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ABSTRACT

Automatic choreography generation is a challenging task
because it often requires an understanding of two abstract
concepts - music and dance - which are realized in the
two different modalities, namely audio and video, respec-
tively. In this paper, we propose a music-driven choreogra-
phy generation system using an auto-regressive encoder-
decoder network. To this end, we first collected a set
of multimedia clips that include both music and corre-
sponding dance motion. We then extract the joint coor-
dinates of the dancer from video and the mel-spectrogram
of music from audio and train our network using music-
choreography pairs as input. Finally, a novel dance mo-
tion is generated at the inference time when only music is
given as an input. We performed a user study for a qual-
itative evaluation of the proposed method, and the results
show that the proposed model is able to generate musi-
cally meaningful and natural dance movements given an
unheard song. We also revealed through quantitative eval-
uation that the network has created a movement that corre-
lates with the beat of music.

1. INTRODUCTION

Choreography is a kind of art that designs a series of move-
ments. In particular, in performing art, choreography ex-
tends to the use of human bodies to express movements,
and these are often performed with music. The choreog-
raphy suitable for music has significance in that it is not
only an artwork itself, but also maximizes the expression
of music [4,7]. For this reason, choreography has become
an essential element in many pop music works in recent
years. Therefore, the process of creating choreography for
music is also considered to be important, and research on a
system capable of automatically generating choreography
is actively conducted. However, automatic choreography
generation is a challenging task because both music and
dance are abstract art concepts, and the clear relationship
between the two concepts is also not defined by established
rules.
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In this paper, we proposed a music-driven choreogra-
phy generation system. In order to model the relationship
between music and movement, two concepts in different
domains, we firstly designed an autoregressive sequence
to sequence model based on neural network that has been
actively studied recently. Sequence used as input is time
series data with strong correlation between adjacent time-
step. Therefore, we designed a network of causal-dilation
convolutional layers to fully reflect the information in the
adjacent frame. We also applied local conditioning meth-
ods to the network to ensure that information related to
music is effectively conditioned in the process of creating
choreography movements. To evaluate whether a trained
network actually produces a dance motion that matches
music, we conducted a user study that evaluated natural-
ness by comparing video that matched random choreog-
raphy with music and video generated by the proposed
network. We also proposed a comparison of the two se-
quences’ auto-correlations to analyze whether the chore-
ography actually reflects music. As a result, we confirmed
that the proposed network produced choreography that bet-
ter reflected music than randomly matched videos, and that
the joint movements of the generated choreography had a
periodicity similar to the tempo of the music.

The contribution of this paper is as follows: First, we
designed a music driven choreography generation network
trained by an end-to-end method. Second, to generate
choreography reflecting music, we successfully applied a
local conditioning method used in speech synthesis field.
Third, for the task of creating a choreography that is rel-
atively difficult to assess quantitatively, we proposed the
evaluation method using auto-correlation and user evalua-
tion.

The rest of the paper is organized as follows. Studies
related to this paper are introduced in Section 2. In Section
3, we explain in detail our proposed method for choreogra-
phy generation based on the encoder-decoder network. We
describe the dataset for experiments and the training pro-
cess in Section 4. The evaluation scheme and the results
are presented in Section 5, followed by conclusions and
directions for future work in Section 6.

2. RELATED WORK

Recent advances in machine learning and deep learning
techniques have led to a variety of attempts to study the
relationship between dance and music. Lee et al. proposed
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Figure 1. A schematic diagram of the proposed music-driven choreography generation system.

a choreography generation algorithm that retrieves the mo-
tions corresponding to the most similar pieces of music in
the predefined motion-music-paired database for a given
new music segment. [8]. This method selects dance mo-
tion from a predefined database, so choreography retrieved
with high correlation with music is guaranteed. However,
it has limitations in that it can not create novel dance move-
ments that are not included in the database. Ofil et al. pro-
posed a HMM-based model that categorizes the genre of
music based on the Mel-Frequency Cepstrum Coefficients
(MFCC) [10] feature and generates matching choreogra-
phy based on the results [11]. But since the choreography
is determined by the categorical value obtained through the
genre classifier, there is a limit to generate a novel choreog-
raphy. Omid et al. proposed a music-driven choreography
model named Groovenet [1]. They used pairs of music and
three-dimensional motion data to train the Factored Con-
ditional Restricted Boltzmann Machines (FCRBM) [14].
They attempted to directly train the relationship between
music and dance by using the mel-spectrogram in the train-
ing process. However, they reported that their model cre-
ated awkward dance moves for unheard song, so they con-
clude that the model was overfitted and the dance moves
according to music were not generalized enough.

Lee et al’s and Ofil et al’s studies have a limita-
tion in that they can not create novel choreography be-
cause the former synthesizes motion by reusing the chore-
ographic samples in a predefined database, and the latter
creates choreography only for music input categorized by
its genre. Omid et al. did succeed to create novel dance
motions, but failed to yield good results mainly due to in-
sufficient training data of merely 23 minutes.

In this study, we proposed a music-driven choreogra-
phy generation system that can produce novel and natural
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choreography.! In order to secure the novelty of chore-
ography, we used the method of creating choreography
with frame by frame generation, not the method of re-
trieve in the pre-defined dataset. Also, to train the net-
work with sufficient data, we also proposed a way to use
the choreography-music data pairs that can be easily ob-
tained from online video sharing community as training
data. Finally, in order to conduct effective conditioning of
music information, we have applied the methods used in
other conditional sequence generation tasks effectively to
our task.

3. PROPOSED APPROACH

In this chapter we explain the detailed structure of the pro-
posed network. An overview of the proposed system is
illustrated in Figure 1.

In order to learn the relationship between the time-series
data of two different modalities, i.e., music and dance,
we need a model that performs multi-modal sequence-to-
sequence transformations. Also, since the choreographic
movement at a certain time-step has a strong correlation
with the information at the previous time-step, we should
consider a system that provides sufficient reference to the
information at the adjacent time-step. From this point of
view, we have noted a text-to-speech system that shows re-
liable performance in a similar environment to these con-
ditions, and then designed our system, inspired by the
DCTTS [13] model, which is known to be capable of effi-
cient text-to-speech training.

Our proposed model takes skeleton input .S and mel in-
put M as input, to predict skeleton S in the next time step:

I The generated result can be found at: listentodance.strikingly.com.
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Si.r = CG(Sor—1, My.1) (1

where C'GG denotes our proposed model, choreography
generator. For this purpose, each input is encoded via
two encoder first. Then the encoded skeleton E passes
through the decoder and predicts the next time step’s skele-
ton S , which utilizes the encoded E; as conditioned infor-
mation.

3.1 Causal Dilated Highway Conv. Block

In this section we explain the Causal Dilated Highway
Convolution Block, one of the core structures of the pro-
posed network. The choreography, which is basically the
object that we should create, has a strong correlation with
the information of the adjacent time-step. Therefore, in or-
der to predict movement in the next time-step, information
from previous time-steps should be fully consulted. Also,
for choreography, a wide range of historical information
should be referred to because it has relatively long-term
dependency. To this end, we use the Causal Dilated Con-
volution. Causal means that only the input data from time
0 to ¢ — 1 can be referred to when calculating the output at
time t. We used a causal convolution layer because our net-
work must be an auto-regressive model to generate the next
frame that is not yet known from the preceding frames.
In addition, we used the dilated convolution proposed in
the Wavenet [16] to ensure that the model has a wider re-
ceptive field. Finally, to enable efficient training even in
deep model structures, we used a highway network archi-
tecture [12] where gated function could be trained. That is,
the output of the CDHC block is calculated as:

output = tanh(H1) - relu(H2) + (1 — tanh(H1)) - input

(2)

where [H1, H2] is the tensor calculated through the

causal dilated convolution layer of the input tensor. The

output channel of this convolution layer is twice the input
channel, and the kernel size is 3.

3.2 Encoder & Decoder structure

To predict the next time-step skeleton information from the
given input information, we used a method of effectively
encoding input information and then combining them to
decode. To this end, we designed two encoder and one de-
coder with CDHC block. Both the skeleton encoders and
the audio encoders all consist of three convolution layers
and 10 CDHC blocks. The first convolution layer of each
encoder increases the input channel to 256 dimensions, and
the other two layers perform 1x1 convolution. Thereafter,
the output values from last convolutional layer are con-
nected in sequence to 10 CDHC blocks with a dilation fac-
tor of (1,3,9,27,1,3,9,27,3,3), and the corresponding opera-
tions result in audio and skeleton data are encoded to have
a sufficiently wide receptive field to reflect sufficient past
information.

A decoder is a network that generates skeleton data for
the next frame from an encoded skeleton and an encoded
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audio. To do this, the encoded skeleton input to the decoder
is combined with the encoded audio in the following:

Decl = convld(Eg) + Ep[: 128] 3)
Dec2 = convld(Es) + Ep[128 1] 4)
Dec = o(Decl) x tanh(Dec2) Q)

Where Es and E); refer to the encoded skeleton and
encoded audio, respectively, and convld means the con-
volution layer with an output channel of 128 and a kernel
size of 1. The combined Dec tensor then goes through six
CDHC blocks with a dilation factor of (1,3,9,27,3,3) and
then through three 128-channel convolutional layers with
a tanh activation function. Finally, after passing through a
convolution layer with the same output channel as the di-
mension of the target, the final decoder output is obtained
via stgmoid activation.

3.3 Proposed network

This network receives skeleton and music data from time
0 to t — 1 as input. Both data are encoded via encoders
and combined at the beginning of the decoder. The final
output of the decoder is compared with the ground truth
motion data at time 1 to ¢ and we used it as a L1 loss.
Since all convolution operations included in the network
are with kernel size 1 or causal operations, the k-th value
of output refers to only the 0 to £k — 1 time step of the
input during the operation. Therefore, the model satisfies
the causal condition.

4. EXPERIMENT
4.1 Data

‘We have collected 100 YouTube choreography videos and
corresponding audios. The genre was selected mainly for
K-pop dance, and the total length of collected data was
6.26 hours. We divided 85 songs into train sets, 5 songs
into valid sets, and 10 other songs into test sets, to train
and evaluate the proposed network.

4.1.1 Skeleton data

We extracted the x, y coordinates of 15 human body joints
from each frame using the Openpose algorithm [3] from
the collected video as shown in Fig. 2. Next, we min-max
normalize the extracted coordinate values for each video,
and use the linear-interpolation for the unrecognized coor-
dinate values.

Since we can not measure the exact 3d angle between
the human body limbs using the 2d joint coordinate, we
used the absolute coordinates values of each point as the
training target. However, in this case, the length of each
limb in the projected skeleton can vary, and awkward mo-
tion can be generated if the model learns it incorrectly. So
we additionally calculated the lengths of the 14 main limbs
together and added a loss to compare with the limb length
of the skeleton that the model generated. Therefore, the X,
y coordinates of the total 15 joints, and the total of 14 main
limb length are used as skeleton data.
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Figure 2. The process of extracting skeleton data from
video frames.

4.1.2 Music data

We separated the audio contained in the collected video
and used it as music data. The mel-spectrogram was ex-
tracted from the audio waveform with the window size of
1024 samples, and 80 mel-frequency bins. Because we
need time-aligned audio-video pairs for training, we ad-
justed the hop size when extracting the mel-spectrogram
so that audio and video data end up with the same frame
rate.

4.2 Training

We have trained the proposed network that creates the next
skeleton coordinate for a given previous skeleton sequence
and music sequence. To do this, we first input skeleton
data and music data from O to t-1 frames. Then, the output
of the network is compared with the ground truth choreo-
graphic data corresponding to 1 to t frame by use L1 loss
as a cost function. In addition, we calculated the length of
each limb from the skeleton data of the generated frame,
and compared with the actual ground truth length through
the L1 loss.

We used the adam optimizer [6], with 81 = 0.5, By =
0.9, for training and set the learning rate to 0.0002. At ev-
ery iteration, we used a video-audio pair that was cut in
500 frames for training, and it contains about 20 seconds
of choreography and music information. The length of the
input sample was set to 500 frame because we decided that
the sequence of lengths, which fully reflected meaningful
levels of behavior in the choreography, should be used for
training. We set the batch size to 16, and then we finished
the training after proceeding with a total of 30,000 itera-
tions. We trained our network with one GEFORCE GTX
1080 ti GPU for three days.

4.3 Inference

The choreography inference process is performed in an
auto-regressive manner different from training. That is,
the initial position of each joint is given as an input skele-
ton frame, and at the same time, the first frame of mel-
spectrogram is input to the trained model. When inference
is performed once, estimated skeleton at ¢ = 1 is output.
Then we concatenate skeleton at ¢t = 0 and ¢ = 1, then
input them back into the model with mel-spectrogram at
t = 0andt = 1. After than, we get estimated skeleton
att = 1 and t = 2. Therefore, we can generate the chore-
ography by repeating the above process for the length of

NReal Generated I Mismatch
* ke wkk
5 Rk ek
4
e e ek
3
2
1
0
Question 1 Question 2
Q1 Mean Std. Q2 Mean Std.
o | 4.46 0.31 | 4.52 0.22
2,97 0.44 3.04 0.47
] 2.81 0.53 s 2.90 0.43

Figure 3. Average Likert-scale user scores on two ques-
tions (Q1: Is choreography natural? / Q2: Does choreogra-
phy fit well with music?). The table below the graph indi-
cates the mean and variance of responses by model for each
question. The p-values for pairwise comparisons between
the groups are also shown at the top. ***: p < 0.001; **:
p < 0.01.

music input, and used it to evaluate the generated choreog-
raphy.

5. EVALUATION & RESULTS
5.1 User study

We conducted a user study to evaluate whether the gen-
erated choreography was natural and whether it was pro-
duced in accordance with the music. First, we generated
20 videos for each of the three groups: Real, Generated,
and Mismatch. Group Real consists of music A; and actual
choreography for music A;. Group Generated consists of
music B; and novel choreography generated by our model
given music B;. Finally, the group Mismatch consists of
music C; and novel choreography generated by our model
but with randomly selected music rather than C;. Music
A;, B;, and C; were randomly selected among the songs
included in the validation dataset that was not used in train-
ing, and the length of each audio/video was 16 seconds.

After mixing the three groups of videos in a random or-
der, we asked the participants whether each video’s chore-
ography is natural (Question 1) and whether it fits well
with music (Question 2), and to give a score in a Likert
scale [2]. After collecting the responses, we performed
isoquantity and normality tests using data averaging 20 re-
sponses from each group, to see if there was a difference in
the mean of the responses of the groups. After evaluating
significance through repeated-measure ANOVA test , fur-
ther post-hoc paired t-test analysis was performed to cal-
culate the p-value, and the difference between the groups
was examined [5].

A total of 33 participants answered the questionnaire
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Figure 4. Autocorrelation of the X,y coordinates of each
joint from real and generated choreography for two songs.
The x-axis of each graph represents the time lag, y-axis
of each graph represents the autocorrelation, and the blue
vertical lines represent the beat positions of each song.

and the results are shown in the Figure 3. The results of
the statistical tests confirmed that the mean scores between
the three groups were significantly different for both ques-
tions. Average user score for both questions were highest
in Real group and lowest in Mismatch group. It is clear that
the Real group score is the highest, because it is made up of
the choreography created by the human. The average score
of the Generated group surpassed the Mismatch group in
both questions. If the proposed model generates chore-
ography that is not associated with music, participants will
have a similar response, regardless of what music is played
with the generated choreography. However, from the fact
that the video received a significantly higher score when
played with the music used in choreography generation,
we judged that the proposed model produced choreogra-
phy that listen and reflects the music.

5.2 Autocorrelation Analysis

We also performed an autocorrelation analysis to further
investigate the differences between the generated choreog-
raphy and the actual choreography. Autocorrelation is a
correlation between a given sequence with itself, reflecting
the periodic properties of the sequence. We can identify
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the periodic component of a given sequence through the
location of the peaks observed in the autocorrelation re-
sults. Using this, we analyzed the motion by calculating
the autocorrelation on the x, y coordinates of the choreog-
raphy movement and compared it with the tempo of corre-
sponding music. Our hypothesis was that if the model can
produce dance by listening to the music, the autocorrela-
tion peak position of the motion will appear at the same
point as the beat of the music.

Fig. 4 shows the autocorrelation results of two chore-
ography samples along with the tempo of corresponding
music. In actual choreography, a clear peak is observed
in y-direction movement, but not in x-direction movement.
This tendency is also observed in the generated choreog-
raphy. From this we can determine that the proposed net-
work has learned the periodic tendency of the real chore-
ography used in training. Also, In actual choreography, the
first or second peak of the y-direction auto-correlation ap-
pears at the same position as the music beat. This means
that music and choreography have similar periodic proper-
ties. This tendency can be confirmed also in the case of the
generated sample. From this, it is judged that the proposed
model has generated the choreography that listen the music
and reflects its periodic nature.

6. CONCLUSION

In this study, we proposed an auto-regressive encoder-
decoder network that generates matching choreography for
a given music input. We used audio-video pairs data ob-
tained from YouTube for training. As a result, it was
found that motions matching with the music were gen-
erated through comparison of user study and autocorre-
lation analysis. This study has a significance in that it
shows a significant performance in the area of learning-
based choreography generation, in which sufficient perfor-
mance has not been secured yet. Also, it is meaningful not
only to learn the movement of dance but also to use the
relationship with music together for generation.

Although we found in this study that the choreography
generated compared to the mismatch group has a higher
correlation with music at a significant level, we still have
the limitation of having a large difference score from the
real group. To overcome this, we will further model the
correlation between movement and music more elaborately
and carry out follow-up studies that reflect it in the network
architecture. Also, this research has limitations that gener-
ated choreography reflects only the periodicity among var-
ious properties of music. Ultimately, it is necessary to cre-
ate appropriate choreography according to various genres,
moods, and contexts of music as well as periodicity. In
order to do this, we plan to establish data sets that satisfy
various conditions and carry out further research. In ad-
dition, we use 2-d skeleton position for training, and it is
difficult to use this type of data in case of needing actual
implementation such as a robot. Therefore, the extension
of the model to 3-d choreography generation using the im-
proved 3-d pose estimation algorithm [9, 15, 17] is also a
future research topic.
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