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1 CODE AND REPLICATION FILES

The implementation of our NVSD algorithm and the replication files for the experiments presented in the main text of
our paper are available publicly at the Bitbucket repository https://bitbucket.org/dmmlgeneva/nvsd_
uai2018/l

2  PROOFS OF PROPOSITIONS FROM THE MAIN TEXT

Proof of Proposition 1. We may decompose any function f € F as f = f| + f1, where f| lies in the span of the
kernel sections k,: and its partial derivatives [0, k,:] centred at the n training points, and f, lies in its orthogonal
complement.

The 1st term E( f) depends on the function f only through its evaluations at the training points f(x*),i € N,,. For
each training point x* we have

FX) = o) F = (fy + frbxi)F = (fil kxi) 7

where the last equality is the result of the orthogonality of the complement {f , k,:) = 0. By this the term E( f)1is
independent of f .

The 2nd term 7%( f) depends on the function f only through the evaluations of its partial derivatives at the training
points 9, f(x*),i € N;,a € Ny. For each training point x* and dimension a we have
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by the orthogonality of the complement (f, , [0,kyi]) = 0. By this the term ﬁ( f) is independent of f, for the
empirical versions of all three considered regularizers RY, R“%, REN . For the 3rd term we have ||f[|% = ||f; +
FollF = I1fll% + || fLl|% because (f|, f1) 7 = 0. Trivially, this is minimised when f, = 0.

Proof of Proposition 2. Using the matrices and vector introduced in section 4.1 and proposition 1 we have
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For the Ist term Z( f) we have
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For the 2nd term we have
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RGL (f) and REN (f) follow in analogy.



For the 3rd term we have
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Proof of Proposition 4. The proximal problem in step S2 for R’ for a single partition ¢, is
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This convex problem is non-differentiable at the point ¢ = 0. It is, however, sub-differentiable with the optimality
condition for the minimizing ¢*
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where for any function f : RY — R, df(x) C R is the sub-differential of f at x defined as

of(x) = {g| f(z) > f(x) +g" (z—x)} .

For notational simplicity, in what follows we introduce the variable v = Z¢ w(*+1) +)\¢(lk), and we drop the sub-/super-
scripts of the partitions a and the iterations k.

Part A For all points other than ¢* = 0 the optimality condition reduces to
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We use this result in the optimality condition
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Part B For the point ¢* = 0 we have J||¢*||l2 = {g|||g|l2 < 1} (from the definition of sub-differential and the
Cauchy-Schwarz inequality).

From the optimality condition
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Putting the results from part A and B together we obtain the final result
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The proofs for RL and REYN follow similarly. O

3 Examples of kernel partial derivatives

We list here the 1st and 2nd order partial derivatives which form the elements of the derivative matrices D and L
introduced in section 4.1 for some common kernel functions k.

Linear kernel
Kernel gram matrix

K;;= k(xi,xj) = <Xi,Xj>

1st order partial-derivative matrix
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2nd order partial-derivative matrix
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Polynomial of order p > 1
Kernel gram matrix

Kij = ((x',x)) +¢)P

1st order partial-derivative matrix
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2nd order partial-derivative matrix
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Gaussian kernel
Kernel gram matrix

1st order partial-derivative matrix
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