applications to Audio-to-MIDI Align-
ment and Matching. PhD thesis, Columbia University,
2016.

[19] Adam Roberts, Jesse Engel, and Douglas Eck. Hierar-
chical Variational Autoencoders for Music. In Neural
Information Processing Systems (NIPS), volume 256,
pages 1–6, 2017.

[20] Anselm Strauss and Juliet M Corbin. Grounded the-
ory in practice. Sage, San Jose State University, USA,
1997.

[21] Chih Wei Wu, Christian Dittmar, Carl Southall,
Richard Vogl, Gerhard Widmer, Jason Hockman,
Meinard Mueller, and Alexander Lerch. A review
of automatic drum transcription. IEEE/ACM Trans-
actions on Audio Speech and Language Processing,
26(9):1457–1483, 2018.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

853

[22] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang.
MidiNet: A Convolutional Generative Adversarial
Network for Symbolic-domain Music Generation. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), 2017.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

854

