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1. INTRODUCTION

""They must often change who would be constant in happiness and
wisdom.!

Classical nuclear theory deals with a many body system of neutrons
and protons interacting non-relativistically through two-body potentials.
't has, of course, long been realized that there must be corrections
_to this simple picture—for example the meson exchange effects which pre-
clude a simple interpretation of the magnetic moment of the deuteron in
terms of d-state probability. Nevertheless the availability of beams
of pions, and the consequent ability to study the excitation of real
isobars in nuclei, has been critical in the realization that for many
problems one must develop a theoretical model which explicitly includes
pion and isobar degrees of freedom {see for example the proceedings of
recent topical conferences Cat+ 82, MT 80).

While these developments have been taking place in intermediate
energy physics, and particularly since the discovery of the J/v, our
colleagues in high energy physics have become thoroughly convinced of
the quark model of hadron structure. This approach to the structure
of hadrons began in the early 1960's. On the basis of symmetry con-
siderations Gell-Mann, Ne'eman and Zweig suggested that all hadrons
might be made from more elementary components—the quarks {or aces)

(GN 64). These constitute the fundamental representation of the group
SU(3). A1l of the low mass hadrons were found to fall into low-dimen-
sional representations of SU(3). In the case of the mesons they could
be thought of as being made of quark-anti-quark, while for the baryons
three quarks were required. Nevertheless at that stage it was not
clear whether the quarks were real particles or simply a mathematical

trick.
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One of the initial problems of the quark mode) was thatr, for ex-
ample, the Jz = +3/2 state of the A* would necessarily be made from
three identical up-quarks in the same spin and spatial state. Since
the quarks should be fermions this would violare Fermi statistics. in
order to overcome this difficulty the quarks were assigned a new, unob-
served property called “coldur“-—each quark having three possible colours.
(A somewhat older, but equivalent explanation involved parastatistics.)
This apparently ad hoc explanation became a greatr strength of the model
when it was realized that one could build a theory of strong interac-
tions (quantum chromodynamics or QCD) based on a gauge theory of colour—
the symmetry group again being SU(3) (AL 73, MP 78).

It was soon established that because of the non-abelian nature of
the theory it had two novel features. First, at short distances, or
high momentum transfer, the interactions become weaker —'asymptotic
freedom'', This realization was crucial in the identification of partons—
the elementary, apparently free constituents of the proton observed in
deep inelastic e- and v-scattering—with quarks (Clo 79). Second, it
seems that atr large distances the interaction grows stronger. This pro-
perty is generally believed, though not yet proven, to lead to confine-
ment of the quarks into colour-singlet objects —hence three-quark baryons,
and no free quarks,

At the present time a great deal of theoretical effort is being
devoted to attempts to solve the QCD equations—mainly by brute force
using Monte Carlo techniques. In the absence of exactr solutions, we
must either abandon all hope of tackliing nuclear problems, or rely on
phenomenological models. Fortunately, we have at our disposal a variety

of successful, phenomenoiogical medels which incorporate the features
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expected from QCD. Of all these models the MIT bag model is perhaps
the most artractive. As we shall see, it incorporates the facts that
guarks are confined, pointiike and essentially massless. The model is
therefore relativistic, and can be summarised in a relatively concise
Lagrangian formalism. This feature has proven essential in the recent
developments involving chiral symmerry, which we shall review in Sections
5 and 6.

We shall see that in the bag model, as in any other quark model of
nucleon structure, the nucleon is far from pointlike, Its radius is
about one fermi, so that at the average internucleon separation of 1.8 fm
at nuclear matter density (p0~f0.17 fm 3) the nucleon bags overlap!

This is a rather different state of affairs from that envisaged in most
modern N-N potential models. As Baym has discussed (Bay 79) (see also’
Section 7), with a bag radius of 1.0 fm one would expect to find con-
siderable linking of different bags in a nucleus {and hence free flow
of colour current between bags), even at half nuclear matter density!
In that case even the independent particle shell mode] behaviour of

valence nucleons 1s mysterious.

By lowering the bag sizé just a little—e.g. to R~{0.8-0.9) fm,
as in the cloudy bag model —the critical density can be made about the
same as nuclear matter density. In this way the problem with the inde-
pendent particle shel) model becomes less severe. Nevertheless it seems
inevitable that there should be considerable linking of bags in finite
nuclei. Thus we are forced to suggest that a precise description of
many phenomena in nuclear physics may requirfe the explicit inclusion of
the quarks themselves. This seems to us the natural extension of the

developments involving isobars to which we referred earlier. Such a
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suggestion deserves urgent theoretical {and, when the questions are
clearly formulated, experimental) attention in the next few years.
{1ncidentally there has been some discussion of quark degrees of free-
dom in nuclei by Robson (Rob 78), who derived effective many-body forces
on the basis of a non-relativistic quark model, Our approach will be
rather different.)

One of the defects of the MIT bag model from the nuclear physics
point of view is the absence of any mechanism for long range N-N inter-
actions. In fact this is just one indication of a fundamental problem
in the model, namely that it badly violates chiral symmetry. Since
chiral symmetry is a property of QCD itself, this is quite worrying.

The chiral bag models have been developed in response to this difficuity.
At the present stage of the phenomenology the pion appears as fundamental
as the quarks, although eventually this must be improved. Recent work
which suggests that the pion exists as a consequence of dynamical sym-
metry breaking in short distance QCD will be discussed and related to
the chiral bag itdeas.

In summary, we shall see that whereas a great deal of progress has
been made towards understanding single hadron properties, we are just
beginning to make progress on the problem of two or more interacting
hadrons. We have little doubt that for the next five to ten years
this will be one of the major areas of research in nuclear physics (if
not the major one). With this in mind the time is right for a graduate
level introduction to the concepts and models that will be used. We
hope that this review may help to provide such a bridge between the

high energy and nuclear communities.
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In general the tone of the first major sections (Sections 2-5) is
quite pedagogical. Full detrails of the algebra are often given in order
that the reader can concentrate on the ideas and concepts being pre-
sented. Afrer studying these sections carefully, the keen student sh;uld
have a fairly good working knowledge of the MIT bag model, as well as
a degree of familiarity with chiral symmetry. By the end of Section 6
which is more in the nature of a review, he will be essentially au
courant with all published chiral bag models, and particularly the
cloudy bag model. Section 7 is of quite general interest and in it we
attempt to set the stage for future work in the physics of many-body
systems of composite nucleons,

This review will have succeeded if a good number of its readers
decide to take part in this Fascinatjng new approach to a very old sub-
jecr. Needless to say we welcome all constructive comments concerning

anything said here.
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2. THE BASIC BAG MODEL

In order to have a sound basis for the later developmenté of direct
relevance to nuclear physics, we must first describe the original MIT:
bag model. The discussion in Section 2.1 is meant to lay this basis
in considerable detail, 1t follows closely the pedagogical approach of
Hey (77), to which we refer for more discussion of excited state spec-
troscopy. Section 2.2 deals with the application of the model to the
mass spectrum of the low-lying hadrons. In Section 2.3 we briefly re-
view some recent attempts to justify the bag model starting from QCD.
Finally in Section 2.4 we discuss the relationship to the popular, non-
relativistic quark models., |
2.1. The MIT Bag Mode}
2.1.1. Bogolioubov

The MIT bag model actually had its beginnings in the late 60's in
the attempts to describe phenomenologically a system of confined, rela-
tivistic quarks. In particular, Bogolioubov (Bog 67) considered the
simplest possible case of a massless Dirac particle moving freely in-
side a spherical volume of radius R, outside of which there was a scalar
potential of strength m. Clearly by taking the limit m - = we can
confine the quarks to the spherical volume.

Let us therefore begin with the Dirac equation for a particle of

mass m
i
Hy = i3>, (2.1)
with the Hamiltonian
H:u-E-{-Bm_ (2'2)

(Our convention for Dirac matrices is summarized in Appendix 1.) There

are two operators which commute with H, and can therefore be used to
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classify its eigenstates. These are,
T=%+%2, (2.3)

where, when necessary we have

- g 0

G = [; a] , (2.4)
and the relativistic analogue of the operator k described in Appendix I,
The analogue K is

K=8(ce2+1). (2.5)

With these definitions it is straightforward to prove that

[7,61 =0 = [H,7] = [H,K), (2.6)
and
K2 = g2(1 + (g+2)2+20-2) = 2 +—E . (2.7)

Clearly K has eigenvalues x, where

K = i(j +—:]i) (2.8)

in the case of a central, scalar field W({r), the Dirac equatioq

becomes
Hy(r) = (erp+ B(meu(r))v(n) = B(r) , (2.9)
where
Y{r,t) = ¢(r) e"iEt | (2.10)
T2 = JORDRE el = wul s (2.11)
and
Kpt = -eph (2.12)

Let the solution of Eq. (2.9) have the form

[l

then the structure of K,

K = [E ?k] , (2.14)

implies that ¢ can be written, without loss of generality, as
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g{r) x¥
e =1 £(r) ML (2.15)

x TQ,)' . (2.16)

Then, using

a3 B P

~ 3 .
Vet ar !

we can write the kinetic energy piece of H as

e — .A __._a .-.i— .A .
a*p = Thasr we tTatr g%,
. A3 i -
- . —_— e - - b - .
iarr oo+ o arr(BK-1) (2.17)

Substituting Eq. (2.15) and (2.17) into the Dirac equation (2.9) it

becomes
U - LA S D 3.
(E-W-m) g = (dr * r)+ ro’
{E+W+m) =(g%+%—)+5r9- . (2.18)

Bogolioubov's simple model of confinement (Bog 67) corresponded to

the scalar potential
4

W(r) =-m r< R,

wir) = 0 r>R. (2.19)
[f we now define
U=m+ W, {2.20)
Eq. (2.18) becomes
df _kloe o (g
dr r f (E-U)g ,
—d—a_—_ _Ei]_
e (E+U) f — g, (2.21)
Consider the case x = -1, which is the sy/p level. Eq. (2.21) implies
f = (E+U)71 %% . (2.22)

so that defining g = u/r, the equation for the upper component of wE is

92y, (p22) y =
SH+ (V) u=0. (2.23)
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Inside the scalar potential well this means
i+ E2u=0, (2.24)
and hence
u(r) = A sin Er . (2.25)
Outside the scalar well u(r) satisfies

U - (m?-E2) u=0, (2.26)

and hence

Vm2-£2 (r-R) ) (2.27)

u(r) = A(sin ER) e
This is an eigenvalue problem because u {and of course g) must be
continuous at r = R, 1f we also demand that f(r) [defined by Eq. (2.22)]

be continuous, we obtain the matching condition

cos (ER) + AA-(E/mZ (. e o sin ER [1- E ] . (2.28)

1+(E/m) ER E+m
Clearly in the limit m - » {corresponding to confinement) this becomes
(sin ER)/(ER) = (S'ERER - cos ER)/ER , (2.29)
and hence
Jo(ER) = j; (ER) . (2.30)

This is the appropriate boundary condition for massless, confined quarks.
If we parametrise the energy levels as
Enc = ne/R » (2.31)
‘where n is the principal quantum number, we find wy-; = 2.04, wy-; = 5.40
and_so on. The solution has the form

- wr u
Jo\p} X-

bz M= o(R) ) (2.32)
t1"|--|51/2 = ¥Ypks-1 n,-1 L fwr u
-1 () A

and using Eq. (I.15) from Appendix I this may be written as

= [(F)
Np,-1 [ 1o\R

lbn,—l(i) = Jﬁ D ger jl %E) X]il/z ’ , (2-33)

with xg/z a Pauli spinor, and the normalisation constant given by
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3

W
2 n,~1
Nn,—l 2R3 (w. _,~V)sin2lw. _,) ° (2.34)
n,-1 n,-1

The density of quarks is readily calculated as

20 =Py ¢~ [jg(%gj + jg(%f)] e (R-r) , (2.35a)
where
8{x) =1 x=0
=0 x <0 . (2.35b}

Thus the density [Eq. (2.35a)] certainly does not vanish at r = R.
Clearly, although the lower component is suppressed for small r, it does
make a sizeable contribution near the surface of the bag. O0f course it
is natura) to ask whether this is not unusual in comparison with non-
relativistic experience, where y(R) would be zero. However, such a
solution would not be consistent with the linear Dirac equation. What
counts is that there should be no current flow through the surface of
the confining region. For example, in the MIT bag model it is required
that (we use q(x) for the quark wave function in the MIT model, but it
is identical to y(x) in the static, spherical case)

npa'yuq =0, (2.36)
at the surface—where nM is a unit four vector normal to the surface of
the confining region.

In the MIT bag model (Cho+ 74, DeG+ 75, Joh 75, JJ 77, HK 78) the

condition (2.36) is imposed through a linear boundary condition

iyng=gq, (2.37)
at the surface. This implies

gt = -i gt y*n (2.38)
and hence
q==-i4qywn, (2.39)

because
'Yu = 'Yo Yu+ 'YO . (2.}40)
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Consider now the normal flow of current through the bag surface,
Pngj¥=1in,q9y"q,

which from Eq. (2.39) and (2.37) respectively is

i nyj* = (@iyn)g = qlivena) ,

=-99 = qgq,

=0 . (2.41)
Thus it is notr the density, but q q which should vanish at the boundary

in a relativistic theory. |If we now return to the model of Bogolioubov,

Eq. (2.33) implies that
— o L jo (w)
7 ¥lag = Ut oo nw) - (lold | )

= j2(w) - j{lw) =0, (2.42)
by Eq. (2.30). That is, the matching condition of Bogolioubov is ex-
actly equivalent to the linear boundary condition (Z.b.e.) for the static
spherical MIT bag

Pyen b= -iyry=y, (2.43)
where

nt o= (0,r) . (2.44)

Suppose we now demand that the lowest energy state of Bogolioubov's
model reproduce the nucleon mass, Just as in the independent particle
shell model, we add the energies of each of the three quarks in the 1s

level giving
3w,
R

Using w;-; = 2.04 we find that the radius of the nucleon bag is

= (2.45)

MN'_'

Ry = 1.3 fm . {2.46)
Then the first excited state of the nucleon, namely the Roper resonance,
in which one quark is simply raised from the lIs;,, to the 2s,,/, state,

should have a mass Mp where
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Mp 2w tw, _ L, 08+5.40
W_ 3(.01_1 - 6.]2 = 1055 . (2-47)

This is in remarkable agreement with the experimental ratio 1.56—1to
quote Bogoliocubov, '"une telle coincidence est un peu surprenante'.”
2.1.2. Energy-momentum conservation

Up to this point there is little practical difference between the
bag model of the MIT group and that of Bogolioubov. Although the MIT
model is decently covariant, and this will be put to use in later sec-
tions, in practical calculations one is forced to work with the static
spherical case. Nevertheless, the more rigorous formal approach'did
help the MIT group to recognise a fundamental problem in the Bogolioubov
model. In order to see this we consider the energy momentum tensér for

that model, Toqs
BV THV
where 6y defines the bag volume,

By = i inside,

0 outside, (2.49)

and TBU is the familiar energy-momentum tensor for a free Dirac field,

Y = 2300 v Y al) (2.50)
(As usual we have defined

V=3V - B, (2.51)

where the first and second terms on the r.h.s act to the right and
left respectively.) The condition for overall energy and momentum
conservation is that the divergence of the energy momentum tensor
should vanish, and this is certainly true for TBv, as is easily proven
from the free Dirac equation (i 2 q(x) = 0, for a massless quark}

3, T8V =0 . (2.52)

*such a 'coincidence' is a little surprising.
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However, the fact that these quarks move freely only inside the re-
stricted region of space V, leads to problems. Indeed,

8, 8y = ny Ag , (2.53)
where A; is a surface delta function,

As = -n-3{oy) . (2.54)
tn the static spherical case [see Eq. (2.44)] we find that &g is simply
8(r-R). Purting all this together we obtain

3y ngg = %-a.y-n 9V q Ay (2.55)
and using the 7Z.b.e. [Eq. (2.37)]

2% Thog = -% aV[q q] a5 = -Py n¥ ag , . (2.56)
where Pp is the pressure exerted on the bag wall by the contained Dirac
gas

Pp = ’% n-3(q a) lsyrface - (2.57)
Clearly the model of Bogolioubov violates energy-momentum conservation!
Furthermore, this violation is an essential result of the confinement
process. We shall see in Section 4 that a similar problem arises in
connection with the axial current,

The resolution of this problem is possible only if we are willing
to add a new ingredient. In particular, we simply add a phenomenclogical
energy density term "—8 8y’ to the Lagrangian density (see Section 4}.
Then (since TV involves —%{;“v) the new energy-momentum tensor, TﬁYT,
has the form

ThiT = (ThY + Bg"V)ey . (2.58)
Therefore, the divergence of the energy-momentum tensor is

5, Thit = (-Pp + B)nV &g , (2.59)
which will vanish if

B=Pp= ‘% n-3lq(x)a(x)lsurface - (2.60)
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Equation (2.60) involves the square of the quark fields, and hence is
referred to as the non-linear boundary condition (n.l.b.c.) of the MIT
bag model. Because of this condition the introduction of a constant B
involves no new parameters.
By taking the explicit solutions of the free Dirac equation {mass~

less case),

wo_ Jgfor/R)xe
‘-ll)K NK (ii J,Q,T—l (UJT‘/R)XBK » (2.6])

[where the upper (lower) sign refers to « positive (or negative)], it
is easily verified that only k = 1 leads to an angle independent
result on the r.h.s. of Eq. (2.60). Thus, only states with j = 1/2 can
satisfy the n.l.b.c. as given, In fact, for applications to excited
state spectroscopy the strict n.l.b.e., Eq. (2.60), must be relaxed in
favour of an angle averaged version (Reb 76, DJ 76, DeG 76). We shall
not pursue this topic further, because it is of little direct relevance
to the low-lying baryons of interest in nuclear physics.

The meaning of this addition to THVY can be clarified by considering
the total energy of the bag state

PO =ﬁ3x TOO(x) , (2.62)

which we shall label E{R) rather than M{R) as a precursor to our dis-
cussion of c.m. correcrions later,
3wi-y | 4

Rt 3 R3 B . (2.63)

The first term is the kinetic energy, which also appeared in Bogolioubov's

E(R) =

model, while the second is a volume term. Essentially it implies that
it costs an energy BV to make this bubble in the vacuum within which
the quarks move freely. It should be intuitively clear that energy-

momentTum conservation is related to pressure balance at the bag surface,
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so that a small change in radius shouid not significantly increase E(R).
Nevertheless, it is a recommended exercise for the reader to show expli-

citly that the n.l.b.c. implies that

=0 (2.64)
In concluding this section we wish to stress that it is an assump-
tion of the model that B should be constant for all hadrons {see Sec-
tion 2.3.1). Furthermore, as all hadronic bags have radii in the region
{(0.8-1.1) fm, this assumption has really not been severely tested. For
example, Hasenfratz and Kuti (HK 78) show that a surface tension (or
some linear combination of the two) can produce similar results.
Clearly any simple phenomenological device like B is a crude représen-
tation of the complicated QCD mechanism which leads to confinement, and
one must be cautious about taking it too seriously outside the limited
range where it has been used so far.
2.2. The Spectroscopy of Low-Lying States
2.2.1. General features-—massless quarks
We have seen that the only change in the calculation of the energy
in the MIT bag model with respect to Bogolioubov is the addition of a
volume term, BY. It is asswned that B is a universal constant, chosen
to fit one piece of data. Once B is chosen, because of the n.l.b.c.
(which as we have seen implies 3E/3R = 0) the radius of the bag is
uniquely determined for each hadron. Generalising Eq. (2.63) to include
excited states, the n.l.b.c. implies
I wj

3E(R) _ _i
aR RZ

+ 4n RZ B =0, {2.65)
and hence

RY = D w;/(4m B) . (2.66)
i

Using Egq. (2.66} we can then simplify the expression for E(R),
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ER) = %(Zi:m;)/R - %(Zimi)w (4mB) 1/ (2.67)

Clearly the remarkable result obtained by Bogolioubov for the mass
of the Roper resonance was indeed a coincidence! In the absence of
spin-dependent corrections to be discussed below, Mg/My is (1.55)3/4 =
1.39, which is still not bad. |If once again we choose the average of
nucleon and delta masses to set the mass scale we now find

Ry = 1.46 fm (2.68)
BI/% =~ 113 MeV, B = 21 MeV/fm® . (2.69)
2.2.2. Hyperfine structure

Since the N and A are split by about 300 MeV one is straining the
atomic label of 'hyperfine' a litrle. Nevertheless, it is generally
accepted that the degeneracy between these two baryons is broken by the
spin-spin interaction. Within the context of QCD DeRujula et al. (DeR+
75) were the first to observe that one~gluon exchange could provide
just this kind of interaction. The ideas of DeRujuia, Georgi and
Glashow have been developed over the last few years iﬁtb a tremendously
successful phenomenciogical description of hadronic properties using a
harmonic oscillator basis and non-relativistic quarks—most notably by
tsgur, Karl and collaborators (1K 77, 78, 79, Gur+ 79, For 81, and the
whole proceedings of the Baryon '80 Conference, Isg 80). In essence
these calculations involve a diagonalisation of the one-gluon exchange
interaction in a very limited harmonic oscillator basis.

The philosophy of the bag model is rather different. It is hoped
that the bag itself provides a suitable, phenomenological.description
of the non-perturbative gluon interactions—inciuding gluon-self-

coupling. All that remains is the (hopefully weak} one~-gluon exchange
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interaction, which is first order in the colour coupling conStant' ((xc).
Thus there is no diagonalisation procedure in the bag model. One simply
uses first order perturbatioﬁ theory to estimate the energy shifts. As
far as this procedure has been tested (which is really not far because
of the technical complexity!), the use of perturbation theory does seem
justified. For example, Ciose and Horgan {(CH 80,81), and more recently
Maxwell and Vento (MV 81), have shown that the admixture of higher con-
figurations in the usual (151/2)3 nucleon ground state is very small.
This is quite different from the large effects found in the non-relativ-
istic models, and shows up most dramatically in the attempts to under-
stand the negative charge radius of the neutron-—as we shall discuss in
detail in Section 6.2,

1f we keep only terms of order dé the problem reduces to the evalu-
ation of the graphs shown in Fig. 2.1, where both transverse and
Coulombic gluons are included. Let us identify (E?, ﬁ? :acl, ..., 8)
as the colour electric and magnetic fields generated by the jch quark,
Since the non-perturbative vacuum outside the bag is supposed to be a
perfect colour-dia-electric medium {e.g. Cho+ 74a, Lee 79) the appro-

priate boundary conditions are (for a static spherical bag)
e (ZE?)eo ; Fx(E‘B’?)=o , (2.70)
i i

at the surface. These fields obey the Maxwell equations

q . a8 . a _
EX.B..i __,l_i s E §_i 0 » (2-7])

and

o
o
i

o, (2.72)
inside the bag volume. Here the quark colour current ts simply
J?a(x) =g q;(x) y* 2@ q; (x) , (2.73)

with A2 the usual Gell-Mann SU(3) matrices and g the strong QCD coupling
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constant. Having solved this rather straightforward problem in classic

e!ectromagnetisnrthecne—g]uonexchange contribution to theenergy, AEg, is

BEg = g Z fag - 8282, (2.74)

E M
AEg + BEg. (2.75)

There is one rather shady feature of the present discussion. That
is, the quark self-energy shown in Fig. 2.1b should be included as part
Qf the rencrmalisation of the quark mass and therefore, treated separ-
ately. For the magnetic term this is in fact what is done. That is,
instead of Eq. {2.74) and (2.75) one actually uses

bE] = -a Z Z fdig? . (2.76)

= l<_j

This is possible because each Ej searately satisfies the boundary con-
dition (2.70). On the other hand, for a unfformly charged sphere the

etectric field is necessarily in the radial direction, in fact
" [T
B ~ rf q; (x)v° 2% q; (x) d3x . (2.77)
0

Thus it is possible to satisfy the boundary condition‘(Z.?O)-only for a
colour singlet, for which
Z:A? =0 , (2.78)

Therefore, in order to preserv; the boundary conditions we are forced
to keep those self-energy terms [Fig. 2.1b) which involve Coulomb-1ike
gluons.

For hadrons in which all quarks have the same mass and are in the
same orbit the radial distributions will be identical. From Eq. (2.78)
the total colour electric contribution to the energy wii[ then be zero.
Even in the case of strange hadrons, in which case mg # my d (see Sec~-

tion 2.2.3), the colour electric contribution is of the order 5 MeV or
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less and is usually ignored (DeG+ 75). Finally then the one-gluon ex-
change quark-quark interaction gives a spin-spin contribution to the

energy. Solving Eq. (2.71) for Eﬁ and substituting in Eq. (2.76) one

finds

8
0By = == 20 2@ epd) x Mgy R (2.79)

a=l t<j

where M is a funcrion of the masses of quarks i and j, and the bag
radius, which can be obtained in closed form (DeG+ 75).

Using the fact that physical hadrons are colour singlets, so that

D=0, (2.80)
]

and the property of the SU(3) matrices

Y02 =16/3 (2.81)
a
one easily finds (i # j)

;h? Aj!

i

-8/3 baryons ,

1]

-16/3 mesons . (2.82)
Thus, the one-gluon exchange interaction is
An —
sl = 2% Filmy iy RYg; - o5 (2.83)

i<}
where X = 1 for baryons and 2 for mesons. The fact that the sign of

the force is the same for botrh baryons and mesons is a direct consequence
of using a non-Abelian theory. Clearly the effect of this interaction
is to move my down and mp up, because the A contains only triplet states
(EJ'EJ = +1}. In fact in this case the amounts up and down are equal
and, of course, proportional to ac. This splitting essentially deter-
mines ac, and in the old MIT fits it was 2.2,

As another example consider the A and . Because mg # m, 4 these
will also be split. Basically in the A the u and d are in a spin sing-
let state so gy*0d = -3, and og+(oy+0g) = 0. In the £ the u and d

have S = 1, so o,*04 = +1, and og-(g,+04) = ~4. Consequently
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BER(A) = -3ac W(0,0) , (2.84)
{where M(0,0) refers to the masses of the u and d quarks) while
AER(5) = +lac M(0,0) - bog H(0,mg) . (2.85)
Clearly AEQ(A) = AEE(E) if mg = 0, but with mg > 0, M(0O,mg) is somewhat
suppressed and hence my is less than mg.
2.2.3. Non-zero quark masses

1f the strange quark was massless the other members of the nucleon
octet, namely the £, A and £, would all be degenerate with the nucleon.
From pre-bag phenomenology one might expect that giving the strange
quark a mass would solve the problem and that is indeed the case. We
might add that there is presently no understanding of the quark-mass
probtem, these can only be regarded as free parameters of the theory
(see however, CT 74, Fri 77, Gun+ 77, Wei 77).

In the case where the mass of a quark is not precisely zero in-
side the bag, all of the formalism of Section 2.1.1 can again be
applied —we need only change the form of W(r) in the Dirac equation
(2.9). Inside the bag we then have

(=i Y ¥+ y° E+m)q(r) =0, (2.86)
with the boundary condition
| -iYrg=qatr=R. {2.87)

This has the solution for x = -1 (i.e. an s/, level),

N () (E_Em)l/z 50(%)

= , (2.88)
Q(L) M E-m\/2 > ~ . fxr X
ED)7 s ()
where
E(m,R) = —'P; [x2 + (mR}2]V/2 , (2.89)
and the normalisation constant is
N2(x) = RS j2(x) ZELES LR EN/R (2.90)
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The eigenfrequency, x, resulting from the imposition of the L.b.e.

satisfies

X
Tan x = YIRS A (mRIZIVZ (2.91)

Obviously we have x = 2.04 when m = 0, as before. It rises to m as
mR > «. At mR = 1.5, corresponding approximately to the best fit for
the strange quark mass, mg ~ 300 MeV (DeG+ 75), we obtain x = 2.5, and
{ER) = 2.92. Thus, forgetting about then.l.b.e. for the moment, we
see that replacing one up or down quark by a strange quark raises the
mass of the hadron by (2.92-2.04)/R, or about 170 MeV—which by con--
struction agrees with the observed A-N mass splitting.
2.2.4. Other corrections to hadronic masses

There are two other possible contributions to the mass of the
hadron which have been discussed in the literature. As always when one
quantises a radiation field there is some infinite zero-point term.
However: when the quantisation is carried out in a finite cavity there
will in general be additional, finite pieces which depend on the size
of the cavity. It has not yet proven possible to calculate the finite
remainder for a spherical cavity. (See however, Section 2.3.1 for a
recent discussion by Johnson (Joh 79) based on an analogy with QED.)}
For phenomenological simplicity it has been parametrized (Cho+ 74, DeG+
75) as a constant Z, divided by the bag radius R.

BESY) = -z, /R . (2.92)

The constant was determined to be Z, = 1.8 in the fit of DeGrand and
co-workers (DeG+ 75).

The second correction would be the most obvious to nuclear physi-
cists. That is we have adopted the equivalent of the ''independent

particle shell model'" for a three-quark hadron. For 3He every nuclear
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theorist would recognise that there would be a sizeable spurious con-
tribution to the energy from motion of the centre of mass. To estimarte
the size of this effect let us assume that the (relativistic) energy of
the bag E(R) is related to the mass, M(R), by

E2(R) = <pZ> + M2(R) , (2.93)
so that
M(R) = E(R) - <pZm>/2E(R) . (2.94)

But the roral c¢.m. momentum is

<péy> = <(z: Bi) >,

2
o Z<Pi> . (2.95)
i
Using the fact that for a massless quark <p?> = w%/RZ, we find for the

nucieon [using Eq. (2.67), (2.94) and (2.95)]

"3L02/R2 a

Cmﬁw— 2-0.75/R . (2.96)

_3

@
R
For a radius of 1.4 fm this is of the order 110 MeV, which is a size-
able correction. |t becomes even more important as R decreases.

From the phenomenological point of view we notice that Eq. (2.96)
has the same dependence on R as Eq. (2.92) and-is about one half as
big. Thus a good part of the original 'zero point energy'' can be
understood as a correction for spurious c.m. motion. Of course, our
derivation should make it obvious that Z, should not be strictly con-
stant, and this has been approximately taken into account in recent
fits (DJ 80, Myh+ 81) by multiplying Eq. (2.96) by my/mg, with mg the
physical mass of the appropriate baryon.

For the ground state baryons this c.m. correction is simply an
inconvenience.and requires some correction to the energy. However,

when we deal with excited states it becomes critical. |In particular,
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the first applications of the bag model to negative parity baryons found
many more states than are seen experimentally. Some of these, explicitly
the members of the (56, 17) representation of SU{4) % 0(3), correspond
to translation of the centre of mass of the bag and are spurious (DJ 76,
DeG 76, Reb 76, Hey 77, DR 78). The detailed discussion of how to
eliminate spurious c.m. motion for excited bag states is technically
very complicated (unlike the non-relativistic harmonic oscillator cal-
culationst). Moreover, the numerical results (DeG 76) are really rather
poor —possibly because the MIT bag overestimates the spin-orbit force
splitting of the py/p and p3sp levels (DeG 80). We refer the inter-
ested reader to the literature already cited and particularly to the
proceedings of Baryon '80 (lsg 80) for further discussion.
2.2.5. Swmary

The complete mass formula for the original MIT bag model can then
be summarised as

M(R) = Z%f—+ 53-71 B R3 + AEN - Z/R . (2.97)

with the spin-dependent o;e-gluon exchange interaction given by Eqg.
(2.83). The last term in Eq. {2.97) is now understood to include both
c.m, and zero point energies. There are four adjustable parameters in
this mass formula, namely mg, B, ac and Z and the radius R is deter-

mined for each hadron by then .l.b.c. (the requirement of stabilizty)

oM

SR 0. {2.98)
The original fit by DeGrand and co-workers (DeG+ 75} is shown in

Fig. 2.2. It really gives an excellent description of the lowest baryon

octer and decuplet, as well as the two lowest meson octets. The only

exception is the pion which is too heavy. However, it should be obvious

from the discussion of Section 2.2.4 that the approximate correction
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for spurious c.m. motion will be meaningful only for fairly heavy states.
For the pion it is not inconceivabie that the entire bag model mass is
spurious (DJ 80)! In particular, as we shall discuss further in Sec-’
tion 5, considerations of chiral symmetry strongly suggest that in the
limit my = mg = 0, the pion mass should also vanish. In this case it
would be a true Goldstone boscn associated with dynamically broken

chiral symmetry (Gel+ 68, Pag 75, CJ 80, HG 81, GH 81, Joh 79).

2.3. Arttempts to Derive a Bag Model

The proof of quark confinement on the basis of QCD has not yet
been achieved. Thus there is no derivation of a bag or its properties
or anything like it from a fundamental theory. HNevertheless there have
been a number of very suggestive arguments which lead one to believe
that the MIT bag model may not be fak.from the truth. A strictly per-
sonal collection of those arguments which the author finds most compel-~
ling will be briefly reported here.

2.3.1. The bubbly vacuwn

Johnson recently presented some rather simple considerations (Joh
79) which suggest that the most stable vacuum configuration in QCD
should be a collection of bubbles of size R of order A7l (with A the
QCD scale parameter).

The starting point for this work is the recent solution of a long-
standing problem in QED, Suppose one has a cavity of radius R with
conducting walls—that is with the boundary condition

rxE=0=r-+8, (2.99)
at the surface. Then the piece of the toral energy which depends on
R is (Mii+ 78, BD 78, Boy 68)
EQED = aQED/Rs agep = 0.04618 . (2.100)
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That this answer is finite is the result of a natural high frequency
cut~off arising from the cancellation of small wavelength effects just
inside and outside the conducting boundary. !t must be stressed that
the nature of the boundary is critical.

For QCD the analogous boundary conditions are given in Eq. (2.70),
but since Maxwell's equations are invariant under E > B and B ~ -E, we
can take this result over. MNow of course there are eight gluon fields
and we assume that R is small enough to permit the use of perturbative
QCD. To lowest order we then find

E§RD = agep/R = 8 aggp/R = 0.369/R . (2.101)
The difference in QCD is, of course, that the gluons have self-inter-
actions. {nteractions of the sort shown in Fig. 2.3 are known o be
artractive for the colour singlet state. Thus there is a pairing-type
force which tends to favour colour singlets. Furthermore, this attrac-
tion should grow rapidly with R,

Johnson parametrises the higher order non-Abelian effects in terms

of a running coupling constant

_ ]
oc (AR) = 1575 Y Tm ((AR) - T+TY (2.102)
The total energy of the bubble of radius R would then be

EGeh(R) = agep/R - % ac (AR) (2.103)
with b(>0) an unknown constant. Clearly as R grows, eventually oc (AR)
will be greater than aQCD/b and the bubble has an energy density below
the non-interacting case., Finally E(R) eventually vanishes as R goes
to infinity. We therefore expect the most stable bubble at some finite
radius R, which can be found by minimising the energy density

2 (E{Lh/V) /3R [R=R, = O . (2.104)
The QCD vacuum tends 1o break spontaneously into a set of bubbles of

size R,!
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By extending this argument to include quark degrees of freedom,
Johnson was able to derive a formula for hadronic masses very close to
the static MIT bag model. In particular, the bag constant (B) is simply
the energy per unit volume of the empty bags surrounding the hadron.
From a simple phenomenological analysis he found R, = 0.5 fm with A =
500 MeV. While this picture is very much simplified— for example it

“is not Lorentz invariant—it has many suggestive features. Most impor-
tantly there is a volume energy, the hadron is stable [see e.g. Eq.
(2.98)1, perturbative QCD is permitted inside the bag, and there is a
very rapid phase transition at the surface. 0f course the physical
nature of the surface which would provide the colour-dia-electric boun-
dary conditions is beyond the scope of this treatment.

2.3.2. Soliton bag models

Many groups have proposed that bag formation should be associated
with a phase transition. [In the presence of the strong colour fields
inside the bag the vacuum is very simple and the quarks are essentially
free. However, at some critical field strength there is a phase transi-
tion to a highly complicated vacuum state with colour dielectric
constant ¥ - 0, thus confining colour fields. In the Princeton picture
the pion appears as an essential part of this process {Cal+ 78, Cal+ 79).
As we shall discuss further in Sections & and 5, in their picture it
is a Goldstone boson associated with the breaking of chiral symmetry in
the complicated vacuum outside the bag. It contributes to the bag
pressure.

Goldman and Haymaker (GH 81, HG 81) have recently demonstrated
how pion and sigma (scalar-isoscalar) fields can appear as a result of

dynamical symmetry breaking in a model of the Jona-Lasinio Nambu type
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(NJ 61). Although it was not strictly QCD the model was sufficiently
realistic to be highly suggestive. We shall return to the need for the
pion again in Section 5. %he appearance of an effective o- field inter-
acting with the quarks is, however, directly relevant here. In particu-
lar Friedberg and Lee have shown that it is possible to obtain bag-ilike
states as soliton solutions of a relativistic, local field theory con-
taining just q and o (Bar+ 75, IM 75, Cre 74, CS 75, FL 77, FL 78, Lee 79).

A complete discussion of soliton models of elementary particles is
far beyond the scope of the present review. The interested reader
should refer first to the recent text by Lee (Lee 81) and then to the
references therein. For our purposes it is sufficient to summarise
the recent discussion of Goldflam and Wilets (GW 82}, which has by far
the most detailed numerical resulrs for the soliton bag.

Consider the following Lagrangian density for interacting o and
gquark fields,

L(x)=igq#q-gqo0q +':,]Z‘(Bu )2 - Ulo) . (2.105)

The first and third terms are standard kinetic energ; operators and the
second is the simplest possible coupling. The existence of soliton-
like solutions is a consequence of the non-linear form of the potential
U(o)

b

< g4 o+ 3-03 + 3-02 +p, (2.106)

T 7k

whose general form is illustrated in Fig. 2.4. (Equation (2.106) is the

U(o)

most general self-coupling permitted in a renormalisable field theory.)
The energy of the o-field alone will be a minimum at the minimum of
U{o) (recall TO°°~ -d'f~+u), namely

oy = g%-[;b4-¢b2—8/3 ac ]. (2.107)

(1t is usual to choose p so that U(sy) = 0.) In the absence of a
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coupling to quark fields the lowest energy state would be simply a con-
stant classical field ¢ = o,, throughout space.

However, suppose that there is a non-zero quark density at some
point in space, which we can choose to be £_=‘0. (Strictly we want
qq # 0.) The second term on the r.h.s. of Eq. (2.105) is then linear
in ¢ as shown in Fig. 2.4, Clearly if either g or gg is large enough, it

.is possible that the minimum energy will occur at ¢ = 0 rather than

g = oy. In this region the quark and sigma fields obey coupled tinear

equations
(0rp + 9 v o )0k = ek Yk >
y2 g, + U'(0,) = -9 z? Ty ¥ s (2.108)

where g is the time-independent, mean g-field. Some typical solutions
o

of these equations are plotted in Fig. 2.5.

In all cases E¢ eventually vanishes as r - « so that asymptotically
o returns to its usual vacuum expectation value., Inside, however, ¢ is
very small and the quarks are essentially free (o(o) = 0). That is the
quarks "dig a hole'" in the complicated vacuum represented by large oy
within which things are simple. Case 1 in Fig. 2.5 represents an Mi7-
bag type of solution where the quarks are distributed through the bag
volume, while case 2 is a SLAC-bag (Bar+ 75) with its strongly surface-
peaked quark distribution.

Many other Intermediate solutions are possible depending on the
choice of parameters (a,b,c). However, the bag like properties, namely
that the quarks are essentially free inside and that the transition
region from inside to outside is quite sharp is true in all confining
solutions. That is, the transition is sharp in all solutions where
(goy) [the quark mass outside the bag from Eq. (2.105)] is chosen to

be extremely large. Finally, we note that as discussed by Lee the
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colour dielectric constant k is

K = (1 - -9—), (2.109)
and therefore vanishes outside the bag (Lee 79). It will be close 10
one inside, and the gluon fields therefore essentially free, if 0 <« g
in that region. In that case a perturbation expansion of hadronic pro-
perties in powers of the colour coupling constant ac should make sense,
That is precisely the philosophy of the phenomenclogical bag model
which we have discussed!
2.4, Relationship to the Non-Relativistic Quark Models

Although 1t is not our purpose to review the non-relativistic
quark model here, It is so widely used and generally regarded as being
so successful that some comments must be made about the relationship to
the bag model. Some of the comments found here have also been made by
Thomas DeGrand (DeG 80).

While the identification is not so straightforward, it may be
helpful to consider the bag model quarks with essentially zero mass
{for u and d} to be what is usually referred to as Veurrent quarks''.

It is these objects that are confined in an infinite scalar potential

as we have seen. The result of this confinement is an energy level of
the scale of typical hadronic masses. This eigenfunction can be thought
of as a "constituent quark''. HNow if there is some truth to such a
translation there are important consequences for the usual diagonalisa-
tion procedures of the non-relativistic quark models, and this augments
the surprise at their success. We defer further discussion of this
until Sections 6 (neutron charge radius) and 7 (N-N force).

One major objection to the non-relativistic (or harmonic oscillator)

quark model calculations is the tendency to ignore relativistic
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corrections. In computing Up and y,, for example, the up and down
quark masses are chosen so that the corresponding Dirac moments (e/2mg)
when added non-relativistically yield a good fit. Relativistic correc-
rions are simply omitted despite the fact that typically <p2>/2mq is
bigger than mg!

As Litchfield remarked (Isg 80, p.216), ''despite the theoretical
‘bricks thrown at lsgur and Karl's model the amazing thing is how well
their formulae actually fit an extremely large and varied data set,
This would seem to imply that there must be a basis of truth in the
arithmetic and maybe more effort should go into seeing why their form-
ula is so nearly correct'". In the case of magnetic moments the bag
model does just this., As we shall see in Section 3.2 there is no free
parameter in computing the magnetic moment of a massless quark in a
bag. The answer is, however, proportional to (R/wn,K) which we recognise
as one over the energy of the appropriate level. This includes all
relativistic effects. However, as we remarked earlier the bag model
quark energy is essentially the constituent quark mass! Thus both
models arrive at an answer proportional to mq“l, but the bag helps us
to understand why there are no firelativistic corrections’.

The non-relativistic models really have tremendous practical ad-
vantages in dealing with excited states. As DeGrand observes,
1"{although | hate to admit it) bag models are calculationally much more
unwieldy than the non-relativistic quark models''. The major problem
is to deal with spurious centre of mass motion. |t does not appear
likely that this problem with bag models will improve in the near

future.
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Finally, as we shall re-emphasise in Section b, the bag model can
be formulated (at least in principle) as a relativistic local field
theory. In particular it can readily be described by a Lagrangian and
all the standard technology can be applied to it. This has been ex-
tremely important in discussions of symmetry properties (conserved
currents) and was certainly an important factor in spurring the further
development of chiral bags. 1t is dubious whether such considerations

would ever have arisen out of the potential model calculations.

Figure Captions

Fig. 2.1. One gluon exchange contributions to the energy of the MIT bag.

Fig. 2.2. The mass spectrum of the low-lying hadrons calculated in the
MIT bag model {DeG+ 75). -

Fig. 2.3. Some low order gluon self-interactions.

Fig. 2.4. A typical form for the c-potential energy, U{o), in a soli-
ton bag model.

Fig. 2.5. Numerical results from the soliton bag model calculations of
Goldfiam and Wilets (GW 81) showing: a) the o-field for MIT-
like solutions, and b) the quark density for MIT-l1ike (g=15},

SLAC-1ike {g=200) and intermediate bags.

(a) {b)

Fig. 2.1
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3. HADRONIC PROPERTIES IN THE MIT BAG MODEL

In the last section we gave some arguments to Support thelidea
that QLD could lead to bag-like hadrons. We discussed the quark wave-
functions in the bag in great detail and showed that the fit to at
least the low-lying baryon and meson masses was rather good. From the
purist’'s point of view it is an attractive feature of the bag model
that once the fit to the mass of a hadron has been made there are no
furcther parameters te adjust. Either the calculated properties, r.m.s,
charge radius, magnetic moment, axial coupling constant and so on agree
with the data or they don't. In this section we shall show how these
three basic properties are calculated. For the axial coupling constant
(Section 3.3) the agreement with experiment is excellent—as realised
originally by Bogolioubov; For the éhérge radii and magnetic moments
(Sections 3.1 and 3.2 respectively) the model is not quite so success-
ful, particularly when the guestion of c.m. corrections is raised again
(Section 3.4).
3.1. Charge Radii

As we remarked in Section 2 the matter density for a particular
quark, i, is given {as usual for a Dirac particle) by

J9(r) =q;(r) v° q;(r)ey = qT(r) q;(Ney , (3.1)

which is plotted in Fig. 3.1 for the ls;/y level. Clearly then the

charge density for a given hadron is

where Qi is the charge of the i

p(r) = Zq'{(g} Q; 9;(p) , (3.2)
i

th guark. The r.m.s. charge radius is

therefore

<r2>ch = Z:Qi ./B‘ag dr q'{(i) r2 qi(L) R (3.3)
i
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which is proportional to R%., In fact for the proton it is easily shown,

using Eq. (2.33), (2.34) and (3.3}, that

wd

2P - i-1 1 wi .2 .0 2
ST7ch T 1 2(w, - 1)sin2ey- -/: dx x (Jo(w1-1x)*'}1(w1-1x))f Re.  (3.4)

With wi-3 = 2,04 this gives
<r2>§;/2 = 0.73 fm , (3.5)

for R =1 fm, as found in the fit of DeGrand et al (DeG+ 75). This is
to be compared with the experimental value of 0.82 fm.

0f more profound importance, as we shall discuss at length in
Section 6, is the neutron charge distribution. Because each quark
occupies the same spatial Staté, and the sum of the quark charges is
zero, the mean square charge radius of the bag model neutron is zero in
lowest order. Experimentally <f2>2h is known to be -0.116 fm?, from
very accurate experiments with thermal neutrons. Attempts have been
made to obtain this negative tail of the charge distribution through
the perturbation of the ground-state wave function by -one-gluon ex-
change. In the neutron the dd pair necessarily has isospin one and
hence spin one (because their colour wave function is anti-symmetric).
From Eq. (2.83) we see that the dd interaction is therefore repulsive
and will tend to push the dd pair out from the centre of the bag—
hence a negative tail for the charge distribution. Quantitatively this
idea fails for the bag. For example, Close and Horgan (CH 81) and’
Maxwell and Vento (MV 81) both find that this effect explains only

ahe
~
.

about 6% of the observed ratio of <r2>/<r2>P

*In fact Maxwell and Vento include sea quark contributions omitred by
Close and Horgan. While the magnitude does not change, even the sign

of <r2>2h is then in disagreement with experiment.
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3.2. HMagnetic Moments
In the bag model the quarks are structureless Dirac particles
which therefore have no intrinsic moments. iIndeed they yield a magne-
tic moment only because of the confinement. As for any current loop
the magnetic moment is given by

= %f(ﬁ X Jemtdr . (3.6)

Using the usual form for the Dirac electromagnetic current

-3 .[Bag dr r X[Xi:q’?(ﬁ i a (L)J , (3.7)

and the 1s;,/o wave functions of Section 2 we find (for massless quarks)

2 R -
£=g EQ;]; dr rz(jo(wr/R), -igiijl(wr/R)) x
i

0 rxo; Jo (wr/R)
* . oa . . (3.8)
IXgj 0 igger J1{wr/R)
Finally after a little spin algebra Eq. (3.8) reduces to the form
u= uOZgi Q; (3.9)

i
where pu., is directl roportional to the radius of the confinement
o y prop

region, that is

_ h-3 R
Yo & Llw-1) 12

—%T'-l'z-}— (2myR) uy - (3.10)
Here py is the usual nuclear magneton {(e/2my).
Therefore, just as in the non-relativistic constituent quark
models we are left to evaluate a simple spin-isospin matrix element

3
up=uo<p+|ZGiZQi[p+> . (3.]])
i=1

However, instead of u, being adjusted to fit experiment it is calculable
in terms of the quark radial wave functions yielding Eq. {3.10). Using

the standard mixed symmetry spin-flavour wave functions (Kok 69)
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' =2"Y2 (duu- uwdy) ; " = -(%)1/2 [uud--%(udu4-duu)] , (3.12)

and similarly the mixed symmetry spin states x' and x” [substitute

u>+ and d++ in Eq. (3.12)], we have

pt> = 2712 (! x '+ y" ") (3.13)
it is a straightforward exercise to prove that
3
<pt| ZQiUizlfW =+, (3.14)
and hence i=1
Mp = Mo - {3.15)

With the original radius R = 1.3 fm this gives up = 2.6 uy, but with
the 'best fit' parameters of DeGrand et al. Mp = 1.9 un (DeG+ 75). As
recognised by those authors, the failure to reproduce the magnitude of
the proton magnetic moment was the most serious discrepancy of all the
predictions of the model. Nevertheless, if one normalises all other
moments to that of the proton it is a remarkablie fact that the bag
model is invariably an improvement over the naive SU(3) predictions—
see Table 3.1,
3.3. The Axial Current

The accurate prediction of the axial coupling constant, 9pA» is
certainly one of the major successes of the MIT bag model. It is a
direct consequence of the correct, retativistic treatment of the quarks.
In view of the importance of the axial current in our later develop-
ment of a chiral-symmetric model of hadronic étrucrure we shall discuss
the calculation of ga in detail. First we briefly review the standard
phenomenological treatment of weak interactions.
3.3.1. A brief review of weak interactions

The usual weak interaction Hamiltonian has a current-current form
(Mar+ 69) G

Hy =3 3" o, (3.16)
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where the coupling constant is

G > 1075 m52 . (3.17)

The current is a sum of hadronic and leptonic pieces

where (assuming V-A)} ,
Jh = Ve YHImvse + (evu 5 vervy) (3.19)
and
B A (3.20)

The hadronic vector and axial vector components have both strange-
ness conserving (AS=0, proportional to cos6.) and non-conserving (4S=1,
proportional to sinf.) pieces. For our purposes only the AS=0 piece is
relevant and we shall effectively set 6. = 0 for pedagogical purposes.
Consider the semi-leptonic matrix element

i » f + leptons , (3.21)
which would appear (for example) in B-decay. This matrix element is
propertional to

<f,efub Jﬁ+|i> = <f|Jp]i> <£|J§+|0> , (3.22)
where the leptonic piece is known exactly. In the simple case of
neutron R-decay

<flopli> = <p|Jh|n>

~eTikex uplv® gy (k?) - v¥ v5 gpa(k?) +- - ~Jun , (3.23)
where the corrections are of order k2, and therefore suppressed. In

fact, in the limit of very small k Eq. (3.23) is simply

<pldhln> = g,(0) 8,5-9a(0) o7 81 » (3.24)
where
g
gy = | and Eﬂ-= P.24 (3.25)

. v . .. .
The fact that g, = 1 even in the presence of strong interactions is,
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of course, of great significance and is ‘explained' by the CVC hypothe=-
sis of Feynman and Gell-Mann (BD 64). That is, the vector current is
assumed to be directly porportional to the isospin current
Vﬁ = 2g, Iﬁ , {(3.26)
where Iﬁ is the isospin current which is eonserved in strong interac-
tiomns.

The fact that gy is so nearly one is also highly suggestive, as we
shall discuss in the nexr Section. For the moment we ask only how to
calculate this in the bag model, The isospin current in the MIT bag
model is

) =3 a0 £ a3 (e, (3.27)

and the axial current

AH(x) = Qa4 (07 vs
i
(By analogy with Eq. (3.26) we let AM =

5 a; (x)e,, - (3.28)
24M.)

Clearly then at k = 0, the matrix element

tpn =ﬁ3r<P|§°(r) [n>{r=0 = ﬂ3r2<plq?(i)
i

and because the quark radial wave functions are normalised we find

* Zl .
tpn = s-f<P| Z '§L[”>5-f » (3.29)
i

where the subscript indicates a spin-flavour matrix element only,

PO et

a; (r) [n> ,

Using the wave function given earlier {and the analogous one for the
neutron) this becomes
= <pl (3.30)
ton = <pl3ln> . -3

On the other hand, again with k = 0, we find

Joex<p IR 0> |ymg = Joex T <plat v ¥ vs
- i

However, with our conventions (Appendix I}

QN6 oo

po A

q; (x)}{n> . (3.31)
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and hence

2 .
+( )0 o = Neo iy (900 o,
./E;agdi SHEIALRAE q("") ./.Bagdi ll'rr("o’ ‘g xj1) (0 g)(ig_’xh

2 N . . .
=£:_ﬂ-/o'RdX X?'fdx[_jg 2+J% on g_g-x] . (3.33)

However, after a litrle spin algebra we find

fd3< ekgok =g, (3.34)
and hence
e R Lo fWX 1 .o fx
d3x <p|A(x) |n>’£=0 = Nzﬁ dx xz[Jg(T)-§ _@(—R—)] X
3L 1
PR I DI LN (3.35)
i=1

The first term can be evaluated analytically and for massless u and d

quarks one finds (DeG+ 75}

R ) 1, 1{2w-3
2121 2y - 1.1 =
NZUI; dx x (Jo 3 J1> —'l 3( w-]) = 0,65 . (3.36)

This is the crueial difference from non-relativistic {constituent)

quark models.

In the usuval non-relativistic quark model,

3
- _ -
AN = Z"i

i=1

and the spin-flavour matrix element is easily evaluated using the wave

.
I
»

(3.37)

Ni-“"

functions given earlier with the result

3
Ti 5 T
s_f<plz 9 _.‘2_,n>s-f =3 <plo 'f|n> ’ (3.38)
i=1

and hence gE/R

= 5/3. The bag model reduces this to 1.03 which is in
much better agreement with the experimental result gA/QV = 1.24,
3.4, Centre of Mass Corrections

As It is usually presented, the bag model is effectively an inde-

pendent particle shell model (IPSM) of hadron structure. In the nuclear

context it is widely known that the IPSM is a terrible way to treat
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3He. For example, if one uses harmonic oscillator wave functions the
removal of the spurious motion of the centre of mass reduces the value
of the squared charge radius by a factor of 2/3. Thus one might expect
that c¢.m. corrections should be extremely important for the bag model.

The procedures for removing spurious kinetic energy associated
with the motion of the c.m. were discussed in Section 2.2.%. Here we
are concerned with the effect on observables associated with the bag.
In Section 3.4.1 we shall briefly describe what seems to be the most
reasonable correction procedure, while in 3.4.2 we discuss the ambigu-
ities which do nor arise in the nuclear case.
3.4.1. Centre of mass corrections in the independent particle

approximation

The recent discussions of c.m, corrections to observables began
with the work of Donoghue and Johnson (DJ 80). These authors attempted
to calculate the pion decay constant (f) in the bag model. Unfortu-
nately their discussion contained an error which was recently corrected
by Wong (Won 81). Finally, Carlson and Chachkhunashvili (CC 81}
followed the same approach as Wong in order to derive corrections for
hadronic properties —charge radii, magnetic moments and so on.

The technigue used by Wong to remove the spurious c.m. motion is
known as the Peierls-Yoccoz projection in nuclear physics (PY 57).
The assumption is that the independent particle model wave function
can be written as a superposition of momentum eigenstates—whose in-
ternal structure describes the true hadron. Suppose we have a bag

fixed at the position R, which we denote by |B(R}>, then we have

d .
BR> = faiy 2R o) e >, (3.39)
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where Ib,g? is the momentum eigenstate representing particle b. This
will be normalised as usual,
<b,p'|b,p >= (2m)3 s(p-p"W(p) , (3.40)
W(p) = 2w, meson ,
= {my2+p2)1/2/my baryon . (3.41)
Finally ¢(p} is the wave packet describing the momentum distribution
in the bag. It can be obtained simptly by inverting Eq. (3.39) rto
obtain
!b’E? = (2m)"3 %%%%- dR e-i_ﬂE[B(E)> , (3.42)
and substituting into Eq. (3.40) with the result
02(p) = W far L <8(-/2) [B(r/2)> . (3.43)
Equation (3.43) will, of course, only receive contributions when r is
less than wwice the bag radius.
Having constructed an eigenstate of momentum we can now calculate
any matrix element required. For example, the electric and magnetic

form-factors of the nucleon are given by the matrix elements of Jo and

+ 3 - .
j respectively, in the Breit frame (CC 81, Bet 82),

6g(0Q?) =<b,0/2]j%(o) |b,-0/2> , (3.44)
and .
ic x
GM(QZ)X:: _h'g Xy < <b3:r2/2lT(0)|bA:'g/2> . (3.45)

(In the second case we have explicitly shown spin labels, A, for the
hadronic state.) Carlson and Chachkhunashvili (CC 81} explicitly cal-
culated the correction to the naive bag model predictions for the
charge radius, magnetic moment and axial charge using this approach.
For the r.m.s. charge radius they found about 20% reduction—in rough
agreement with the factor 2/3 (for r2} of the non-relativistic harmon-

ic oscillator. In the case of the magnetic moment there was a 15%



- 42 -
reduction. The axial charge, gp, increased by about 20%.

An important difficulry Qith the Peierls-Yoccoz procedure is that
there is no guarantee that the internal state of the momentum eigen-
state, Ib,g?, will be independent of p. Indeed the two complications
of the bag model, namely its sharp boundary and the fact that its wave
functions are highly relativistic, make it less likely that this tech-
nique will be ;eliable for the bag. One practical indication of this,
suggested by Carlson and Chachkhunashvili, is to compute the correction
for slightly altered wave functions. For example one might use the

approximate Gaussian wave function of Duck {Duc 78),

2 !
Y(r) = [Rg .,13/2(] +% Sz)]-l/z o~r2/2R3 (iB gﬁ.L)x . (3.46)
o}

Whereas the results for the r.m.s. charge radius and g, were not altered
significantly by using Eq. (3.46) instead of Eq. (2.33), the magnetic
moment Increased by 8% for the former, in comparison with a 15% de-
crease noted above. Clearly the correction for the magnetic moment
at least is untrustworthy. The ultimate c.m. correction which allows
one to correct any spurious momentum dependence was developed by Peierls
and Thouless (PT 62). This has never been applied to the bag model,
mainly because of the complications introduced by relativity (Won 81).
3.4.2, Ambiguities associated with the centre of mass correction

In the previous Section the discussion was based on the nuclear
physics analogy to the bag. However, as we discussed In Section 2.3
the bag itself might be expected to have some reality. Indeed, as
discussed by Bardeen et al. (Bar+ 75) there is some momentum associated
with the soliton bag. Thus, even though the MIT cavity does not carry
momentum, in a better dynamical model one could conceive of the bag

playing an important dynamical role.
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With this in mind, Duck constructed a pion wave function in which
the momentum of the bag balanced that of the wwo quarks {Duc 76). In
that way the quarks were allowed to move independently of each other
inside the hadron. While it was still necessary to construct momentum
eigenstates, there was no centre of mass correction in that approach.

An excellent illustration of the dilemma to be faced if the bag
does not carry momentum has been raised by Betz (Betr 82). Consider
the physically unreasonable case of a single quark confined in the bag.
in the IPSM approach all of its motion would be spurious c.m. motion
which should be removed by the Peierls-Yoccoz procedure. On the other
hand, if the soliton ideas are a reasonable representation of the-
physics the single quark could dig a hole in the vacuum, and there
should be a form-factor associated with the internal structure of the
system. We shall mention this again in connectioh with the cloudy bag
model form-factor for pion-hadron coupling in Sections 5 and 6.

One other important aspect of this problem concerns the n.l.b.c.
As we have discussed, the term -Z,/R is now thought to arise mainly as
a centre of mass correction. Including this in the stability calcula-
tion [3M/3R = 0, see Eq. (2.98)] produces a bag radius that is smaller
than that which would be obtained by first setting 3E/9R to zero and
then correcting for c.m. motion. For the nucleon it is readily seen
that this gives about a 10% reduction (for Z, = 0.75) in R.

In the absence of a truly covariant bag model it is not at all
clear which of these choices of bag radii is most appropriate for com-
puting hadronic properties. However, since both the r.m.s. radius and
the magnetic moment are prbporcional to R, the answers depend crucially

on the choice which is made. The paratlel with nuclear physics is of
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no help because there is no analogue to the nonflinear boundary condi-
tion. As a practical matter our choice has been to use the smaller
radius but then omit further c.m. corrections. But to be honest any
of the four possible options is equally acceptable and one has to accept
an uncertainty of at least #10% on bag model predictions of r.m.s.
radii and magnetic moments. To end on a note of balance we might point
out that this is still considerably better than the uncertainties
associated with relativistic corrections in the non-relativistic quark
models (see Section 2.4).

Table 3.1
Magnetic moments of the nucleon octet in units of the proton magngtic

moment — from (DeG+ 75).

MIT bag Experiment Naive SU(3)
M -2/3 ~0.685 -2/3
m -0.26 -0.219 -1/3
b -0.36 -0.51 -1/3
Ust +0.97 +0.84 +1.0
¥ o -0.56 -0.45 -2/3
Uz - -0.23 -0.27 -1/3

Figure Caption
Fig. 3.1. Matter density in the Is;/,

orbit for the MIT bag model.
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4, CHIRAL SYMMETRY

In this section we first present the Lagrangian formulation of the
MIT bag model. One of the most attractive features of this model as a
basis for a pedagogical discussion is that it can be summarised in an
extremely simple Lagrangian density. Using this we are able to for-
mally derive conserved electromagnetic and isospin currents. However,
in Section 4.3 we show that the axial current associated with the bag
is not conserved. This is something of a disaster in view of the ex-
perimental successes of PCAC. Indeed, chiral 5U(2) x SU(2) is known to
be one of the best symmetries of the strong interaction (Pag 75). The
classical representation of SU(2) x SU(2) is the so-called o-model
which we describe in Section 4.4. This discussion should also provide
some background from which the later development of the cloudy bag
medel can be better appreciarted.
4.1. Lagrangian Formulation of the MIT Bag Model

It is extremely convenient to have a concise mathematical summary
of the MIT bag model as a Lagrangian density. In the limit of mass-
less guarks, which we have seen to be a good starting point for dealing
with non-strange hadrons, the following very simple expression gives
the essential content for the fermions {CT 75, DeT 80, Jaf 79)

L) =[50 F ab0-8] 6(r-r) - 2T al) s(-R) . (h1)
For pedagogical reasons we have specialised to the case of a static
spherical bag of radius R. Of course the whole problem is usually
formulated in a covariant fashion by replacing 8(R-r) by 8,, which is
one inside the bag and zero outside, and 8(r-R) by a general surface
8-function, Ag. As usual B denotes the phenomenological energy density

of the bag. We also have



T = yi(3, - 3, (4.2)
where the arrow indicates the direction in which the derivative acts.
Lastly q(x} is the Dirac spinor describing the quarks. It actually
has four Dirac components for each of two flavours (u and d} and three
colours. (The extension to include strangeness, charm and so on re-
quires no essential change, but one must then introduce a mass matrix.)

The last term in Eq. (4.1) may seem a little strange until we re-
call that the linear boundary condition, which ensured no current flow
through the surface of the bag, amounted to the condition that aq
should be zero on the surface [Eq. (2.41)]. This term is a Lagrange
multiplier guaranteeing that qq is zero at the bag surface.

As usual the field equations are obtained by demanding that

S =fd"xof(x) ) (4.3)

should be stationary under arbitrary changes in the fields

9y * d3 * 895 ,
aa —»Ea + Ga-a . {h.4)
and in this case under changes in bag size (without change of shape).
In the static spherical case this means

R+R+¢ . (4.5}
in the general case such a variation leads to the following changes
in 8y and Ag

60y = € bg , (4.6)

§Ag = -€ n+d Ag , (4.7)
where n is the unit normal outward from the bag surface (n¥ = (0,r)
for a static spherical bag). The coefficients of 8q, 8qbs and £ in

the expression for 8S give the three bag model equations which were

discussed at such length in Section 2, respectively
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i 7 q(x) =0,r SR, (4.8)
i y'nq{x) = q(x),r =R, (4.9)
B = -3 n-3[q(x) q(x)],r = R . (4.10)

4.2. Conserved Currents in Lagrangian Field Theory
In the previous section we referred to the mathematical convenience
of a Lagrangian formulation. A prime example of this convenience is
Noether's theorem which states that an invariance of the Lagrangian
density is associated with a conserved quantity. Consider, for example,
the Lagrangian density
L = Loy, 3¥op) (4.11)

for which the equations of motion are determined by Hamilton's principle

m:ajbxx=o, (h.12)

for arbitrary variations of the fields {¢;}, which vanish on the boun-
dary (usually at infinity).
Suppose that we make a variation in these fields by an amount
5 01 (x) = F1(6;6)e (4.13)
where f; is an arbitrary function of the fields {¢j} at x, and g is an
infinizesimal constant,. !f'éf is invariant under the transformation

(4.13), we have

§ & = [a«f :*5'(3—;% aufi]a -0, (4.14)

where there is an implicit summation over repeated indices. If € is

no longer constant [e = €{(x)], 656 has an extra, non-vanishing term,

3 ] b1
Gf W € {x) ( 5)
However, from Eq. (4.12) the integral of 6k still vanishes, and inte-

grating by parts we find
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fd"‘x au[ﬁ(ﬁ fileta = 0. (4.16)

As this is true for arbitrary e{x), clearly we have constructed a con-

served current. That is, if we define the current jH{x) as,

P00 = gy fi (5.17)

then it is locally conserved
Buj“(x) =0 . (4.18)
Finally we note that if L has two pieces, as is often the case
in examplies of physical interest, $o that onlyéﬁQ is invariént under
the transformation while Sfb is not, that is
L =L +Lb > (4.19)
then white j¥ is no longer conserved its divergence is easily written

down,
a
b
i = ——— .
3, 5; £ (h.20)
4.2,1. The usual charge current

As the simplest possible example of a conserved current in the bag

model, consider the simple gauge transformation:

g(x) » q{x) + i ¢ q(x) , (4.21)
(a¥(x) > q* -1 e q")° ,
q(x) =q(x) - i e 9qlx) . {(4.22)

Clearly ;f(x) in Eq. (4.1) is invariant under this transformation be-

cause it contains only the combinations qq{~ag - i e g4 +q i € g = qq).
Therefore there is a conserved current which is easily found from
Eq. (4.17)

= LT00v G al)ey - BEia)alde, o (h.23)
Or up to a minus sign

¥ = q(x)yHMa(x)ey . (4.24)
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This has already been used in calculating the charge distribution (j°)
and magnetic moment (T) of a bag model hadron in Section 3.

4h,2.2. Isospin conservation—invariance under SU(2)

Now let us make an arbitrary, infinitesimal rotation in isospin,

—_ —_— — T*E
qQ+>q-iq55, (4.25)

with ¢ constant. Once again Jf(x) is invariant, and hence ;“, given by
I (x) = q(x)y"(z/2) q(x) (4.26)
is a conserved current. Of course, the total isospin of the bag (t) is
the integral of the isospin density,
= oo, (4.27)
and because au;“ is zero, it is a constant of the motion.
4,3, The Axial Current
At last we have sufficient background material to begin considera-
tion of the most recent developments in the bag model which are of
direct relevance in nuclear physics. The natural starting point for
this discussion is the axial current in the MIT bag model. As we shall
see, unlike the charge and isospin currents which were decently con-
served, the axial current is far from being conserved. Moreover this
problem seems to be inescapably linked with the concept of confinement.
For this reason we believe that the ideas presented here have a far
more Qeneral validity than the MIT model on which the discussion is
based.
L.3.1. Non~-conservation of the axial current
Suppose that instead of just rotating in isospin-space, as in

Eq. (4.25), we also operate with yvs, thereby introducing a dependence



on the quark's helicity

Teg
q>q-i=5"v549, (k.28a)
+ + .+ >

qQ *q +igq YST!

and therefore
— — T'E

g+q-igq Y5 ”2 . (4.28b)

Under this transformaction we find

I — i€ -
L& + L Glysyi+yiysl S W5 a0y %—q( x)tee v5 q{x)ag , (4.29)

3]

but whereas the second term vanishes because { y",ys} = 0, the last is
definitely non-zero. The jargon for this is that the surface term
"-1/2 Ehas" is "ehirally odd"”. Figure 4.1 illustrates in a very simple
way what this lack of invariance means physically, Confinement implies
that any quark impinging on the bag surface must be reflected. However,
there is no spin-flip associated with the reflection, and hence the
chirality, or handedness, of the quark is changed. Formally this is
known as a violation of chiral symmetry.

Because of the lack of invariance of the Lagrangian density under
the transformation (4.28) we do not have a conserved current. In facrt
the axial current associated with Eq. (4.28)

A¥(x) = q{x)v¥ys 1/2 q(x) 8(R-r) , (4.30)
and using Eq. (4.20) we find easily that its divergence is

b, A1) = -3 Aldys T alx) 6(r-R) . (4.31)
This emphasizes once more that the essential problem is the confining
wall at r = R. It also serves to remind us of Bogolioubov's retativis-
Tic potential model without the phenomenological energy density B.
In that case [see Eq. (2.53) and (2.54)] the divergence of the energy

MOMENTUM Tensor was proportional to a surface &-function times the
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Dirac pressure exerted by the guarks. Indeed this was the observation
that necessitated the introduction of B. In the same way we expect
that something new will be required here. For guidance we recall the
conventional description of the hadronic weak current.
4.3.2. PCAC

in Section 3.3 we reviewed the conventional theoretical descrip-
tion of the weak interaction. As an example we considered neutron B-
decay which invotves rather low momentum transfer. Accordingly Eq.
{3.23) did not contain all the pieces of the vector and axial-vector
currents. The mést general expression for the hadronic axial current
is

<p|AMIn> ~ Uy [vhys ga(k?) +kMys gp(k2)uy (4.32)

where un and up are Dirac spinors for the nucleons and the second term
in brackets is the induced pseudoscalar term. |If the momentum trans-

fer, k¥, is spacelike and small, we find the non-relativistic limits

gk
YuYS >~ g 3 kUY5+— ?Ei:— , (4.33)
and hence
+ 2 gP(kz) ‘
laln> = xf(oalkDs - 2 ok k)i . (4.34)

where Xn and Xp are Pauli spinors.

Now the problem of concern to us in Section 4.3.1 was the non-
conservation of the axial current in rthe bag model —or more specifical-
Iy the fact rhat auA“ was non~zerc., In the present case BUAU becomes

simply k+A, and we see from Eq. (4.34) that k+A is zero only if
gp(k2)k? |
(gA(kZ} S ok =0, (.35)

which implies that gp is related to gy by

2M gA(kz)

24 (4.36)

gp(k?) =
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Since gp is simply a constant as 5? + 0 we see that if éhe axial cur-
rent is to be conserved the induced pseudoscalar term must have a pole
corresponding to the propagation of a massless exchanged particle.
Furthermore, the quantum numbers of the exchanged particle are those
of the pion.

1f we then accept that the axial current may not be exactly con-

served it seems very natural to replace Eq. (L4.36) by

2M gp(k?)
gp(kz) = -Ts?g_:\—mﬂ-z— . (’4-37)

Since my is unusuwally small on the scale qf hadronic masses the axial
chrrent is said to be almost, or partially, conserved. In fact the
correct statement of the PCAC (Partially Conserved Axial Current)
hypothesis (Col 68) is that the extrapolation from zero pion mass to
my should be smooth. —

In the limited space available here we can not do justice to the
depth of physics investigated using the PCAC hypothesis. At best we
can refer to some excellient text-book presentations {GL 60, AD 68,

Lee 68, Col 68, Zum 68, ER 72, Bro 79). In addition, we can get some
physical insight into the structure of AY by referring to Fig. 4.2.

As we see there are two essential contributions to it. The first is

a direct term which reduces to gpo, and is included in the bag model.
Secondly, there is the possibility that the nucleon emits a pion which
then decays via the axial current with amplitude /fﬁﬁ, where f = 93 MeV

is the pion decay constant. |f as suggested by Eq. (4.37) we equate

these two terms when mg2 is zero we obtain
FNNT |
(9a o)k = /7( - ) ok :r(/z—fi)'h , (4.38)

and hence
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9A _ f NN
= (k.39)

Equation (4.39) provides a remarkable connection between weak and
strong coupling constants and is known as the Goldberger-Trieman rela-
tionship. In conclusion let us re-emphasize that the massless pion
pole term is essential if one wants BUA“ = 0. In the real world where
my; 15 non-zero we have instead the relationship

BUA“ = f mé ¢, : (4.50)
where ¢ is the pion field (Col 68)
4.4, The o-Model and Spontaneous Symmetry Breaking
b 4.1, General discussion of SU(2) x SU(Z)

In the preceding sections we have discussed separately the vector
and axial~vector currents in the bag model, However, the quantities
of more general interest in particle physics are the combinations'
(V+A). 1In the case of massless fermion fields these are the left- and
right-handed currents. The original significance of these combinations
lay in the current algebra hypothesis of Feynman and Gell-Mann (Gel 64,
Fey+ 64, AD 68). This significance has only grown with the development
of QCD over the past decade.

in particular, the underlying Lagrangian density for QCD contains
a kinetic energy term for free massliess quarks. As we have seen in
Sections 4.2.2 and 4.3.} such a Lagrangian density leads to conserved

vector and axial-vector currents,

VL =q(x) v, a(x) , (h.b1)
and

AL =90 ! vyrs alx) . (4. 42)
The combinations VA then describe the isospin structure of lefe-

and right-handed quarks respectively,
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~
Il

u E(X) T YU(I‘YS)CI(X) ’

a(x) ' v, (I+ys)q(x) . (4.43)

i
Because of the commutation relations amongst the V and A currents, L
and R form independent algebras under equal-time commutation (AD 68,
Sak 69). That is, we have two independent representations of SU(2),
one for left-handed particles and the other for right-handed particles.
The invariance of the theory under separate transformations for left
and right-handed particles is referred to as chiral SU(2) x SU(2)
symmetry—or SU(2)_ x SU(2)g, in an obvious notation.

To restate this simply, the theory is chirally symmetric if no
piece of the Lagrangian density mixes teft- and right-handed particles,
Figure 4.1 11lustrated exactly why SU{(2) x sU(2) is violated by the
MIT bag model —or indeed any model where quarks are reflected by a
boundary. Such a reflection changes helicity and thus mixes the left-
and right-handed parts of the theory.

Thus the first argument that something is missing from the usuatl
bag model is that it does not have a symmetry which is present in what
is generally believed to be the correct theory of strong interactions—
nameiy QCD., The second indication is rather more pragmatic. That is,
there is an extremely successful phenomenology which has been built on
the idea that chiral SU(2} x SU{2) is a good symmetry of strong inter-
actions. An excellent discussion of the evidence can be found in the
review by Pagels (Pag 75). Based on the comparison between theory and
experiment for the Goldberger-Treiman relationship [Eq. (4.39)], the
7N EI-commutator and so on, Pagels concludes that ''SU(2) x SU{2) is a

good hadron symmetry to within 7%. This makes chiral SU(2) x SU(2)
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the most accurate hadron symmetry after isotopie invariance.'' (Pag 75,
p.242),

We are therefore faced with a problem very similar to that encoun-
tered by Gell-Mann and Lévy in 1960, They had to reconcile the facr
that the axial current for the nucleon was partially conserved, with
the fact that the nucleon has a large mass. That is, the Lagrangian
density for a free ﬁucleon is _

L(x) = T4y -myvo, (4.4h)
where the mass term [as we saw in Eq. (4.29)] is 'chirally odd'". Their
solution to the problem was the so-called o-model, to which we turn in
the following section. Although it is a very simple model it is of
more than academic interest. |t has been used as a method of incorpor-
ating the constraints of chiral symmetry in many applications in con-
ventional nuclear theory, for example

a) exchange current corrections—e.g. for the axial charge density
in nuclei (Gui+ 78, Ose 80);

b) the two-pion exchange N-N force (Bro 78, Bro 79);

c) manry-body forces (MR 79);

d) exotic states of matter, such as Lee-Wick matter and pion con-
densation (LW 74, Cam 78, Bay 78, Méy 81).
For the present we simply observe that the cloudy bag model which will
be described in Sections 5 and & is the natural generalisation of the
g-model to the case where the nucleon has structure. It invites appli-
cation in each of the areas (a)-(d).
4.4.2, The o-model

As we have remarked many times the essential problem in construc-

ting a chiral symmetric theory containing fermions is the mass term

]
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proportional to Yy, The simplest way to avoid this problem is to intro-
duce new fields (o, w)—an isoscalar scalar field and an isovector
pseudoscalar field=in addition to the nucleon, ¥. The generalisation

of the infinitesimal transformation (4.28) [replace q{x) by ¥(x)] is

v e TS/ (4.45a)

oy e iTeYs/2 (4.45b)

Then the idea is to replace my $¢ in Eq. (4.4h) by g ¥(o+iz-zYs5)V¥,
where ¢ and 7 are defined to transform in exactly the right way to
cancel the transformation (4.45)., -In particular, we demand that
(o+iTemys) + e T ¥Y5/2 (gaigeqys)etiT @¥s/2 (b.46)
If we now consider the case where o is infinitesimal, Eq. {4.46)

implies that

O >0 = a°T (4.47a)
r>ntog. (4.47b)
and of course
T*Q N - Tra
vy - Ysh s b >0 - ibys 5 (4.48)

It is a simple exercise to show that Eq. (4.47) implies that (o2?+p?)
is invariant under this chiral transformation. That is we are merely
making a rotation in a four-dimensional (4D) space.

We mentioned above that under the familar SU{(2) of isospin, o is
a scalar and 1 a vector. Under an infinitesimal rotation in isospin-
space

O+0; THT - BXT , (4.49)

and [recall Eq. (4.25)]

£ . (4.50)

B

Yoyt i ST vy -0y

T

2

Equation {4.49) also leaves (02412) constant. Thus the most general
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transformation under SU(2) x SU(2) involves two parameters (g,B) and
amounts to nothing more than a rotation in 4D space. Indeed, as dis-
cussed in detail by Lee (68) SU(2) x SU(2) is isomorphic to the rota-
tion group in four dimensions, R(4). The basis of the regular (adjoint)
representation of R(4) (Car 66) is in fact (o,1).%

The most general renormalisable Lagrangian density involving nuc-
leon, ¢ and 7 fields which is consistent with chiral symmetry is there-

fore

!

L(x) = 1y 4y + gplo+izenys)y + 5(3,0)2 + ;_T(au“)z

- 2 ((02412) - v2)? . (6.51)
In case it is not clear, we stress that the o and 7 kinetic energy
terms are invariant under SU(2) x SU(2) because we are only discussing
global transformations—that is ¢ and B constants, not functions of x.
Let us consider the potential energy term in Eq. (4.51) in more

detail

Vio,m) = A2 (o2eg)2 - 202 (g2up2) 4 A7 0 (1.52)
(There is a change of sign because the Hamiltonian goes as -gooéf.)
I1f the system is ever to be stable we obviously need X2 > 0. Then
there are two possibilities. First it is possible that vZ2 ¢ 0, in
which case the coefficient of the g2 and 12 terms is positive and

therefore an acceptable mass term, The o and 1 fields have the same

mass, {-32v2)1/2, and the potential V(c,1=0) has only one minimum—

*The regular representation is 4D because only four of the six opera-
tors 1; and ysTj are independent. As we discussed in Section h.h.]
the combinations (1ty5)gi are the operators for lefrt- and right-

handed SU(2).
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at 0 = 0, One could then deal with fluctuations of the o and 7 fields
in the normal vacuum.

A second possibility, which is far more interesting, is the case’
vZ2 > 0, In this case the potential has the ''Mexican hat' shape shown
in Fig. 4.3. Remarkably, the point o = 0 is no longer stable and it
would be meaningless to talk about quantum fluctuations about that
point! Instead there is a minimum on the surface (o2 +12) = vZ, Since
a non-zero classical expectation value for 1 would violate parity, it
is natural to think of expanding about either of the eguivalent minima
of V(a,7=0) at o = v, for example

oo +v, T - (4.53)
Once this transformation is made the symmetry of the original
Lagrangian density (4.51) is hidden.

However, Goldstone's Theorem (Gol 61, Gol+ 62, Ber 7%, Pag 75,

Lee 81) tells us that when a continuous symmetry is hidden, a
Goldstone boson or massless excitation of the system appears. Mathe~
matically we find upon substituting Eq. (4.53) into Eq. (4.51)

Z (x) = ¢(i3+gv)yp + gvlotitemys)v + -]z-(auo)?- - %(ZAZ v2)o? +

, |
FuD? = w2 olo?412) - (oPH2)? (k.54)

and the explicit SU{2) x SU(2) symmetry has certainly been lost. The
nucleon, for example, now has a mass term with

my = =g v , (4.55)
which arises because the vacuum state is now complicated and the nuc-
leon always meets resistance. Similarly the o now has a mass corre-
sponding to the second derivative of V(o,1=0), at o = *v, in the o-

direction



m2 = 232v2 | (4.56)
Furthermore, as advertised there is no mass term for the pion which is
now a massless Goldstone boson corresponding to massless excitations
around the rim of the '"hat'"'. We also observe that there are now o-n-m7
and o-0o-0 interaction vertices with strength proportional to the expec-
tation value of the original o-field.

Let us recall that the whole purpose of this exercise was to pro-
duce a chiral symmetric theory with a massive nucleon. Although it
may not be obvious, we have succeeded, and the whole key is the spon-
taneous breaking of chiral symmetry associated with Eq. (4.53).
Actually a much more appropriate term would be hidden chiral symmetry
because Eq. (4.54) is invariant under the chiral transformation

G >0 7 a7
73+ (og+v)a , (4.57)

~

and hence there is still a conserved axial current
AM(x) = Yy¥yst/2¢ - y3¥o + odby . (4.58)
Finally, the conserved vector current associated with Eq. {(4.54) is
VH(x) = pybr/2¢ + mxdty . (4.59)
L k.3, PCAC in the o-model
Having obtained a chiral symmetric theory with a nucleon mass,
all we need to do to make contact with the real world is to introduce
a mass for the pion. This is done by explicitly breaking the chiral
symmetry of the original Lagrangian density (4.51) by "tipping'' the
Mexican hat
&L - L+ co . (4.60)
In this case there is a preferred direction in (o,1) space and the

minimum about which we expand is g,, where
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05(0% = v2) = c/a? . {4.61)

I1f we now let |
o +a + o, (4.62)
in Eq. (4.60) it is a straightforward exercise to show that the nucleon,

c and 7 all ger masses, with

mN = -9 Oy {4.63)
mZ = A2(30,2 - v2) , (4.64)
and
m2 = A2(0y2 - v2) . (4.65)
Because we broke the chiral SU(2) symmetry with the *'-co'' term
the axial current is no longer conserved. [nstead, from Eq. (4.20) we
find

A" = -c ¥ . (4.66)
This is exactly the form given in Section 4,3,2 provided we identify
c = -fm2 . (4.67)
Using Eq. (4.67), (4.61) and (4.65) we find that the minimum about
which we have expanded, o,, is equal to the pion decay constant
oo = -f . (4,68)
Hence Eq. (4.63) becomes
my =g f, (4.69)
which we recognize as the Goldberger-Treiman relation [see Eq. (4.39)]
with g4 = 1. This is a defect of the o-model which is usually overcome
in practice by introducing ga = 1.24 as a fudge-factor whenever needed!
In summary, we emphasize that the o-model was presented not as
the best one can do in imposing chiral symmetry, but in order to moti-
vate what follows. In order to appreciate what is really new and
advantageous about the CBM we need to understand what has been done in

the past. Nevertheless, the o-model is a beautiful case study,
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presenting as it does simple examples of chiral symmetry, spontaneous
symmetry breaking, PCAC and the Goldberger-Treiman relation. The

serious student should follow up our brief presentation by reading the

appropriate sections of Lee 68, Bro 79, IZ 80 and Lee 81.

Figure Captions

Fig. 4.1. Violation of chiral symmetry at the bag surface.

Fig. 4.2. The direct and pion pole contributions to the nucleon axial
current.

Fig. %.3. The potential energy density V(o,n) with u2<0, v2>0, and

cq=0.

¥ op Fop ,/,(kz+ Myl)!

Bog Bag $
Wall wall 9, T ¢k o ok

Incident (Helicity +1)  Reflected (Helicity -i) (a) (b)
Fig. 4.1 Fig. 4.2
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5. BAG MODELS WITH CHIRAL SYMMETRY

In Sections 2 and 3 we took great care to explain the MIT bag model,
its application to particle properties, and the attempts to derive it
from a more fundamental theory. The concept of chiral symmetry was ex-
plained in Section 4. In particular we showed that the essential effect
of confinement was to lead to the non-conservation of the axial current.
We then examined the classical o-model as an example of how chiral sym-
metry can be restored through the appearance of a Goldstone boson. The
purpose of this section is to show how a number of groups have attempted
to put these concepts together to create a hybrid model in which the
experimental fact of PCAC is preserved. However, such a review would
be incomplete without some discussion of the relationship of this phen-
omenology to QCD. It is the purpose of Section 5.1 to provide that
background.
5.1. Mortivation

Finding the solution of QCDP, which is widely accepted as the correct
theory of strong interactions, poses a very difficult problem (AL 73,
MP 78). It is quite likely that some genuine physical insight wilt be
required if we are ever to solve the QCD equations. Symmetry arguments
may be of great importance in developing that insight. In the innocent
days of 1968, when only three quark flavours were known, Gell-Mann,
Dakes and Renner (GOR) proposed the following scheme (Gel+ 68). Begin-
ning with three massless quarks, QCD (for the reasons reviewed in Sec-
tion 4.4) would have an exact SU(3) x SU(3) symmetry. Because physical
particles have definite parity the vacuum symmetry in this theory must
be hidden—leading to an octet of massliess Goldstone bosons (w, n, «

and «).
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If the strange quark is then given a mass the symmetry group is
broken to SU(2) x SU{2}—with only the pion still massless. Next one
sets the masses of the u- and d-quarks to be non-zero (my = mg # 0)
leaving only SU(2) (isospin) and my # 0. Finally, in order to explain
mass splittings in isospin multiplets one must set my # mg leaving U(1),
or charge conservation as the only exact symmetry.

For the present we shall ignore chiral SU(3) x SU(3) because of the
large mass of the kaon. (Nevertheless there may be a great deal to be
learnt by extending the hybrid bag models to include strangeness (RT 82).)
On the other hand, as we have stressed many times, SU(2) x SU(2) is
found experimentally to be an excellent symmetry. It should therefore
make a firm foundation for mode) building. As GOR observed on very
general grounds the physical realization of chiral SU(2) x SU(2) must

be the Goldstone mode. To see this, suppose

|-
auﬁ = 0 » (5'])
in all space. Therefore, if we integrate over all space
fd3x 3 AY = 0, (5.2)
+ - .
and use Gauss's theorem on the V- 3 piece we find
3, Q5 = 3, fd3x A°(x,t) =0 . (5.3)

Thus the axial charge is a constant of the motion, and therefore commutes
with the Hamiltonian
[H,Q¢] =0 . : (5.4)
If an efgenstate of H, namely |N+>, exists with mass m,
HINT> = m|N*> | (5.5)
then |N"> defined as
IN"> = Qs [NT>, (5.6)

also has mass m, viz:
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Qs HIN*> = H Qs[N*> = H|N>

]

m{N"> . (5.7)
Since |N"> necessarily has opposite parity from |N*> there is an un-
observed, opposite-parity partner for each hadron!

The only way around this theorem is the Goldstone representation of
chiral symmetry in which Qs does not annihilate the vacuum {(Pag 75,
Gol+ 62), i.e.

Qs {0>#0 ., - (5.8)

In that case, rather than being a parity partner of |N'>, the state
[N'> contains an arbitrary number of massiess, pseudoscalar, Goldstone
bosons. (Recall Section 4.4.2 where we showed explicitly how such bosons
can appear as a result of spontaneous symmetry breaking—SSB.) Thus
on very general grounds thé pion must be present as a Goldstone boson
in this ideal chiral-symmetric world (with my = 0).

While the o-model was pedagogically very useful for introducing
the ideas of $SB and chiral symmetry, it is physically very unsatisfac-
tory. The nucleon is point-like and there is no way to relate it to QCD.
Thus it certainly does not help 1o resolve the problem of 3,AH # 0
which we found in the bag model. We recall that the essential diffi-
culty there was the confining surface of the bag, and this has led to
speculation of a phase change at the bag surface. Briefly the idea is
that chiral symmetry would be realized in the Wigner-Weyl mode inside
the bag (massless quarks, no pions) and in the Goldstone mode outside
(Cal+ 78, Cal+ 79, BR 79). In such a picture the pion field outside
the bag could-(but need not} play an essential role in the confinement

process —even contributing significantly to the bag pressure.
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Very recently Goldman and Haymaker have taken some steps which may
provide the link between QCD and the appearance of the Goldstone mode

(GH 81, HG 81). Their considerations were based upon an effective

Lagrangian of the Nambu-Jona-Lasinio type

 fere= T4 - of@N2 + (17 vsza) 2} - (5.9)

Actually they used a rather more general! form than this with the &~
function b-quark interaction replaced by exchange of a massive vector
particte, but the idea is the same. Moreover there have been indica-
tions that such an effective Lagrangian density could come out of QCD
after transforming away the gluons (Cal+ 79). The properties of (5.9)
have been well studied (NJ 61, GN 74, GH 81), indeed it provides the
classic example of a dynamically broken symmetry. Beyond a certain
critical value of the coupling constant, g., one finds that the quarks
become massive and the pion appears as a massless, composite Goldstone
boson, The breaking of chiral symmetry as a result of the dynamics of
the system is {(not surprisingly) referred to as dynamical symmetry
breaking (DSB).

Put very briefly the essential idea of Goldman and Haymaker is the
following. The one gluon exchange is very strongly attractive in the
state with pion quantum numbers [see Eq. (2.83)]. it is quite conceiv-
able that the one-gluon-exchange ladder graphs alone could bind a qq
pair in that channel. Then the large distance, non-perturbative aspects
of QCD responsible for confinement need not alter the properties of
the pion very much. Chiral symmetry could be dynamically broken, wich
the appearance of a Golidstone pion, independently of the usual mechan-

ism of confinement. WNaturally this leads to a rather small pion, with
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a hydrogen-like relative qq wave function. At present the only experi-
mental problem this presents would be the measured r.m.s. charge radius
of 0.56 + 0.04 fm (Dal+ 81). However, theoretical corrections to the
charge distribution from processes like w - 37 have not been estimated.

Whatever the nature of the pion, there is strong thecoretical justi-
fication for treating it as a Goldstone boson arising from some DSB
mechanism, In'addition, it is unique amongst hadrons in having a size
(less than or equal to its r.m.s. charge radius) considerably less than
its Compton wavelength. Thus in first approximation it should be
reasonable to construct a theory in which chiral symmetry is retained
in the Goldstone mode but the internal structure of the pion is nggiec-
ted. This would be essentially a long wavelength approximation.
5.2. Chodos and Thorn

The lack of chiral symmetry in the MIT bag model was recognised
immediately by the MIT group. One attempt was made to deal with this
problem as early as 1975 by Chodos and Thorn (CT 75) —see also Inoue
and Maskawa {IW 75). Their proposal was a simple generalisation of the
o-model which we described in Section 4. That is the surface term in
the MIT Lagrangian density (4.1}, qqds, is replaced by the chiral in-
vartant form E(o+i;-g¥5)q65. The new Lagrangian density involving the

extra, elementary fields ¢ and 7 is therefore

- A — .
XCT(X) =(1g% q- BYo, - 5 alo*iz-Tys)asds

! 2 4. 1 2
+ E{aug) + Z(BUE) , (5.10)
where A is a Lagrange muitiplier which turns out to be simply (02+32)'1/2.

By construction Eq. (5.10). is invariant under the chiral transforma-

tions (4.47) and (4.48) (y - q), and the conserved axial current
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analogous to Eq. (4.58) is

] —
A' = =g ylyst/2 q 8y - 1 M0 + odVp . (5.11)

Having written down the classical field equations corresponding

to {5.10) for the case of a static, spherical bag, namely

iAg=0, r <R, (5.12)

i y:rq=- Tg§;§§7T7f (o+it+my5)g,r = R, (5.13)
Vo = 3 {oryrT 94 S(rR) (5.14)

vl = %-733355317qf i qvsT g 8(r=R) , (5.15)

Chodos and Thorn attempted to find an exact classical solution. The
only case for which this was feasible was a highly idealised baryon
called the "hedgehog'. |f we define a spin-flavour wave function v as
(u and d are up and down, and the arrows describe spin direction)

[v> = (Jus> - |d+>)/V2 (5.16)
that is a mixed spin-flavour singletr, then the hedgehog has the spin-
flavour wave function

[h>g_g = Jv>1 [vop fv>g . (5.17)
Such an animal clearly has no place in the real world, as it is an eigen-
state of neither isospin nor angular momentum. fn fact, with three
quarks in Isy/, orbitals it is a linear superposition of N and A states
of all charges. However, the choice of h leads to a very simple form
for the source term in Eq. (5.15). In fact one can easily show that
a_ysg g, a vector in isospin space, always points in the radial direc-
tion r! That is, for a quark in a Is;/, hedgehog orbit (qh),

a TYs 9y = -2ijoJy vy ro. (5.18)
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It is then obvious that the set of equations {5.12)}-(5.15} allow a solu~

tion of the form

q(r) - (jo(wl‘/R) ' ) y e-i (UJ/R)'C (5‘}9)
B iger  Jy(wr/R)

1|

—

et
1]

rg(r) , | (5.20)

f(r) . (5.21)

Q

—
I=

-
1}

Although no explanation for the hedgehog was given by Chodos and Thorn,
the form (5.20} is identical to the monopole solutions which were under
investigation at about the same time. Solving explicitly for the pion
field they found,

g(r) = -B(?(R-r)r + e(r—R)-§;) , (5.22)

where B measures the strength of coupling at the bag surface. The
quark frequency w }s obtained by solving a transcendental equation.

If it was not obvious from Eqs. (5.14) and (5.15), it is obvious
from the explicit solution (5.22) that the 7 field has a discontinuous
derivative at the bag surface. (Although we do not show it there is a
similar discontinuity in the derivative of o{(r).) Such a discontinuity
is actually essential if the axial current is to be conserved and simply
serves to balance the source of axial current arising from quark reflec-
tion at the surface. We mention it here because in the non-linear

boundary condition
2{qlo+it-rys)al = -2(c2432) /2 B, r = R, (5.23)

consistency with energy momentum conservation requires that one use the
average of the m- and o-field derivatives inside and outside the bag
surface. The solutions for several values of the bag radius are dis-

playved in Fig. 5.1.
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As we have hinted, although the existence of hedgehog-like solutions
is fascinating, they are not of much physical significance because of
the lack of rotational invariance in space and isospin. An alternative
approach suggested by Chodos and Thorn, which was not inconsistent with
the model results for the hedgehog, was to make a perturbative expan-
sion about the MIT solution, with a constant classical o-field and zero
classical pion field. Since the same approach was used by Jaffe, whose
work is discussed in Section 5.3.3 below, we shall defer discussion of
the perturbative approach.

5.3. Further Developments
5.3.1. General Considerations

0f course the form of the classical o-field obtained by Chodos and
Thorn is rather different from what we obtained in a scoliton bag model
in Section 2.3. That discussion suggésted that the bag should correspond
o 2 re;ion wheré <o> was zero. From the phenomenological point of
view it is possible to impose this simply by multiplying the kinetic
energy for the o-field, (3,0)2, in Eq. (5.10) by 6y (which is zero for
r <R and unity elsewhere}. Indeed, if one identifies o,, the expecta-
tion value of the o-field in free space with f [the pion decay constant,
see Eq. (4.68)] it is easily seen that one gets volume energy contribu-
tion =B, with B about 20 MeV/fm3, or about one half of the phenomeno-
logical MIT value (Ros 81).

tt seems to us extremely worthwhile to extend the soliton bag mo&el
of Section 2.3 by making it at least approximately chirally symmetric.
For example, one might start with the symmetric form,

Ls(x) =i 98 q+galorizemys)a + 5(o,m)2

2
+ 22,02 = A-(o24r2- V22 - p (5.24)
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and then explicitly break the symmetry with, say

aob(x) =Cg¢ or Cod . (5.25)
In either case the sum (éfs'+5(b) is equivalent to the form used by
Lee, or Goldflam and Wilets, when 1 is set to zero [see Eq. (2.105)].
Unfortunately none of the parameters actually used by Goldflam and
Wilets gives the right pion decay constant, but their study covered a
very limited range of parameters.

Another persistent problem in any version of the c-model is that
the mass of its quantum fluctuations must be large. In fact the lighe-
est isoscalar two-pion resonances are the narrow S (980) which is
possibly exotic, and the £{1300) which does ar least have & large width.
!t is not at all clear that either of these should be identified with
the fluctuations in the o-field. Such problems led even the earliest
investigators (GL 60) to consider eliminating the o-field altogether.

In that case one is forced to deal with non-linear representations of
SU(2) x su(2).

One example of such a non-linear representation is obtained by the

Cayley transformation, in which ¢ and 7 are replaced by a new pion

field ¢ (Zum 68). That is,

e

] ] - i&Y
o+iTeTYs5 +——~—T——§-= g, (5.26)
- 1+ i&yg
where

(5.27)

£ =

tA

e

Just as we discussed in Section 4.4.2 the transformation properties of

£ must be such as to keep qZq invariant under a chiral transformation

[Eq. (4.28)]). It is an easy algebraic exercise to show that this implies
E+E-68; S8g=e+ ek, (5.28)

which is clearly non-linear, involving £2 on the right (By analogy with

(5.27) 1+¢ is denoted e.)
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An alternate approach introduced by Gell-Mann and Lévy was to use
the fact that chiral transformations leave c?+12 constant to eliminate
o2, In fact, we saw that in the o-model (g2+n2) was equal to f2 (Sec-
tion 4.4). Substituting the relation

o2 = f2 - g2, (5.59)
in the o-model Lagrangian density (4.51) with v £ f, we obtain the
non-linear sigma model. Clearly there are many other possibilities
which use Eq. (5.59). For a general discussion of non-linear represen-
tations of SU(2) x SU(2) we refer to the work of Weinberg (Wei 67,

Wei 68) and the lectures of Zumino (Zum 68).
5.3.2. The little brown bag

For a period of about four years the work of Chodos and Thorn was
more or less forgotten. (A notable exception was the calculation of
B - Br matrix elements in the MIT bag model by LeRoy (LeR 78).) Then
in early 1979 several groups returned to this problem of imposing
chiral symmetry {(Bar+ 79, BR 79}. Undoubtedly the largesr shock wave
was associated with the Stony Brook group. Brown and Rho proposed
that one should take seriously the idea of a two phase picture of physi-
cal hadrons. The interior of the static MIT bag was to contain asymp-
totically free, massiess quarks while the exterior would contain pions—
the Goldstone bosons of SU(2) x SU(2}.

Most notably from the point of view of this review Brown and Rho
addressed the problem which we raised in Section 1—namely the compati-
bility of the bag model of the nucleon (with its large radius) with
classical nﬁc]ear physics. Their proposal was that the pion coupling
should have a dramatic effect on the bag, compressing it to a radius
of say 3/10 fm! In that way the nucleon structure would be irrelevant

at normal nuclear matrer density.
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In order to avoid the o-meson the Stony Brook group worked with a
non-linear version of the o-model (Ven+ 80, Ven 80). In fact, their
Lagrangian density can be obtained from that of Chodos and Thorn [Eq..
(5.10)] by multiplying & (1 outside, 0 inside the bag volume V) into

the 7 and o kinetic energy terms
, = 1 - .
afsg = (i q 4 q-B)6, - 57 qlotit-Tys5)ads
] 1
+5(0,0)2 oy + 5(0,1)2 oy (5.60)

and eliminating (o,n} in favour of a new pion field, £, defined by

(1 + £2/F2)71/2

TT

£ + g2/§2)"1/2 (5.61)

i

¢
Equation {5.61) is. just one of the many non-linear transformations con-
sistent with Eq. (4.59).

If the pion field is to drastically alter the equilibrium radius
it is clear that a non-perturbative treatment must be used. There's
the rub! The only case for which a non-perturbative treatment is feas-
ible is once again the hedgehog. Even then the solution is no longer
algebraic, instead Vento et al. obtained an ordinary second order
differential equation for the classical pion field [i.e. for G(r),
where g(r) =t 6(r)].

We display in Fig. 5.2 some typical results from the Stony Brook
group. For all these curves the wNN coupling constant, as measured by
the asymptotic strength of the pion field, has been fixed at f%NN =
0.081 by varying f. There are clearly two rather different regions.
For large values of R the graph of mass versus R is very flat and the
result would be much like the usual MIT solution. Alternatively the

hedgehog tends to collapse as R goes below about 0.6 fm., Indeed,
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within the crude model proposed there is nothing to stabilise it, and
the mass goes to zero at R < 0.3 fm! 1t has been suggested that this
problem can be overcome by coupling the w-meson to the bag, in which
case there is a stable minimum at aboutr 0.5 fm (Ven 81).

As a model system the hedgehog is great fun to play with. For
systems of six quarks it has provided some insight into the physics of
the short distance repulsion in N-N scattering (Section 7). However,
there are too many inconsistencies in this approach for it be considered
realistic. {n particular, all of the successes of the MIT bag model,
which morivated the whole discussion of chiral symmetry breaking are
lost in the small=-R, non-perturbative limit. Moreover, as we shall
argue in more detail in presenting the cloudy bag model (Section 5.4},
when multi-pion effects are important the long-wavelength approximation
breaks down and one can no longer justify neglecting the internal struc-
ture of the pion itself,

5.3.3. Classical perturbation theory

The revival of interest in "hybrid" bag models (pions and quarks)
continued through 1979. In his lectures at the Erice school, Jaffe
continued the work of Brown and collaborators in a different direction
{Jaf 79). He too worked with a classical pion field, but (not sur-
prisingly!) took the view that the MIT bag should not be drastically
altered by its pion couplings. (A similar approach was taken by
Musakhanov (Mus 80).) Thus he developed a systematic expansion of the

pionic corrections in terms of a small parameter ¢,

9A

€T BrfZ R2 ’

(5.62)

which essentially measures the strength of the classical pion field at

the bag surface.
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Formally Jaffe's work is almost identical to that of Vento et al.
(Ven+ 80). Instead of the non-linear transformation (5.61) Jaffe chose

to define a new pion field, $, using the relations

£ ¢ sin(p/f) ,

Il

m

~

1]

o = f cos(¢/f) , (5.63)
which obviously respects the condition o2+1? = f2, In Eq. (5.63) ¢ is
the magnitude of the three component vector ¢, and $ is the unit vector

giving its direction in isospin space,

6= (¢9)/2 5 § =09/ . (5.64)

It will be useful to have the following simple identities,
3 = 99,9 , (5.65)
3,6 = [6x (3,0%6)1/¢ , (5.66)

if the reader intends to follow the original papers in detail.

With the transformation {5.63) the surface coupling term becomes
I — . l — ire.
5f alotit-mys)ads » -5 q e'l ¢Ys/f qog . (5.67)

To prove this, simply make a power series expansion of the r.h.s. of
Eq. (5.67) and use the identities
vE = (1+4)2 = 41 . (5.68)

The kinetic energy pieces of the usual g~model can be written in the form
1 1 ] . -
7(3y0) 2 + (M) 2 = 5{(8,6)% + £2 sin2(9/F) (3,4)2} . (5.69)

However, if we define a ''covariant derivative'" as

Dug = (3,0)¢ + F sin(9/F)ays , (5.70)

~

it is easy to see from the orthogonality of ¢ and aué [see Eqg. (5.66}]

that
1

(3,002 + 2(a,1)2 > 2(D,9)2 . (5.71)

Finally, if we exclude the pion field from the interior of the bag—in



_75..
line with the simple minded, two-phase picture— the Lagrangian density

is [use Eqs. (5.71) and (5.67) in Eq. (5.60)],

I(X) = (i T4 q-B)oy - L7l T0VS/F g5 4 _;'(Du?)zev X (5.72)

ho|—

By construction we know thar Eq. (5.72) must be invariant under a
non-linear chiral transformation. We leave it as an exercise for the

reader to show that the appropriate transformation is

. I°g
9+q-135ys5q,
¢+ ¢+ ef + £exd) x¢l1-(¢/Fycor (/)] , (5.73)

and the corresponding, conserved axial current has the form
- - £2 .
AM = g yMys ©/2 q 8, + {feake + 5 3% sin(2¢/)}eg . (5.74)

(The latter is easily obtained by direct substitution for mand ¢ in
terms of ¢ in Eq. (5.11).) For completeness we also give the expres-
sion for the conserved vector current which, by analogy with the dis-
cussion of the o-model in Section 4.4.2 [Egs. (4.49) and (4.50)], arises

from the invariance of Eq. (5.72) under the transformation

¢ > ¢ - Bxg . (5.75)

It is
VM = g yHT/2 g 6y + J2(9/F) (¢ x 3Hg)ey , (5.76)
with jo(¢/f) the s~wave spherical bessel function (jo(x) = sinx/x).

The corresponding non-linear field equations were written down by
Jaffe '"in their full non-iinear ugliness', to emphasise that "if no
sensible approximation scheme exists the situation is hopeless''. We do
not repeat those equations here, but simply summarise the r;sults of

the perturbative solution of the classical problem. The small
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parameter in the expansion is taken to be (¢/f). Then to zero'th order
only the quark fields are non-zero and we have the MIT solution (qo).
To next order we have to solve the free Klein-Gordon equation for a
massless pion field outside the bag
v2 ¢1(r) =0, r=R, (5.77)

subject to the boundary condition

3 i =

3 01(n) = 5% 9, (r)yst gor) , r =R (5.78)

This is exactly the phenomenon we observed earlier, that the discontin-
uity in the derivative of the pion field compensates for the source of
axial charge due to the quarks at the surface of the bag.

Equations (5.77) and (5.78) are easily solved, and we obtain

o 2 .
:_]Li_'i.) =g (5) Ean ’ r =R, (5'79)

Thus, as we advertised below Eq. (5.62), e measures the strength of the
pion field at the bag surface. Using f = 93 MeV and gp = 1.24 we see
that for the typical MIT bag rqdius, R~ i fm? ¢ is about 0.2, and one
would expect this perturbation expansion to work very well. However,
for a "little bag" (R~ 0.3 fm) e would be about 2, and perturbation
theory useless.
In order to be consistent in the classical scheme one must calcu-
late the first order correction to the quark fields as well,
9o * Qo * € G * 0{e?) . {5.80)
The correction q; must be calculated from the equations
$q =0, r<Rk,
(iysr-1)gq; =31 o*r ys 9, » =R, (5.81)
in order to consistently obtain the Towest order corrections to the

energy, axial coupling constant and so on ...
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E=E, +e E + 0(e?) ,
g, = 95°) + e gfl) +0(e?) . (5.82)

For example, Jaffe obtained the result
-39a¢
f1 = or 2 %% T (5.83)
)

where for an N~quark bag of total spin §, and isospin I{with all quarks in the

same spatial state),

<X oiey Tiomy> = W2+ 120 - bS(s41) - AT(+)) . (5.8ka)
1y
(Actually Eq. (5.84a) isconlycorrect for N=3, when the colour wave function is

totally anti-symmetric. For example, when N=6 one finds instead (Mul+82)

<D gitgj 111 > = 20N = N2 - bS(s+1) - AL(1+1) , (5.84b)
i,

which implies somewhat smaller pionic corrections.)

There are several satisfying features of this classical treatment.
‘None of the major features of the MIT bag model are altered much. For
example, Eqs. {5.83) and (5.84) give changes in the N and A masses by
~100 MeV and -65 MeV respectively (for R~ 1 fm) (Jaf 79). In addition
the pion current also ;ontributes to the magnetic moﬁent of the hadron
(BH 80). Indeed, Myhrer and collaborators have recently shown (using
the classical approach stil}l) that not only are the proton and neutron
moments improved by the addition of pionic corrections, but that the
A magnetic moment also comes out rather well (Myh+ 81). We shall not
discuss the calculation of magnetic moments further here as the most
extensive investigations have been carried out in the cloudy bag model,
which will be discussed in Section 6.

On the other hand the model proposed by Jaffe does raise some prob-
lems. We recall from Section 3.3 that the correct prediction of the

axial charge of the nucleon, gp, was a major triumph of the MIT bag.
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Once the pion field is included, however, there is a contribution to
3(5) from the gradient of the pion field—see Eq. (5.74) which to first
order in ¢/f is simply

A0 = 9x) ¥rs /2 alx)8y, + F Vg(x)ey . (5.85)
Now if the pion field were not excluded from the bag (by 87) the integral
over 3@ could be converted to a vanishing surface integral.* In the
presence of 6y there remains a non-vanishing contribution from the in-
tegral of the pion field over the bag surface. As verified by a number
of groups this surface contribution from the pion field increases the
overall value of g, by a factor of approximately 3/2 {Jaf 79, BH 80,
Ven+ 80). Thus the hybrid bag model gives a value of gy very close to
the 5/3 of the '"good old {non-relativistic) quark model!'—a retrograde
step to be sure. Further investigation of higher order corrections
only makes the situation worse, with ga rising above 2 (Hul+ 81).

Quite apart from the disaster for g one might expect to find some
contribution to hadronic charge densities from the pion field. Unfortu-
nately the charge density involves the time derivative of the pion field
which vanishes in the classical limit,

Finally, classical models of the type considered by Jaffe offer
little connection with nuclear physics. Indeed Jaffe seemed to feel
that the hybrid bag models, although an entertaining sidelight to ser-
ious physics, were rather sterile. To quote directly, "it should be

clear to the reader that hybrid chiral models are of limited. theoretical

oo
The astute reader may have observed that this is not actually true in

~2 and hence there is a con-

the case of massless pions because ¢(r) = r
stant contribution from the surface at infinity. However, for any finite

pion mass {no matter how small} this will vanish.



o

. 79 -

interest. They are entirely ad hoc ... and restricted to the low energy regimet!

We have taken a rather different and far more optimistic point of
view. It seems to us that understanding the transition to the Goldstone
realization of chiral symmetry will be an essential step in the solution
of the QCD equations. Moreover, as we shall demonstrate, one particular
hybrid model, the cloudy bag model (CBM), overcomes all of the ocbjections
raised above, while retaining the positive features. Most significantly
for the present reviewit goes further, offeringa basis for optimismin low and
medium-energy nuclear physics which has simply not been conceivable
before. The CBM will be introduced in Section 5.4 and its applications
for hadronic properties described in Section 6. First, however, we
summarise some of the other attempts to deal with pion-bag interactions.
5.3.4, Other bag model calculations

As we have already remarked, the first in what we may regard as
modern investigations of hybrid bags after Chodos and Thorn was the
work of LeRoy (LeR 78). He used the Chodos-Thorn surface coupling to
estimate the strength of various B'Br couplings. This was then com~
pared with the more conventional Meiosh analysis (Mel 74). |In spite of
the simplicity of this first analysis of a wide range of decays in the
bag model, rather good qualitative agreement with experiment was ob-
tained. For the specific examples of the nucleon and delta we shall
see in Section 6 some of the corrections which would need to be incor-
porated in a more detailed investigation.

The first studies of the effect of pion coupling, dictated by
chiral symmetrry, on hadronic properties were those of Brown and Rho
(BR 79) and Barnhill et ql. (Bar+ 79). As Jaffe demonstrated at length

{Jaf 79) neither of these works gave a fully consistent set of field
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equations for the coupled quark-pion system. In particular
Barnhill et al. omitted the first order correction to the quark field
[g; in Eq. (5.80)] caused by the non-zero pion field. This actually
leads to the wrong sign for the first-order correction to the energy
[E; in Eq. (5.82}]. We have already shown above that the later Stony
Brook work on the hedgehog.was based on a suitablie hybrid extension of
the non-linear og-model.

Several other groups have used essentially the linearised version
of Jaffe's equations in redoing the MIT spectroscopy for low-lying
states (Cot+ 80, McM 81, Myh+ 81, Thé B2). Although the details of
these fits vary a little, the overall conclusion is that there is no
difficulty refitting the mass spectrum with pionic corrections. |If
anything, there is some improvement.

In concluding this section we note that there have been a number
of other attempts to deal with pion coupling to the MIT bag which have
not been motivated by considerations of chiral symmetry. f[n the sénSe
that it is a non-perturbative treatment the work of Weber (Web 80,

Web 81) is probably the most closely related to our present discussion.
This will be treated in more detail in Section 7 {on the N-N force).
Both Duck (Duc 76) and Weise (Wei 81) attempted to calculate the pion
emission perturbatively., It is interesting that Weise also finds the
pions to be predominantly created in the surface region of the bag.
what is perhaps remarkable is that the coupling even has the right
order of magnitude. We look with great interest for future work which
might indicate why low order perturbation theory should yield sensible
numerical results in the region where confinement {quark reflection)

is occurring, and the effective ggq~gluon coupling ac Is varying rapidly.
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In comparison with these father ambitious calculations the hybrid
bag models in general, and the CBM in particular are more phenomenological.
On the other hand, chiral symmetry is imposed as a crucial guide in con-~
structing the theory, and one is in that sense not compelled to rely on
perturbation theory in the bag surface which is not an asymptoticaliy
free region.

5.4. The Cloudy Bag Model

The starting paint for the development of a model of hadron struc-
ture of relevance to nuclear physics is the model of Jaffe. As we saw
in Section 5.3.3, even in its linearised form that model had some unfor-
tunate features. The cloudy bag model {(CBM) (Thé+ 80, Tho+ 81, Tho 81,
Mil+ B1) also relies on a perturbative approach. However, it overcomes
all of the problems encountered in Jaffe's model by: (a) dealing with a
guantised pion field, and (b) not explicitly excluding the pion from the
static bag volume. Some compelling, but nevertheless qualitative argu
ments will be given to suggest that not only does this approach yield
good results, but that it may also be the best approximation to the
underlying physics.

5.4.1. The non-linear equations

We have already explained in great detail how to obtain a chiral
invariant Lagrangian density involving only quark and pion fields by
making the substitution {5.63) in the Chodos-Thorn Lagrangian density.
In the case where the pion is not exciuded from the interior of the

static bag volume this yields [c.f. Eq. {5.72)]
. = I — j1» 1
Lix) = (i g8 a~B)oy - 5 g e'" o5/ o + 7(0,)2 . (5.86)
All of the formai results of Section 5.3.3 hold and need not be re-

peated here. (The covariant derivative, Dy¢, was given in Eq. (5.70).)
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The only change is that wherever By appeared in Section 5.3.3 it
should be replaced by 1. If an explicit symmetry breaking term,
~1/2 mé ?2, were introduced in Eq. {5.86) the axial current of the model
[c.f. Eq. (5.74)]

_ A 2 i
AV = g yHys T/2 q By + [F ¢ olg + %— 3V sin(2¢/f)] (5.87)

would satisfy the PCAC condition

BuAf = ~f mZ2 ¢ + 0(¢?) . (5.88)

5.4.2. Pilons ingide the bag?

None of the hybrid bag models which have been developed so far have
really constituted a dynamical description of the process of pion emis-
sion. [t is difficult enough to believe that the static MIT bag model
itself, with its rigid, spherical boundary is more than a mathematicaliy
convenient idealisation of a real hadron. However it is impossible to
believe that the boundary remains static and unperturbed by the creation
of a pion with several hundred MeV/c momentum. Thus the very concept
of interior and exterior, which was taken to be sacrosanct in the models
discussed in Section 5.3, is by no means clear cut.

A useful model to consider at this stage is the soliton bag model
discussed in Section 2.3,2. There we saw that with a suitable interac-
tion between an effective o-field and a fermion field it is possible
for the fermions to dig themselves a "hole'" (or bag). Within the hole
the vacuum would be simple, with the expectation value of the o-field
very near zero. Outside the bag, where qq is zero, the o-field has a
non-vanishing expectation value. The transition region between these
two extremes is the bag surface. It has been shown that results very
similar to those of the M!f bag model can be obtained for a variety

of parameters and surface thicknesses (GW 82).
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Suppose that a ah pair is produced by some perturbative interaction
in the surface of such a bag. This pair could also start to dig a hole
and eventually move into the vacuum as a new particle, as illusrrated'
schematically in Fig. 5.3. !t is clear that creation of sucﬁ a pair
could occur anywhere inside the bag, although our ideas of asymptotic
freedom suggest it would be most likely in the surface where the effec~
tive value of ag is growing rapidly.

Of course this sort of pair creation process in a cavity has been
studied other ways {MV 81, CH 81, DG 77) and such pairs are referred to
as ''sea quarks''. Usually such pairs are treated like exchange current
corrections in nuclear physics with the quarks being put in cavity
eigenstates, rather than exhibiting any coherence. DeTar (DeT 81)
suggested, without much conviction, that one might be able to treat
pairs with pion quantum numbers as though they were coherent—in that
way deriving a model identical to the CBM (Thé+ 80). However, the
essential justification for such a procedure can come only from dynami-
cal symmetry breaking (DSB)—in particular a model such as that pro-
posed by Goldman and Haymaker (GH 81, HG 81). If their idea (see Sec-
tion 5.1) that short-distance one-gluon-exchange suffices to bind a
qgq pair with pion quantum numbers (thereby producing DSB and a Goldstone
boson} is correct, then it would be essential to treat such pairs
coherentiy—even inside another bag!

Thus it should be clear for a number of reasons that the insistence
on excluding pions from the interior of a static, spherical MIT bag
is not only an unreasonable simplification, it may be wrong. On the
other hand, it is clearly an approximation to treat the pion as a free
particle through all space, as we assumed in writing Eq. (5.86). A more

sophisticated treatment would perhaps involve the expansion of the pion
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field in eigenfunctions of some effective potential. Nevertheless, incor-
porating exact chiral symmetry and the concept of D$B, the CBM seems, a
priori, to be a good place to begin.
5.4.3, ILinearisation of the CBM equations

If the discussion towards the end of Section 5.1 did not make it
clear let us stress again fhat it will only make sense to write down a
hybrid model if the problem to be examined is one where the internal
structure of the pion can reasonably be ignored. 1In this sense we are
making a long wavelength approximation from the beginning. Therefore
we must agree with Jaffe that either perturbation theory about the
usual MIT solution is adequate or we should attack the problem in a
different way.

As it stands, the lLagrangian density in Eq. (5.86) is probably not
renormalisable., However, if it could be generalised to include the
internal structure of the pion there would be a natural mechanism for
cutting off higher order terms. This is a challenging problem for the
future. For now, bearing all of these arguments in mind we have chosen

(1ike Jaffe) to deal with small fluctuations in the pion field about

the point ¢ = 0. In that case we find the simplifications
I i
5 (D,4)}? + 5(3u¢)? (5.89)
F— ipe I — i —
~5 q el Ts/F g6, > -5 T ads - 5 dvs T A S5 (5.90)

in Eq. (5.86). The resulting Lagrangian density {Thé+ 80, DeT 81)

.= 1 — 1 1
Leamix) = (i T 5 q-Be, - 5 g ass + 3(3,0)% - 7 mf ¢?

will be treated in greatr detail in Section 6.
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It will be an essential part of the discussion in Section 6 to show
that the hadronic states resulting from Eq. (5.91) do not contain large
multi-pion components. As long as perhaps one or two pions dominate,-
the large Compton wavelength of the pion ensures that the internal struc-
ture of the pion can be neglected, |f on the other hand we find that
there is an appreciable probability of finding, say, four or five pions,
the distance scale of 5 mz!~(0.1-0.2) fm would simply make nonsense of
our long wavelength approximation. This is also the reason why we
oppose the inclusion of vector mesons as an explicit component of the
hadronic wave function—such heavy qq pairs are best treated as sea
guarks. (Thiswill be discussed further in Sections 6 through 8 because
it impacts severely on the conventional description of nuclear physics!)

Fortunately, we shall find that over a wide range of bag sizes a
perturbative expansion in the number of pions converges extremely
rapidly and the linearisation and long-wavelength approximation do pro-
duce a consistent solution! Indeed we shall show that Eg. (5.91) con-
stitutes a renormalisable theory of bare bags coupled to a pion field
within which the renormalisations are not only finite but small. For
example, the bare NNt coupling constant is within 10% of the renormalised
value for any bag radius greater than 0.8 fm,

In motivating the present model rather than those considered in
Section 5.3 we noted that the CBM would overcome all of the problems
connected with the classical model of Jaffe. Hopefully it is obvious
that as there is no exclusion of the pion from the bag interior there
is no surface contribution to gy from the pion field. Thus in lowest
order the good bag model result that g is 1.09 is retained. Of course

we have a Goldberger-Treiman relation and gy will be renormalised in
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exactly the same way as the NNm coupling constant. However, as we re-
marked above, such renormaiisations are small in the CBM. Incidentally
it is interesting to contrast this beautifully simple picture of PCAC
and the fact that ga is near one with the classical version described
in Section 4. In the CBM g is near one because that's what three con-
fined, relativistic, massless quarks give. The renormalisation is
small because the cavity containing the quarks is large and low order
perturbation theory in the pion field makes sense!
S5.4.4. An alternative formulation

The implications of Eq. (5.91) for pion-nucleon scattering, partic-
ularly in the P33 channel, will be discussed in detail in the next
Section. However, it is worth noting at this stage that the one dis-
appointing feature of the CBM Lagrangian density is that there is no
obvious€prediction for low energy pion-baryon scattering. One of the
triumphs of the soft;pion ideas of the late 60's was the Weinberg-
Tomozawa relationship (Wei 66, AD 68). That is the prediction that in
a chirally symmetric world the scattering length for a pion on any

target of isospin T., with total isospin T, is exactly
ay 2 My -
at = (g/2m)2(a) o (1= me/me) " HIT(TH1) = T (Te+1) = 21, {5.92)
i

where (g/2m) is the pseudoscalar NNm coupling constant and m¢ the tar-
get mass. Thus, the scattering length is purely isovector in the soft-
pion limit. Much of the popularity of the non-linear sigma model in
fact followed from Weinberg's proof (Wei 67) that it provided a con-
venient dynamical framework which incorporated Eq. (5.92) explicitly in
an effective Lagrangian.

It is possfbie to make a unitary transformation on the original,

non-1inear Lagrangian density (5.86) in such a way that the Weinberg-
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Tomozawa result appears explicitly (Tho 81(b)). However, the price is
a redefinition of the quark fields which essentially get dressed by the
pions. Only one of these wwo quark fields can be canonical and one must
make a choice.

To be specific, consider the new quark field q,, defined by the

transformation

q+qw=5q, (5-93)
q+>G,=95 , (5.94)
with
s = exp(i T-¢ yg/2f) . (5.95)
Then éf(x) becomes
L) = (i3, s* 5% q,-Ble, - %-—ngss + %(DMQ)Z : (5.96)

(As usual the explicit, symmetry-breaking pion mass is omitted, but it
can of course be put in with no change in our argument.) The % in Eq.
(5.96) acts both on st and q,> so it is convenient to separate the two

pieces with the result

Jﬁ(x) = (i a@ 3 q,-B)o, - %'ahqwés + %{DUQ)Z

+ 74, Y™ ils 8, sTae, . (5.97)
(We have used { YH,y5} = 0 to change S$*tyH to yHsS.)
At this stage there is an extremely useful identity which appears

in a paper by Au and Baym (AB 74):
5 3, ¥ =f1 dx s 3y, (an s*)(s*)N . (5.98)
C

The essential feature of Eq. (5.98) is that the logarithm reduces

exp(i 1-¢ vs/2f) to a form linear in ¢. We leave it as a fairly

straightforward algebraic exercise using Eq. (5.98) and
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S = cos{¢/2f) + i I‘$ vs sin{¢/2f) , (5.99)
to prove that
‘ * Y f —1 -~ ~
i s, st= -2—12 T+D,¢ + [3"—5-%/—)~—] T+ ($x3,8) - (5.100)
Thus, if we define the covariant derivative on the quark fields as
b -y _ dcos(¢/f)-1 (5x3. ) (5.101)
u %9 T %y Qv L 2 T ¢Xau¢) Qu » 5.

the transformed Lagrangian density takes the form
ir . = ] — ] 2
cem(x) = (i q, P q, - B)&y - 7 Gwaws +'§(Du?)

E]?EW Yys 7 g, (Dugle, - (5.102)

+

Clearly the surface coupling of the pion has been transformed into
volume pseudovector coupling. This is exactly what one expects from
current algebra considerations (AD 68). At k = 0 the strength of the
coupling is simply related to the axial charge of the bag state

Vi fyng/mg = gp/2f . (5.103)

The Goldberger-Treiman relation is thereby made explicit. |t has been
proven by Betz (Bet 82} that the form-factor associated with this NNx
vertex is identical to that in the first version of the CBM, namely
3j1(kR)/kR——see Section 6.1 for details of the NNm form-factor. Thus
both versions are identical in all predictions associated with single
pién emission and absorption.

To illustrate the consegquences for s-wave pion scattering from a
bag let us consider the zero energy limit and as suggested in Section
5.4,3 work to lowest non-trival order in ¢. Then the covariant deriva-

tive on the quark fields [Eq. (5.101}1 leads to an interaction term

quadratic in the pion field,

L) = iz (G VT2 al (9x208) by - (5. 104)
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But the term in square brackets is just the isospin density of the bag
target [see Eq. (4.26)] and (¢x3,¢) the usual pion isospin density. For
pions of zero three-momentum, ¢x9,¢ is independent of x, and integra-

ting Eq. (5.104) to give the matrix element of the Hamiltonian between

pion states of zero momentum
Hg = -fd3x is(x)

= Teetg/2F2 , (5.105)
in an obvious notation. Thus, to lowest order we obtain a general
relationship for pion scattering from any hadronic bag {except another
pion!) which is identical to the Weinberg-Tomozawa result, Eq. (5.92).
(To see this, use the Goldberger-Treiman relationship (5.103) and the
familiar equivalence of pseudoscalar and pseudovector coupling con-
stants g/2m = Vhn fyyn/mp.) This result has been obtained independently
by Szymacha and Tatur (ST 8i}.

Thus the alternate form of CBM Lagrangian density (Tho 81(b))

, = P — 8 —
Kipu() = (1 Gy B 9= 8)0y - 7 Guauds ~ ¥z Gw TVT G * (700)

] 1
+ 5F Gy YHys T g, 3,0+ 5(3@)2 -3 m ¢Z , (5.106)

~

incorporates both major results of the current algebra for low energy
pion scattering and generalises the Weinberg Lagrangian (which applied
to the NNm system only) to any hadron describable by the MIT bag model.
Furthermore, with the cautions given in the next section, rather than
being used simply as an effective Lagrangian it defines a renormalisable
theory of strong interactions—thereby permitring the systematic cal-

culation of higher order corrections.
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6. APPLICATIONS OF THE CLOUDY BAG MODEL

At last we have established the chiral-bag formalism, and can begin
to apply it to cases of physical interest. Our starting point will be
the linearised version of the cloudy bag model given in Eq. (5.91).
Essentially all of the applications so far have relied on the linear
coupling of the form BfBm, and as we have remarked the alternate form of
the Lagrangian density, Eq. (5.106), would give identical results. On
the other hand, if one is concerned with s-wave w-7 scattering, or re-
actions like (w,2w) it would be necessary to retain terms of higher
order in ¢. In that case, as we have already seen in obtaining the
Weinberg-Tomozawa relationship, it is most fruitful to simply go to
higher order in the expansion of the alternate Lagrangian density (5.102).
For example, to 0(¢3) there will be an explicit term describing
m+B->mw+ 7+ Bf, which arises from the pseudovector coupling te the
axial current (KE 81, Tho 81b).

The natural first step in making practical calcuiations is to ob-
tain a Hamiltonian from the underlying Lagrangian density. This
Hamiltonian can be written entirely in terms of bags with the guantum
numbers of observed particles, rather than in terms of quarks. At
that stage the theory will Took very much like the starting point for
many calculations in medium energy physics. To first order, what we
have gained is a microscopic understanding of the high-momentum cut-off
in the theory, and relatio%ships between the relevant coupling constants.
Looked at in more detail, we shall see that the model is conceptually
quite different, and the difference should have important” consequences

for our understanding of nuclear physics—particularly at high density.
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6.1. A Hamiltonain for Low- and Medium-Energy Physics
The linearised CBM Lagrangian density, Eq. (5.91), breaks very
nicely into three separate pieces
Leam() = Luyr(x) + L) + Linex) (6.1)

where 5fMIT was given in Eq. (4.1}, éfﬁ describes a free pion field

1 1
i'{r = E(auQ)Z - Em% @2 ’ (6.2)
and
5fint = ‘fgla YsT Q*¢ &g . (6.3)

Without af;nt, which was dictated by chiral symmetry, the theory would
describe stable MIT bag states, and free pions.

Once gluon degrees of freedom are included in é(MIT only colourless
states have finite energy.* Our emphasis in this review will be on
baryon structure and interactions, although simitar ideas could be
applied to the heavy mesons. Thus we are naturally led to consider first
colourless bag states with baryon number one. These will contain 3q
{three quarks), kg-q, 5q-2q and so on. In view of the success of the
bag model in describing the low-lying baryons without exotic components,
it is reasonable to divide the .space of baryon number one hadrons into

o pieces (P+Q)

P = ‘§ : |o><al (6.4)
g=non-exotic
baryons

Q=1-P. (6.5)

*For pedagogic simplicity our discussionrhas ignored the role of gluons
in the MIT bag model, except where they are absolutely essential—as in
Section 3 for hyperfine splitting of hadronic levels. Nevertheless any
realistic calculation must include the gluons. Since they play no role

with respect to chiral symmetry they will only appear in JfMIT'
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That is, P is a projection operator onto non-exotic¢ bag states such as
N, 4, R (the roper resonance) etc. The wave functions for these states
are simply the usual bag-model SU(6) wave functions—see for example

{3.13) for the nuclieon. The unit operator | refers to the space
of B=1 bag states, and Q is a projection operator onto exotic states.

Formally, the inclusion of corrections arising from coupling to
the Q-space is equivalent to evaluating the lowest order sea quark cor-
rections. Such corrections have been shown numerically to be rather
small (MV 81, CH 8%, D& 77), so for the present purposes we shall neglect
off-diagonal terms connecting P and Q. In that case the Hamiltonian

obtained from éfMIT in the canonical way is simply (Thé+ 80)

HM|T = fdax Tﬁ?]’(x) N (6.6)

where the energy-momentum tensor (THV)

{x}
TM]T(X) = %g—':)—— (3Vq) - g"V iMIT(X) . (6.7)

Explicitly this gives a bag model Hamiltonian

8
HHIT = j'dg'x[a(-il‘z)Q"'B“}";_Z(Egpsg)]dv . (6.8)
a=1 :

However, the states o are eigenstates of Eq. (6.8) with masses méb),

where the superscript meaps '‘bag''. Thus we obtain

Hyyt = P Hyyp P

= :E:|u> méb) <al . (6.9)
o
In terms of more conventional second quantisation this can be written
Hyit = D ata mlP) (6.10)
<

where o creates a three-quark bag state with the quantum numbers of N,

A, R, etc.
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(There is one rather innocent assumption implicit in the last step,
namely that two different bag states o and B, with different masses, .
are orthogonal. Unfortunately this is not completely correct in the
naive bag model, because the radii of those wwo bag states will not be
exactly equal —as a result of the non-linear boundary condition. Never-
theless one expects on physical grounds that the orthogonality must
hold in a more sophisticated formulation, such as the soliton bag model,
and we simply impose it here.}

In the canonical way we also obtain the Hamiltonian for a free

pion field corresponding to Eq. (6.2) namely,

|

Hy = 5

d3x ((9,0)2 + (79)2 + m2 $2) , (6.11)
with ¢ the quantised pion field

— ikox 4 -‘ikox

dk .
¢i(§) = (2n)73/2 TEGE?ﬁ?E{aki e'ZZ+a; e 22y . (6.12)

The creation and destruction operators obey the usual commutation re-

iations,
lagi» 2’31 = lagis agrjl = 0
lais agrj] = 855 slkk?) . (6.13)
Aftér normal ordering, Eq. (6.11) takes the rather simple and familiar

form

HTT = Z‘/(.:ii(_ Wk a-l_'(-i aki . (6.]’-})
n —_ - —_

Finally, and of course this was the whole point of the exercise,

there is an interaction term

P Hine P = o 3o fadx<[T0reldvs a6 fessy 8% . (6.15)
: o, B

Using the expansion {6.12) for the pion field, and assuming static,

spherical bags of equal radii [86¢ = 8(x-R)], Eq. (6.15) becomes



PP = (2m) Y2 D ./QE(VE? ga 3y +hee) ,  (6.16)

a,B,Ii

where h.c. denotes hermitian conjugate and

Vi = #Wﬁ3x X (xR Bla(x)Tivs al¥ [e> . (6.17)

Thus, as promised, all B'Bm couplings can be calculated in terms of
the pion decéy constant, f = 93 MeV,
6.1.1. The NNm pertex

To see what is involved in Eq. (6.17) let us consider the NNm ver-
tex in this theory. In that case the spatial orbits of all quarks in
the initial and final hadrons are the same, namely ls;/5. The spatial

portion of Eq. (6.17) is therefore [from Eqs. (2.33) and (2.34)]
2

-— Nl -1 .. . A
a1,-1(x) vs ay,-1(x} |, g =~ 210 )y (Wlorr

[

= Y R O (6.18)
and we have used the fact that the surface &-function restricts the in-
tegral to x=R. Using Eq. (6.18) to perform the integral over ccordinates
in Eq. (6.17) we find that

3
NN'_ - i w  j1(kR)

Vi = )™V 2 g iy R s N Y tar 2atkINDeg (6.19)
- a=1

where the sum over a runs over the three quarks, and the subscript s-f

denotes the spin-flavour part of the nucleon wave function. Now we
3

recognise that the combination 2: Ta0s appeared in our discussion of
a=1

the axial current. Indeed, from Eq. (3.38) we know that

3
o S kg = 3 N el (620
a=l1

tet us now define a form-factor uf{k) which goes to one as k=0,

namely

u(k) = 3j;(kR)/KR , (6.21)



and recognise [from Eqs. (3.36) and (3.38)] that

BAG
9A

=2
=3 (6.22)

{w-1)
Putting all of this together we find a very natural expression for the

operator at the NNm vertex,
YE? = ;(2WE)'1/2(QRAG/2f)u(k) AL (6.23)

This should be compared with the usual static interaction (Wic 55, HT 62,

Che 54, CL 55)
vig = 1{m 1202w ) YV 2(f{RE/m)vik) T ok, (6.24)

where féﬁ% is the bare, pseudovector NNr coupling constant whose renor-

malized value is fﬁNﬂ = 0.081 —if the phenomenological cut-off function,
v(k), is defined to be one at k = imy.

If for the present we ignore questions of renormalisation and so
forth, it is clear that the CBM makes a remarkably accurate prediction
for fNNn' Using gy = 1.09 gives a value of 0.23 in comparison with the
observed value of 0.28. However, including the c.m. correction dis-
cussed in Section 3.4.1 (about 20% increase in gp), we find that theory
and experiment agree within a few percent! We shall see in Section
6.2.1 that renormalisation will not significantly alter this success.

In addition to predicting the NNm coupling constant we see that
the CBM provides a very beautifﬁ] explanation for what was previously
an ad hoc high momentum cut-off. The form-factor u(k), which is plot-
ted in Fig. 6.1, simply reflects the fact that the violation of chiral
symmetry, and therefore pion coupling to the bag, is associated with
its surface. Since the bag is far from being point-like there is a

natural cut-off in the theory with a range related to the radius of the
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source, R. Far from being specific to the CBM we expect such a cut-off
to be a general feature of any model which treats the quark structure

of the hadrons explicitly.

6.1.2. The general B'Br vertex

Let us return to the general pion absorption vertex (6.17). If
the hadrons o and B have the same radii it is well defined. But, as
we have already remarked this will not usually be the case because of
the non-linear boundary condition. Nevertheless, the radii of the mem-
bers of the lowest baryon octet and decuplet do not vary by more than
about 10% from the mean value. Thus in computing ratios of coupling
constants we have assumed thar these radii are all equal. (A more satis-
fying procedure would be to use the pseudovector volume coupling des-
cribed in Section 5.4.3 {Tho(b) 81).)

A very basic example of an interaction which is extremely impor-
tant in medium energy physics is the ANm vertex. [n the CBM the pion
induces this transition by flipping the spin and isospin of a guark at
the bag surface (I=1/2, J=1/2 -+ 1=3/2, J=3/2). Figure 6.2 illustrates
some of these fundamental vertices. The form-factor at all such ver-
tices will be the same function u(k) derived above. In the general
case the vertex function associated with the B'Bn process is [from
Eq. (6.17)1,

V'E_;B = —éi—f-(Zwk)"lfzfd3x elk*X §(x-R)<B’ lg(x) x

x 7;v5 q{x)|B> , (6.25)

which can always be summarised as

1/2
ki = '(gl'vf—k) 72689 mpyull) sB'Buk 1B'B (6.26)

In general § and T are transition spin and isospin operators defined by



+1
S= :z: Sm §; ’
m=-1
+1 .
T = Tm m s (6.27)
m=-1

with S, and Ty unit vectors in a spherical basis (Edm 60)
Eil = ;(; e s .9)/5 Py €o = ‘az . (6.28)
The transition spins are given in terms of their reduced matrix ele-
ments, for example,
SB m sg1s
<Sg’ sBr|5m|SB sg> = C (6.29)
Sg 1 Sp¢
and similarly for T,. (For a more symmetric definition, which is not

so widely used, see Dod+ 81.)

The coupling constants appropriate to transitions between all mem=-
bers of the nucleon octet have been summarised in the paper of Théberge
and Thomas (TT{(b) 82) —see also Thé 82. In the specific case that is
of most interest to us after the nucleon, namely the 4, the appropriate

vertex functions are

. \1/2 f(o)

£ - a(z‘*vjk) (fﬂ:“ (k) Sk T; , (6.30)
1/2/g(0)

gt = () (28 v 2 630

where S and T are the transition spins and isospins of Brown and Weise
(sg=1/2, Sgr=3/2) in Eq. (6.29), £ and T are the usual spin-3/2 spin and iso-

spin operators, and the bare coupling constants are in the SU{6) ratios

(0) (0) (o) 72 . 4
e ¢ faNr ¢ faam = 1 iyEE T (6.32)

6.2. The Nucleon

We have seen that the practical effect of imposing chiral symmetry
on the bag mode! is to dictate the pion coupling term in the Hamiltonian.
Thus the physical hadrons will be dressed by a pion c]éud. As we dis-

cuss in the next Section the 4 becomes unstable once the interaction
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with the pion field is turned on and is no longer strictly an eigen-
state of the Hamiltonian. The nucleon must, of course, remain as a dis-
crete eigenstate. Denoting the dressed nucleon as |N> (and the bare
three quark nucleon as |N>) we have
H N> = mylN> (6.33)

where from the discussion in Section 6.1

H = HuIT + Hy + Hine (6.34)
[see Eqs. (6.10), (6.14) and (6.16)].

[n recognition of the central importance of the nucleon in nuclear
physics we shall discuss its properties in great detail. We shall see
that unlike older static meson theories (HT 62), the convergence pro-
perties of the CBM are excellent. Whereas in the Chew-Low model the
ratio of bare to renormalised coupling constants squared was about
three, in the CBM this ratio is within 20% of unity (Thé+ 82)! More-
over the average number of pions in the ''cloud' has been rigorously
proven to be small. The average number of pions of any charge or momen-
tum (<n>) is less than or equal to a parameter, A, which is order 0.9
for a bag radius bigger than 0.8 fm—Section 6.2.1. A low order per-
turbative calculation actually yields <n> = 0.5. Thus the pion *'cloud"
about the nucleon is rather sparsel

Given these excellent convergence properties the calculation of
electromagnetic properties of dressed nucleons {and other members of
the nucleon octet) is straightforward. One is justified in making a
perturbative expansion of the state |N> as ™

a

|N> o 21/2[N> + CIN1T> + c"A-n) . (6-35)

7See also Lhe recent discussion of Bolsterli (Bol 81, Bol 82) who des-
cribes the use of '‘coherent meson pair states'' to simplify the calcula-

tions when first order perturbation theory is not adequate,



- 100 -

Perhaps the most significant observation concerning nucleon electromag-
netic structure in this model is the charge form-factor of the neutron,
Gen. It is discussed at length in Section 6.2.2, where we stress the,
significance of a good experimental determination. In the CBM it is
inescapable that the measurement of the zero in the neutron charge dis-
tribution measures the bag size—modulo surface thickness corrections.

Finally in Section 6.2.5 we note that the CBM has obvious implica-
tions for calculations of nucleon decay—as suggested by grand unifica-
tion. In particular, considerations of chiral symmetry suggest a rather

*10 decay mode.

strong enhancement of the p + e
6.2.1. Convergence properties of the CBM

In this section we briefly indicate how the bounds on the pion
content of the nucleon were obtained. Then we look at the pionic self-
energy contribution for the nucleon. Finally we discuss the renormali-
sation of the bare NNw coupling constant and show that it is small for
two reasons—first because of the rather strong cut-off provided by the
vertex function u{k), and second because of the explicit appearance of
the A,

Following the discussion of Dodd, Thomas and Alvarez-Estrada (Dod+

81) we write the most general solution of Eq. (6.33) as

[Nst> = Z1/2|Nst> + :E: :E: }E: cnlasky .. kyshst) x
r=1

o kl...kn
x (n1)-1/2 azl...atn|u> , (6.36)

where |a> represents a colourless, three-quark bag state, s and t are
spin and isospin labels for the nucleon, and the {cn} are expansion
coefficients. For notational convenience we have also followed the

common practice (Wic 55) of replacing the sum over pion isospin and
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integral over momenta by a formal sum,

E > fome (6.37)

isospin
labels
" Clearly the coefficients ¢, are given by
cn = (n!)"1/2<a|akn akn_l...a1|R5r> , (6.38)
and we can see that it may be useful to define a state ]¢n> by removing

n pions with specific isospin and momentum from a physical nucleon

lop> = (n1)~1/2 akl...aknlﬂsv , (6.39)
so that
Cn = <a|¢n> . (6.1‘}0)

Since the physical nucleon state must be normalised we find
<Nst|Nst> = Z + :f: Pp= 1, _ (6.41)
n=1

where Py, the probability of finding n pions in the physical nucieon,

is

Pho= X ) Zk l<alog>]? . (6.42)

a 1--+Kpn

Now, from the completeness of the states |a> in the single baryon sub-

space, Eq. (6.42) implies

Pn < Z: <¢nl¢'n> = Z ”d’n” z . (6.43)

kl...kn k]_...kn
One can now use the defining equation for |[N> [Eq. (6.33)], and the

commutation relations of the pion creation and destruction operators
to manipulate the expression for ¢,. For example, in the case n=1,
using Eq. (6.33) and the relation

[Hy,ak] = -wk ag , (6.544)
we find
91 = ak1|ﬁ> = (EIN“Wkl'H)-l{akl'Hint]lN:' . (6.45)

However, the commutator in Eq. (6.45) is readily found fromEq. (6.16),

[ag, Hined = )_; (Vi) 8% (6.46)
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In addition, the spectrum of the full Hamiitonian H begins at EN, S0

that (H-ﬁN+wk1) is greater than or equal to Wk, - Thus we have a bound

on Pls ] .
. ¢l 2
P1 < 2 Hortl 2 < Z ‘I'LW%—U_ , (6.47)
Ky 3 ki
and in general one finds {(Dod+ 81)

Py < (n1)"L A", (6.48)

A= ; JJ—%%'—E . (6.49)
1

It is also rather easy to obtain a bound on the average number of pions.

Consider the normalised expectation value of the number operator,

<n> = |} [N>[]-2 <N|:E:a: ak]ﬁ> , (6.50)
k

I IEREE (6.51)
ky

All that remains is to evaluate the norm of the commutator, which
is simply the maximum value of the vector Ck1]w>, with |¥> any normal-
ised linear combination of baryon-number one bags. As shown by Dodd
et al., if we include only N and A states (which we expect to dominate
because of their closeness in mass and radius-~—see Section 6.1.2) A

has the form

(0) \2
_ 57 fNN-n) 3 j‘“’ K42 (k)
A 25 LI"IT( mﬂ (21]_)2 o WE dk ’ (6.52)

where Fﬁﬁ% is the bare coupling constant, and the CBM form factor u(k)

was given in Eq. (6.21). In Table 6.1 we give the value of A and the

0)2 =
N

0.078, as found by Thomas et al. (Tho+ 81) from pion-nucleon scattering.

corresponding bounds on Pn for a bag radius of 0.82, and fé

For comparison we show the results for R=1 fm (the MIT bag radius),

and also a bound for the old static Chew-Wick meson theory., Clearly
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the convergence properties of the model are remarkable, Indeed, this
bound is probably still a little loose, for the calculated values of Py,
P, and <n> in case (a) are 0.35, <0.05 and ~0.5 respectively.

The coupling of the pion field to the bag will of course shift its
energy, as we have already discussed in Section 5.3.3. |In the present
quantised description of the problem, the lowest order self-energy cor-
rections are the single loop contributions shown in Fig., 6.3—for N

and A, For the nucleon this mass shift is
NN _ NN* NO AN
Vk v Vk v
6mﬁ2)= - E - k. - k . (6.53)
T k mMp =N+

This behaves roughly as R™3+5 (Thé 82), and therefore grows rapidly as

the bag radius decreases. With R=1 fm the pionic contribution to the
self-energy of the nucleon is about 200 MeV, which is comparable to the
one~gluon exchange, volume and centre-of-mass corrections. As we men-
tioned,:a number of groups have shown that qufte respectable fits can
be obtained for the masses of the low-lying baryons when this correction
is included—e.g. Myh+ 81, We shall discuss the mass splitting of the
nucleon and delta further in Section 6.3.

To conclude this Section we consider the renormalisation of the
NNt coupling constant. In a theory without anti-nucleons (and there-
fore with no renormalisation of the pion propagator) the renormalised
coupling constant is given by

fi =z £000/z, . (6.54)

The factor Z (usually Z») measures [see Eq. (6.41)] the probability
that the physical nucleon contains a bare nucleon—it therefore re-
duces f{r) from the bare value. The dressing of the vertex, which

tends to increase the coupling strength, is described by Zy. Figure 6.4
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shows the first order dressing of the bare NNm vertex. We see that
the A-bag enters very naturally in this model, unlike the earlier
static theories where only Fig. 6.4(a) would appear (HT 62).

Complete expressions for 2Z; can be found in the article of
Théberge et al. (Thé+ 82). In Fig. 6.5 we show the corresponding bare
coupling constant squared necessary to reproduce the observed renormal-
ised NNr coupling constant squared (0.081), as a function of bag radius.
it is remarkable that for any radius greater than about 0.8 fm, F(°) s
within 10% of f{"}1 This should be compared with the old static meson
theories (HT 62) where, as shown in column {c) of Table 6.1, f(0)2 :
£(r)2 was about 3 : 1. There are two reasons for this dramatic improve-
ment. First, the nucleon is now a rather large object, and the form
factor u(k) cuts off the integrals describing Z. (lterative solution

of Eg. (6.33) implies

vﬁN* vﬁN* '
N> o~ 7V 2| N> - 21/2 m———1N,k> + ————————'A,k> . {6.55
l I ; Wi i, —MpHwy )
so that NN NN N AN
vy oy v "
1. k vk k_ vk
Z '"”Z;[ > “<ma+wk-mn)2]' 59

and we see that the summation term is just the derivative with respect
to energy of the self-energy term sm¢2) —~Eq. (6.53)—as it must be in
general.) Thus Z is typically greater than about 2/3 for R » 0.8 fm,
compared with 1/3 for the Chew-Wick case.

The second reason why £(r) is so close to f{°) is the occurrence
of the A in the vertex renormalisation—Fig. 6.4. To see this consider

first Fig. 6.4(a) which goes like

ANN ~E goﬁ'l'k _o;.g;Tq .U_.';:Tk = %E'S.Tq[;(ﬂ'ﬂ)z'fﬁ:’ , (6.57)
k
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where

Z71 = 1+ agN + ANp AN F Aaa (6.58)
and we have used the commutation relations of ¢ and 1. The factor of
1/9 essentially kills any compensation for the small value of Z in the
Chew-Wick theory. This does not happen for those terms involving an
explicit A. Indeed, if the N and A were degenerate, the ratio of the

four Terms in Fig. 6.4 would be respectively (Thé+ 82)

I

a:b:c: d )\NN:?\NA:}\ANZAAA

(N2 N N2
1 as(m-) . Ié(m) '2°<f-w) . (6.59)

To summarise, the CBM with bag radii greater than about 0.8 fm is

i

remarkably convergent. This convergence arises because of the rapid
cut-off of high momentum components and the explicit treatment of the
A. In fact, we shall see in Section 6.3 that these factors are related;
it is only because of the presence of the explicit A that one can under-
stand pion-nucleon scattering with a strong high-momentum cut-off. In
this light the pessimism of Henley and Thirring (HT 62): " For a long
time it has been one of the main goals of meson theory to analyse the
physical nucleon in terms of the bare nucleon and its meson cloud.
This led to a dead end road ... The reason is that the ... resonant
state of the nucleon is not important for the ground state', should
rather be regarded as a ciue for future development!

In case the point has not been made clear let us repeat it briefly.
We have been led to the remarkable conclusion that if QCD results in
large composite baryons with a structure like the MIT idealisation,
the usual world of so-called "strong" interactions is amenable to

solution by low order perturbation theory!
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6.2.2. The neutron charge distribution

Let us briefly recall the discussion of hadronic charge distribu-
tions in the MIT bag model given in Section 3.1. We noted that since-
in lowest order the neutron bag has three quarks, whose charges sum to
zero, in identical spatial orbits, it has no charge distribution. There
are a number of higher order effects which tend to mix other configura=
tions into the ground state (CH 81, MV 81} but none of these give even
the right order of magnitude for <r2>2h in the bag model.

On the other hand, if we truncate the perturbation expansicn of

the physical neutron wave function in the CBM at one pion we find

|ﬁ> = 21/2|n>4-cwﬁ(5j§|pﬂ—>- \/gln“0>) ’ (6.60)

where |cyg|? is the probability for finding the nucleon to consist of

a nucleon bag and a pion (of order 20% depending on R—Tho+ 81, The+
81). As indicated in Eq. (6.35) there is also a {am> component which
is included in all calculations. However it is much less important for
the charge distribution because the At piece tends to cancel against
a*r™, and the 300 MeV excitation energy of the A also makes the range
of the pion field much smaller. Equation (6.60) shows quite explicitly
that the charge distribution of the neutron in the CBM is a first order
effect of the pion coupling—arising directly from the |pn~> component.

This was first observed by Théberge et al. (Thé+ 80, Mil+ 81).

Earlier calculations in classical models missed this because time deri-

vatives vanish in the classical Timit, and the pion charge current is

~ie(p(x)3 ¢*(x) - % (x)3, 6(x)) ,

9 (x)

6(x) = ($1(x) -1 $2(x))/VZ . (6.61)

Thus one really needs an explicit treatment of the guantum fluctuations
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of the pion field—as in the CBM—in order to see the effect. In terms
of the creation and annihilation operators for pions of specific momen-

tum and isospin Eq. (6.61) becomes (Tho+ 81)

. 2 . . 1/2
0(y) = Zie I DL (X"_k_ P(k-k')x
-I'Il' (?_(_) 2 (2_{1)3 ‘/\d}_(- d.—k_' WK e —_ - ~ X
i,j=1
X (-ai’fﬁ' +'3T,5f)(3j,k + aj’_k) . (6.62)

The calculation of the pion contribution to the charge distribution
then amounts To evaluéting the expectation value of the operator in
Eq. (6.62) in the state (6.55)—i.e. essentially (6.60). The quark
contribution was already explained in Section 3.1.

Since the charge of the proton bag in £q. (6.60) is confined inside
the bag volume (i.e. radii less than R), and the pion field has its
source at the bag surface and extends outside, the model obviously pre-
dicts a positive core and a negative tail. The details are illustrated
in Fig. 6.6. It is clearly an inescapable conclusion of the CBM that
the zero in the neutron charge distribution necessarily occurs at the
bag radius. An accurate experimental determination of Gg, would thus
provide us with a direct measure of the size of the confinement volume!
{(Note that there is certainly no physical significance to the discon-
tinuity of pRL{r) at r=R, it is a consequence of the oversimplification
of the descriprion of the bag surface as a rigid sphere. It is un-
likely that any more realistic treatment would do more than smooth out
the charge density in the surface region without altering our conclu-
sion.}) The r.m.s. radius of the neutron is not strongly dependent on
R, varying from -0.391 fm at 0.8 fm to -0.327 at 1.1 fm (Thé+ 82)—in
excellent agreement with the experimental value of -0.342 fm (obtained

by dropping thermal neutrons on an electron target— Eri 78). Similar

results have since been obtained by DeTar (DeT 81) and Myhrer (Myh 82}.
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0f course the idea of associating the negative rail of the neurron
charge distribution with the process n =+ pn~ is very old—dating back
to the late 50's and static meson theory (HT 62). However, that
approach had two very important problems. First the properties of the
core of the nucleon were unknown. Second, the interpreration of Gg,
was complicated by the presence of the Darwin-Foldy term, whereby a
Dirac parcicle with an anocmalous magnetic moment appears to have a
charge distribution —because of zitterbewegung. Indeed the observed
neutron magnetic moment is sufficient to explain all of <r2>gh {Fol 58,
Eri 78).

In the guark model there is no Darwin-Foldy term. The photon inter-
acts with three confined quarks and the pion. Thus there is no ambi-
guity in the interpretation of Ggy in the CBM and the agreement with
the data both for <r?>Q, and Gg, is highly significant! In conclusion,
let us stress once more the importance of a berter measurement of Gpj
in determining the size of the confinement region.

6.2.3. Further nucleon electromagnetic properties

it is of course of great interest to calculate the other nuclieon
electromagnetic properties, such as the proton charge radius (<r2>2h),
and proton and neutron magnetic moments (up and upn), even though the
pionic contribution is not the leading term there. The calculation of
the proton charge radius proceeds exactly as we described above for the
neutron, except that the bare bag makes a major contribution. Théberge
et al. found a proton r.m.s. charge radius between 0.73 and 0.91 fm
for R between 0.8 and 1.1 fm (Thé+ 82). However, the c.m. correFtion
ro the bég contribution is somewhat controversial as we described in

Section 3.4.1. Without any c.m. correction the results of Theberge
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et al. lay between 0.71 and 0,87 fm. This is still in rather good agree-
ment with the experimental value of 0,836 fm (Nag+ 79). Finally we note
that very similar results have been obtained by DeTar (DeT 81) and
Myhrer (Myh 82},
The pionic contribution to the magnetic moments involves the spa-

tial component of the pion current

Tnl0) = 1e(6()F o%(x) - ¢*(x)¥ 4(x)) , (6.63)
which eventually can be written as (Sal 57, HT 62},
2
3 _-ie eij3fd3k d3k’ 7o+
Il = 2 T S Tz RETR @)
x (aj’g + a}-ﬁ) el (k-k')ex (6.64)

Once again we need to evaluate this operator between nucleon wave func-
tions of the form given in Eq. (6.35)—that is, including both nucleon
and delta intermediate states.

Th; bag contribution itself {(while the pion is ''in the air'') is
also rather interesting. !t is possible for the quark magnetic moment
operator {uniike the charge operator) to induce an N-A transition.

Thus one must compute all of the processes shown in Fig. 6.7. Unlike
the direct interaction with the pion cloud, the core interactions will
have both an isoscalar and an isovector piece., Thus it is not true,
as one can find in the literature, that the pionic contribution is
purely isovector.

Once again the comparison of calculational results with experiment
is somewhat clouded by the uncertainty over c.m., corrections. Never-
theless this uncertainty is smalier than for the charge radii. Includ-
ing the Donoghue-Johnson correction {(DJ 80) wp and up range between

(2.43, 2.78) and (-1.97, -2.07) nuclear magnetons respectively for
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R (0.8, 1.1) fm—Thé+ 82). With no c.m. corrections the corresponding
values are (2.20-2.43) and (-1.80, -1.82) uy. Recalling that the MIT
results with and without c.m. corrections were (2.24, -1.49 uN) and
(1.9 un, -1.26 ny) respectively (DeG+ 75), we see that the inclusion of
pionic corrections has made a tremendous quantitative improvement in
the agreement with data. In particular, the residual discrepancy of
(5-10)% is well within the uncertainties of the calculation—e.g. from
sea quarks, configuration mixing and so on,

In conclusion we make a couple of qualitative remarks about the
role of the intermediate A in these calculations. For the charge dis-
tribution the A; contribution tends to reduce that associated with Nrm.
For example, the proton goes predominantly to n*n and = a**. However,
for magnetic moments the spin of the A is very important. The ¥ cloud
around the n-core obviously gives a positive contribution to the magne-
tic moment. But when the proton with spin-up goes to A% the 4 tends
to have spin +3/2 so that the m” orbits in the opposite direction to
the nt. Therefore, we get a positive contribution. from the pion cloud—
see Fig. 6.8. Again we see that the explicit presence of the A-bag is
rather important for the quantitative success of the model.

6.2.4., Weak interactions

in view of the long development of the ideas of chiral symmetry
and PCAC in Section 4.3 it should be clear that the chiral bag models
necessarily produce an acceptable description of the axial current.

The presence of an explicit pion field means that there is an induced
pseudoscalar term in AM(x). Furthermore, the imposition of chiral
symmetry implies that the relative strengths of the axial and induced

pseudoscalar terms is consistent with the Goldberger-Treiman relation.
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In both these respects the chiral bag modets are, by construction,
superior to the original MIT bag model.

A somewhat deeper feature of the cloudy bag model (CBM} is the
interpretation of PCAC implicit in it. From Section 4.3 we recall that
the correct statement of PCAC is that the dependence of physical quanti-
ties on the pion mass should be smooth. Both this and the nearness of
gp to one are directly related to the remarkable convergence properties
of the model. We demonstrated in Section 5.3.3 that there is no direct
pionic contribution to ga in the CBM—as opposed to those models where
the pion is excluded from the interior of the static bag. In addition,
the renormalisation of gp is identical to that of the NNm coupling con-
stant. But we showed in Section 6.2.1 that the large size of the nuc-
leon bag, plus the presence of the A, mean that this renormalisation is
10% or less for a bag radius of 0.8 fm or larger—consistent with nucleon
electromagnetic properties. In summary, the successful prediction of
ga in the MIT bag model (see Section 3.3) is preserved by the CBM.
6.2.5. Proton decay |

There has been a great deal of excitement in the last couple of
years since it was realized that the beautiful ideas of grand unification
(PS 73, GG 74, Bur+ 78) may actually lead to the decay of the proton at
an observable rate (Wei 79, WZ 79, Lan 81). From the practical point
of view of our experimental colleagues the interesting question is what
are the dominant decay modes—i.e. to what should a detector be sensi-
tive. For someone with a classical nuclear physics background the idea
of E—*e*wo, e*p0, etw being the dominant processes (KK 80, Gav+ 81,

Lan 81) seems absurd! For example, | had always believed that the

point-like nucleon of nuclear text books must carry a large number of
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virtual pions with it—just as predicted by the Chew-Wick static meson
theory mentioned earlier (see Table 6.1). {f that were the case, even
in the "unlikely' event that the small core contains three quarks which
convert to etn® [Fig, 6.9(a)] all those pions in the cloud would be ob-
served too. Thus because of phase space the only decay mode would be
et with many pions.

Because of its remarkable convergence properties the CBM provides
a rather beautiful resolution of this difficulty. Most of the time
the proton consists of a three-quark bag for which the usual calculations
apply. However, there is also a.chance of about one in three that the
physical nucleon consists of a pion in the air with a three-quark core.

* as shown in Fig.

The latter, being off-shell, can decay directly to e
6.9(b). The probability of finding more than one pion in the cloud is
negligibly small as we showed above. Calculations of the process in
Fig. 6.9(b) have been made on the basis of current algebra (Tom 81) and
chiral SU(3)} x SU(3)} (Wis+ 81, Cla+ 81). However, the guestion of pro-
ton structure was not addressed in either of these approaches.

McKellar and Thomas recently carried out a calculation motivated
by the CBM (MT 82a). The pole graph [Fig. 6.9(b)] enhances the matrix
element by a model-dependent factor of 3 to 6, and hence decreases the
proton lifetime by at least an order of magnitude. [Both Tomozawa and
Claudson et al. found a model-independent enhancement )ike (]+gA).].
Thus within the SU(5) model of grand unification, considerations of
chiral symmetry seem to imply both that e™n9 should be the dominant mode
of decay, and that for a unification mass of order 4 x 1014 GeV the pro-
ton lifetime is about 3 x 1029 years (MT 82). The deep mine physicists

can live in hope of seeing dayiight soon!
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6.3. Pion Nucleon Scattering
6.3.1. The P,; resonance

We recall from Section 3 that the A played a role as important as
the nucleon in fixing the parameters of the MIT bag model. Indeed the
colour coupling constant o, was essentially determined from the hyper-
fine splitting of N and A.‘ Once the constraint of chiral symmetry is
imposed on the bag model, leading to the Hamiltonian given in Eq. {6.34),
there is a qualitative change in the interpretation of the A. Whereas
N, A, R and so on are eigenstates of Hy T, once the pionic coupling is
turned on only N (actualiy N in our earlier notation) remains as an
eigenstate of the full H. (Of course the other members of the nucleon
octet should also remain stable under strong interactions.} The A is
sufficiently high in mass that it can decay into Nm, and can therefore
at best be regarded as an approximate eigenstate of the full Hamiltonian
with complex eigenvalue (FP 58, GK 57). In this case it seems most
appropriate to discuss directly the predictions of the CBM for 7N scat-
tering in the P33 channel.

When the first crude calculation of pion nucleon scattering was
made in the original Brown-Rho bag model (Mil+ 80) there was consider-
ab]é concern in the medium energy community about double counting.

That ié, the old Chew-Wick meson thecry, which involves just an NNw
vertex function can generate a resonance in the Pg3 channel (Che 54,
Wic 55). The reason is that the crossed Born graph (u-channel nuclieon
pole) shown in Fig. 6,10(a), produces a strongly attractive, effective

potential in the (3,3) channel

2
b FNNT k 'k vi(k!)v (k) ] )

ve (k! ykiw) = LHTP33("" (6.65)

3 mZ (2w 12w ) 172wy rbwp—w
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where P33 is the usual projection operator onto the isospin -3/2, spin
-3/2 wN channel (Sch 64), and v(k) provides the high momentum cut-off.
When iterated (as in Fig. 6.10(b) and so on), this potential produces
a good description of the P33 scattering phase shifts up to 300 MeV--
with a suitable choice of cut-off—e.g. v(k) = 8(my~k). Such a mode!}
of the P33 resonance is still widely used in the medium energy physics
Jiterature {typified by Physical Review C—e.g. Ban 79, Mil 79, EJ 80)
and is often (somewhat incorrectly) referred to as the Chew-Low model.

The apparent problem with the CBM is that it naturally incorporates
both this crossed graph and a direct coupling to the delta bag [Fig.
6.10(c)] —because both NNm and ANm couplings occur on the same footing.
One might ask whether there is not some double counting, or perhaps
even two A resonances! The answer is simply that there is no double
counting and the pion nucleon t-matrix defined by the CBM satisfies the
Low equétion {Low 55) as it should (Thé+ 80}, Both the Chew-Wick and
direct-A mechanisms contribute to 7N scattering in the (3,3) channel
(and interfere with each other) with a relative strength dictrated direc-
tly by the CBM Hamiltonian, as illustrated in Fig, 6.10. One is no
longer free to arbitrarily adjust the NN vertex function so that the
Chew-Wick mechanism produces a resonance by itself, because the same
vertex function occurs at the ANm vertex (see Section 6.1.2).

To summarise, far from raising problems of double counting, the
CBM provides an explicit and physically well motivated example of an
alternate solution to the (non-linear) Low equation, as discussed by
Castillejo, Dalitz and Dyson (Cas+ 56). Moreover, it provides a pre-
cise answer to the rather confused question | asked Gerry Miller at

the Houston meeting some three years ago (Mil 79):
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"While the Chew-Low model! is a useful model of the P33 resonance, it is
very dated. Since then we have discovered ... quarks etc. In that
model there is unambiguously an elementary A = {qqq) state. ... Is it
not possible that the truth about the nN interaction is that the elemen-—
tary A contributes a short-range piece, while the 7N rescattering .
results in a relatrively long range piece of the interaction? On a more
philosophical level, why must physics be split into two non-overlapping
camps ...1"

The treatment of 7N scattering in the CBM therefore involves solv-
ing the scattering equation

t = (vg+vp) + (vg + va)Go T . (6.66)

Here v, is given by Fig. 6.10(c),
(0)2

FiNn &'k ulktyulk
va (k' ksw) = 41TP33(3m1;; eI 5[ ) (6.67)

where

S5 (w) = (- (w§29-my) - 0O (W)t , (6.68)
and EZ'O' is the sum of all the irreducible pionic self-energy contri-
butions for the A, which do not involve an intermediate Nm state. The
Chew-Wick driving term vg is identical to that given in Eq. {(6.64), ex-
cept that the CBM form-factor u(k} reptaces v(k). Considerable numeri-
cal simplification is obtained by approximating the propagator of the
crossed Born graph as

(w-wk-wkr)‘lfz -Wk:k' , (6.69)

which has been shown by Miller and Henley to be good to ~i5% in the

usual Chew-Wick theory (MH 80). tn that case we find

b PN K7k u(k)ulk)
. - 8 TNNn k'k ulk’}ulk w
Vc(hf,hgw)-_ th33( 3 m% (zwk,ZWk)I/z Wk’wk)

(6.70)

and both vg and v, are separable. Then the solution to Eq. (6.66) can

be written down in closed form (The+ 80).
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Another advantage of the analytic form for the plon-nucleon t-

matrix is that one can very easily see what is involved in the renormal-
isation process., In fact one can expiicitly show that the bare coupling
constants in Eqs. (6.67) and (6.70) are replaced by their renormalijsed
values and the bare nucleon and delta masses get dressed by pionic
interactions—as jllustrated (in lowest order at least) in Fig. 6.3.
The one free parameter of the model is the bag radius wgich can be ad-
justed to fit the P33 scattering data. While the best fit is obtained
with R = 0,82 fm (Tho+ 81), any bag radius between 0.7 and 1.1 fm pro-
vides a fairly good description (Thé 82).

0f course the model we have described is fairly crude. The Q’Bﬂ
vertices have all been calcuiéted for a static bag. Nucleon kinetic
energies have been neglected in all propagators and so on. [t would
certainly be worthwhile to repeat this work using (say) the Blankenbecler-
Sugar equation, with improved vertex functions. In that case one might
be able to pin down the bag radius somewhat more reliably. However,
the essential physics, which is the participation of a relatively large
composite A on the same footing as the nucleon will not be altered.

From the point of view of the bag model it is very interesting to
ask whether the pionic self-energy corrections affect the A-N mass
splitting. To lowest order in the pion coupling (which should be a
rather good approximation for large bag radii®) the self-energy loops

shown in Fig. 6.3 give rise to the following corrections

2 pi
3fNNﬂf°°k“ u2(k) dk . 4 faNﬂj‘“k‘* u? (k) dk 6.71)
mmZ Jo i (Emwiemmy) 3 mmZ Jy wi (E-wiemmy ) )

In(E) =

(which was called Gmﬁz) earlier) and

2 ' 2
fANw‘/"”k” u2(k) dk , 75 fAAﬁf"k‘* w2 (k) dk
A wk(E‘wk"mN) 16 T.fm% A wk(E—wk-mA) s (6.72)

ZA(E) = Bﬂm%

*See, however, the recent discussion of Hoodbhoy (Hoo 82).
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where the "physical" N and & masses are defined by

my = mﬁag + EN(mN) ’
my = mgag + ReZp(my} (6.73)

Whenever the energy denominators in Egqs. (6.71) and (6.72) can vanish
the self-energy becomes complex (corresponding to the width of the 4
for example), and the real part is given by the principal value prescrip-
tion. The difference (mp-my) was used as a fitting parameter in the (BM
work (because the interference with Chew-Wick terms could shift the
resonance position), but in fact the best fit value of 280 MeV is very
ciose té the value one would naively extract from the particle data
book (1231-940 = 291 MeV).

Recalling the CBM relationships between coupling constants from
Eq. (6.32) we see that the first terﬁ }n Eq. {6.71) at E = my equals
the second term in Eq. (6.72) at E = my. On the other hand the Nn
contribution to the A self-energy and the ar effect on N can only be
compared numerically because of the principal value in the former. For
the parameters of Thomas et al. (i.e. R = 0.82 fm, my-my = 280 MeV—
Thot 81) I,(m,) is actually 80 MeV less attractive than ZIp(my). Con-
sequently the QCD splitting of the N and A bag masses is only 200 MeV.
Since the hyperfine splitting due to one gluon exchange goes as 1/R
[Eq. (2.83)] this means one does not need anywhere near as large a
value of o, as in the original MIT work. Indeed o of order 0.3 to
0.% (rather than 0.55—as in DeG+ 75) is sufficient (Thé+ 82). This
is much more consistent with the idea of treating gluon exchange in

the bag in low order perturbation theory.
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Very similar conclusions regarding the N-4 mass splitting have been
reached by Lichtenberg and Wills on the basis of a non-relativistic
quark model (LW 81). They also treated the strong coupling of the o-
meson to two pions in a coupled channels formalism. Once again the
effect of the channel coupling was to reduce the splitting between m
and p required from one gluon exchange. If, as we strongly suspect,
the same result were to hold in a bag model description this would also
be consistent with a smaller value of ac.

in concluding this discussion we note that there is a considerable
amount of loose discussion about the delta. For example, it is often
claimed that the quark model ANm coupling constant (i.e. TaNT =
(72/25) Y2 fypg) s not sufficient to explain the width of the 4. fhat
is, the 8-function piece of Eq. (6.72) contributes only about 80 rather
than 110 MeV to the width of the P33 resonance. However, it should be
clear from our discussion of the CBM that this is not the only contri-
bution to the width. For example, the intermediate pion in Fig. 6.10(b)
or 6.10(e) can also be on-shell. Niskanen has given a rather nice sum-
mary of this recently (Nis 81). It is quite possible that the solution
to the problem of the difference between predicted (Tho+ 81) and extrac-
ted (Arn+ 79) values of the Aam coupling constant raiséd recently by Duck
and Umland (DU 82), may aiso be related to the subtlety of the structure
of the P33 resonance. But in any case this problem deserves more work.

1t may also be a source of confusion to some readers that pro-
cesses such as Fig. 6.10(e), (f) etc., which appear naturally when
Eq. (6.66) is iterated, are not simply incorporated into a renormal ised
ANT coupling éonStant. The answer is unitarity! That is, above the

Nt threshold such terms contribute an imaginary part to the 7N scattering
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amplitude. Any theory which seriously expects to explain the width of
the A must include them explicitly! A similar observation must also be
made about the magnetic moment of the A. The photen can couple to any of
the intermediate pion legs in Fig. 6.10, just as we explained for the
nucleon in Section 6.2.3. For the reasons we have just outlined the
effective magnetic momént of an on-shell A will necessarily be complex.
Tt is absolutely pointless to expect to test so-called ''quark models'
of the 4 magnetic moment without incorporating pionic effects (e.g. see
the rather simple model of Moniz {Mon 82), which could easily be ex-
tended along CBM lines).

We might also make some brief remarks concerning the behaviour of
the A in dense nuclear matter. For example, it is commonly believed
(BP 75, CL 78, BP 79) that the A~ should be an important component of
nuclear matter at the core of a neutron star. |t is very easy to see
that imgedding a A in nuclear matter would severely inhibit the self-
energy contribution involving an intermediate Nm state (Saw 72, Tho+ 80).
Since this term is of order 160 MeV for R = 0.8 fm this can obviously
be a large effect! Of course, the tendency to raise the mass of the &
may be counteracted by the interaction with other nucleons in the
medium. It is not even clear that one can simply Pauli-block the inter-
mediate nucleon once its quark structure is being considered and the
density is high. |In short we shall have to develop a many-body theory
of confined quarks and pions—at least! This will be discussed a little
more in Section 7. For the present we merely note that the internal
structure of the isobar (and the nucleon) may significantly modify our

predictions for dense nuclear matter (Tho+ 80, Dre+ 82}).
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6.3.2. Other partial waves

One of the attractive features of the Chew-Low model was that it
not only explained the resonant behaviour of the P33 interaction but
that it also explained {qualitatively at least) the behaviour of the
other P-wave 7N phase shifts at low energy. It is therefore not un-
reasonable to ask that any theory which purports to replace Chew-~Low
should do as well. For the small repulsive Py3 and P3; phase shifts
this has been established by Israilov and Musakhanov (IM 81).

The Py, is rather more interesting for a number of reasons. This
channel contains the nucleon pole, as a result of which the low energy
phase shifts are negative. However, at about 150 MeV the phase shift
changes sign and rises rapidly through 90° at the highly inelastic
Roper resonance {at 520 MeV). Within the MIT bag model we expect that

the Roper (R) should be predominantly a (1s2,2s) configuration—

LY

although as mentioned in Section 2.4 the MIT bag model is not over-
whelmingly successful for excited hadrons. Just like the A, the R is
stable in the absence of pion coupling. Once the full Hamiltonian is
used R will of course move into the complex plane, obtaining its width
predominantly from the coupling to Nr and Aw. Although the Roper
necessarily involves higher energies, which means that the neglect of
recoil corrections {and the difference in R and N bag radii} will be
more drastic than for the A, Rinat has shown that the CBM can provide
quite a good qualitative description of the P;; data (Rin 81}. As we
have stressed several times the development of the CBM description of
this channel will be crucial in the rather ambitious attempts to develop
a microscopic underStandiﬁg of the prototype n-nucleus system, namely

the pion deuteron system including absorption (Bet+ 82, Tho 82).
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These results combined with the excellent fits to the P33 phase
shifts and the derivation of the Weinberg-Tomozawa relationship in s-
wave mean that the overall description of low energy nN scattering is
in rather good shape.

6.4, Magnetic Moments of the Nucleon Octet

Looked at objectively there is not a great deal of data at our
disposal for testing models of hadron structure. One important
data set which has seen a dramatic improvement in quality recently, as
a result of improved hyperon beams, are the magnetic moments of the
stable hyperons (Ove 81, Lip 81). In view of the success of the {BM
with the nucleon magnetic moments described above it is reasonable to
ask what its predictions might be for the strange partners of the nuc+
leon. This is even more critical in view of the findings of Brown and
co-workers that the I” moment was in the range (-0.54, -0.64}uy (Bro+
80), in comparison with the experimental value of -1.41 + 0.25 UN
(Rob+ 79, Han+ 78) —see also the discussion of Franklin {Fra 80) and
Lipkin {Lip 81). .

It is a rather beautiful feature of the CBM Hamiltonian that there
is very little freedom in the calculation of these magnetic moments.
Equation (6.17) can be used to relate all of the B'Br coupling constants
to that for NNm. The results are summarised in the paper of Théberge
and Thomas (TT 82). Furthermore, once the strange quark mass is chosen—
see Section 2.2.3—the photon coupling to the bag is determined (Sec-
tion 3.2). The calculation involves exactly the same diagrams as that
for the nucleon except that the intermediate bag states (while the pion
is in the air—see Fig. 6.7) must have the correct strangeness—e.qg.

for the I~ we can have intermediate A, I, =, (A,5), (A,z7) and (z,2%)
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baryons. (Such terms were first discussed by Pilkuhn and Eeg from a
different point of view, with quite different numerical results—EP 78.)

The resules of a calculation using the same bag radii and strange
quark mass as the original MIT work are shown in Table 6.2 (TT 82a).
Clearly the overall agreement of the CBM with data is excellent. A more
detailed study of the dependence on bag radius and strange guark mass
has confirmed that this is no accident (TT 82b).

In view of the theoretical uncertainties associated with configura-
tion mixing {1G 80), sea gquarks (DG 77, MV 81) and centre of mass cor-
rections it appears unlikely that a more accurate description of the
data is likely in the near future.” Nevertheless it does seem that the
inclusion of the lowest order pionic corrections does result in a good
overall description. Clearly a definitive experimental result for both
the £~ and 2~ would be most welcome.

6.5. Summary

Qur considerations of chiral symmetry and the MIT bag model have
led us to a remarkably optimistic new Fheory of strong interactions.
There is hope that, once the non-perturbative region of QCD is under-
stood and quarks are confined in bag-like objects, the conventional
strong interactions may converge in low order perturbation theory.

To illustrate this we discussed the renormalisation properties of

the CBM Hamiltonian in detail. It is a remarkable fact that in every

*one might also consider generalizing the CBM to SU{3)) = SU(3)}Rr and
including a kaon-cloud. We chose not to do so because the large mass
of the kaon means there is no longer such a clean separation between
the phenomenology of the bag and the mesonic corfections-—see the in-

troduction to Section 7.
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case where the CBM has been applied, it has either led to better agree-
ment with data than the original MIT model, or in other cases provided
new insight to old problems. The results that we have described strongly
support our belief that the CBM is an excellent model on which to begin
to build a new, unified description of nuclear, medium-energy and high~

energy physics.

Table 6.1

Bounds on the pion content of the dressed nucleon (from Dod+ 81).

cam) camb? Chew-WickS?
fio02 0.078 0.096 0.22
R 0.82 1.0 0.28
A 0.9 0.68 2.16
Py < 0.9 0.68 2.16
P, < 0.40 0.23 2.33
Py < 0.12 0.05 1.67
Py < 0.03 0.009 0.90
<n> g 0.90 0.68 2.16

a)ysing parameters of Tho+ 81.

b)Using M1T radius and value of fﬁ%% necessary to reproduce the
observed renormalised coupling constant FﬁNw = 0.081 —from
Thé+ 82,

C}Bare coupling constant and sharp cut-off from HT 62.
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Table 6.2

Comparison of the predictions of the CBM for the magnetic moments (in

nuclear magnetons) of the nucleon octet— from TT 82a.

CBM Experiment
P 2.60 2.79
n -2.0] -1.91
A -0.58 ~0.61
-1.41 + 0.25
" -1.08
~0.89 + 0,14°
bl 2.3 2.33 + 0.13
g ~ -0.51 -0.63 * 0.04
z0 -1.27 -1.25

APreliminary result from T. Devlins, private communi-

cation {Dec, 1981),

Figure Captions

Fig, 6.1,
Fig. 6.2,
Fig. 6.3,
Fig. 6.4,
Fig. 6.5.

The form factor in the CBM compared with a best-fit Gaussian—
from TT 82.

Pion-baryon couplings which appear naturally in the CBM
Hamiltonian.

Lowest order nucleon and delta self-energy corrections.

Lowest order contributions to the vertex renormalisation of
the NNm coupling constant in the CBM,

Radius dependence of the bare NNm coupling constant necessary
to reproduce the observed, renormalised coupling constant

£2=0.081.



~ 125 ~
Fig. 6.6. The neutron charge distribution hnrzjg(r) versus the radiatl
distance r (shaded area).

Also shown are the quark (Q) and
the pion (w) charge distribution inside the neutron.

The
neutron charge radius is set at one fermi (Thé 82).
Fig. 6.7.

Contribution to the magnetic moment of the nucleon from a)

the quark current, b) and c¢) the pion current with an inter~
mediate nucleon or delta.
Fig. 6.8.

F1lustration of the pionic contribution to the proton magnetic
moment with an

intermediate nuclecn or delta.

Fig. 6.9.

+

a) The conventional mechanism for protron decay to e*n0;

b) the pion pole term which dominates in the CBM.
Fig. 6.10.

Some low order contributions to TN scattering in the CBM—
from Thé+ 80.

0.75

|etkr)]

0.5

%._——

§-...._~

Fig. 6.2
0.25

0.0




rs
P4
- \’/
4 A\
! i
NL NJ Nﬂ NR
{0)
Ve
s
—_
/ >\
L = 0.10 F
NL N Fa¥ NR )
(b) 2 I
fo
V4
e -
s 0.05
/ VA
e 3
N, A Ng r
¢
(c) o )
/ 0.5
/s
P N4
/ P2y
1 IPREERY
NL Fay o NR
{d}
Fig. 6.4
0.3z}
0.24
— 0.6
'®
Z oo08
= [+
[+ 3N =
hond
. —0.08
<
-0.16
-0.24
-0.32 |-
-0.4 L 1 1 1 \ 1 !

0 025 05 0715 10 .25 IS 1.75
r{fm)

Fig. 6.6

oF 09
R (fm)
Fig. 6.5



- 127 -

/’ \\ Il \\
i 3 '
/'-\\ AL
\ L I\
(0}
/i‘ i\"‘\ ///}
’ \\ Y \\ // ’
t 4 Vi
(b} }
i i\ “
7 \\ \\ e ,’/l
L i
(<)
u u u
- "o S D CERR PO
d e* d
L3
n fa
P (g}

\A/ \\ PRt ,’ \\
7N N A ~
[ S — _ e e MNNANAANL
(o) (b} {c}
~
s
\\ P AEEREN yd S TN /
~ / N ’ PR N Vs

-
-

(b)

T



- 128 -

7. TOWARDS A NEW VIEW OF NUCLEAR PHYSICS

th the preceding sections we have attempted to put together a
thorough, and as far as possible, objective review of bag models, chiral
symmetry and the applications to single hadron properties. This task
was made relatively easy by the fact that the successes described in
Section & are the culmination of many years of theoretical efforz. On
the other hand, there have been only a few tentative steps made towards
our ultimate goal of defining & consistent, unified picture of nuclear
and particle physics. |t is our aim in this section to present a
blatantly optimistic view of how this search may go. !f we achieve
nothing more than generating an interest in the nuclear community in
tackling some old problems in a new framework this review will have
succeeded,

in view of the successes of chiral bag models it seems a natural
next step to attempt to derive the properties of many-nuclieon systems
from the same starting point. That is, each nucleon should be treated
as a relatively large quark bag with a rather thin pion cloud. In con-
trast with the conventional models of the N-N interaction we see little
room or necessity for vector mesons. To explain this consider the
early 60's picture of the nucleon anomalous moment. Basically this was
interpreted in a vector dominance model as the photon coupling to a

o-meson which is then absorbed by the nucleon through the interaction

1+K
Lonn = gpNN( ZMV) yToxa)p 13 ¥ , (7.1)
where K,=3.7 is the isovector nucieon anomalous moment (up-ug=1). In

Eq. {7.1) we have shown only the non-relativistic limic of the anomalous

coupling (puo“VqU). if the direct vector coupling {(p,y") to both the
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p and w is also included one has at least a qualitative explanation of
the neutron and proton charge distributions too {Hof 63).

By the mid 60's one had an alternate explanation of up/uy based on
the static quark model {Beg+ 64)}. The 70's saw the refinement of the
harmonic oscillator quark model calculations—still non-relativistic,
but "QCD motivated'!. Also iﬁ the 70's came the bag models, which pre-
dictred Up/un correctly without vector mesons and furthermore (Section
2.5) explained why the non-relativistic quark models worked. Most
recently we have seen the development of chiral bag models, and particu-
larly the CBM, which improved the overall agreement with data for the
nucleon octet without altering any of the earlier successes. Once
again there was no need for vector meson contributions.

In the triplet state the qq interaction associated with one-gluon
exchange is strongly repulsive. Thus, unlike the pion, it is quite
likely that the vector mesons are large {R ~ 1.0 fm in the MIT bag
model —DeG+ 75). Their large mass implies that virtual vector mesons
should have ranges of a few tenths of a fermi about the bag. Since the
sharp bag surface in the MIT model is in any case a phenomenological
simplification, it seems to make little physical sense to talk of vir-
tual vector mesons (with a propagator like (q?-m%)™!) about the bag.

It would be more physically reasonable to treat such terms as virtual
qq excitations in the nucleon bag—i.e. ''sea quarks’. Finally we might
observe that even if one agrees to include vector mesons as a working
hypothesis, the p {for example) could only couple through two pions,
and therefore with a soft form-factor. In that case its effects would

be very small (Nis 81, AT 82).
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The moral of all this is that quite different theoretical pictures
can often reproduce a limited data set. One's preference for a particu-
lar mode]l must be determined not just by convenience but also by the
range of phenomena with which it is consistent. We saw in Section 2.3
that the MIT bag model embodies by construction the concept of agympt0tic
freedom, suggested by deep inelastic scattering, as well as confining
the quarks and gluons. It is consistent with how we believe the solu-
tion of QCD should look. Supplemented with a pion field it also incor-
porates the $U(2) x SU(2) symmetry of QCD. A mechanism has been sugges-
ted by which the pion could develop from QCD as a Goldstone boson
associated with dynamical symmetry breaking. In short the chiral bag
models are consistent with a great deal of data ranging from high ener-
gy electron and neutrino scattering down to static properties like
magnetic moments, They also match our theoretical prejudices. |In the
form described in Section 6, namely the CBM, it is quite straight-
forward to make calculations.

For all these reasons it seems to us absolutely compelling that we
begin the long job of replacing the old meson exchange picture by one
in which the internal structure of the nucleon is taken seriously,.
Naturally for several years it will not be possible to duplicate the
quality of fits achieved over more than 20 years work, by hundreds of
theorists, culminating in the Paris potential (Vin 82). Nevertheless
the rewards in the long term will be great. For example, one might
hope for a new and deeper understanding of nuclear matter and phenomena

like pion condensation associated with high density.
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7.1. The Nucleon-Nucleon Force

Attempts to understand the nucleon-nucleon force have probably
occupied more man-years of effort than almost any other single scientific
problem—except perhaps the creation of better weapons. Through the
application of sophisticated techniqugs relying on analytic properties
of scattering amplitudes, the Paris group has arrived at a remarkably
.accurate description of the N-N force in free space {Vin 82). The claim
is often made that the N-N potential is known to distances of order
0.8 fm on the basis of such calculations. There are some fascinating
questions connected with the analytic behaviour of wave functions and
scattering amplitudes in a theory with confinement (Wol 82). Eventually
one would hope to put together the concepts of QCD and dispersion rela-
tions, However, for the present we simply note that there are concep-
tual problems to be overcome. In particular, in a collision of two
bags of radius one fermi it would appear self-evident that quark degrees
of freedom could be significant inside two fermis,

A number of attempts have already been made to derive a N-N inter-
action from quark models. From the introductory discussion to Section
7 it should be clear that rederivations of heavy boson exchange on the
basis of quark interchange {Web 80, Web 81) do not seem realistic
This does not mean that one will not have effective lsovector-
vector, isoscalar-vector exchanges and so on when two bags overlap.
Jt simply means that {as for the anomalous magnetic moments of the
nucleons) these are better treated directly in terms of quarks. Con-
sequently our discussion will centre on work like that of DeTar (DeT

78-80) and also of Harvey (Har 81).
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There is already enough excellent work on the short range N-N force
in quark models that a full review of that alone would not be out of
place. OQur purpose in this section is merely to outline briefly that
work which we find most promising. Unfortunately this discussion can
not be considered complete.

7.1.1. The short range force in a bag model

The pioneering work in the application of the Mi{T bag model to
the N-N force is that of DeTar (DeT 78-80). Although much of his work
was very sophisticated, involving calculations in a deformed bag, in
fact a major finding was that the deformation made little difference.
One can understand his essential results on the basis of a spherical
bag approximation.

Briefly then it Is supposed that once two nucleon bags overlap
sufficiently they coalesce to form a b-quark bag.* Although it is no
longer correct to think of the quark clusters in such a bag as nucleons,
DeTar was nevertheless able to calculate the total energy of the sys-
"~ tem as a function of the separation between the clusters. The differ-
ence between the total energy of the 6-quark system and two nucleon
masses was compared with conventional N-N potentials. While there is
no rigorous justification for comparing this energy with conventional
N-N potentials, in fact there are many similarities. |In particular
there is a repulsive core of about 300 MeV, which arises from the

colour-magnetic one-gluon exchange interaction.

As mentioned above it would divert us roo much to review DeTar's

work in detail. Instead let us sketch how the calculation would

*The model of DeTar says nothing about the N-N force outside this

coalescence radius.
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proceed in the spherical approximation. That is, when the six quarks
are in the same bag it is assumed to be spherical. (In practice this
gives fairly reliable answers.) Then the left and right clusters have

wave functions

il

9. = 95 - Yu gp ,

gp = Qg + Yy ap (7.2)
where qg is the lsy/, and go (an odd function of z) the lp3/; state in
the same large spherical bag. (From our discussion in Section 2 we
recall that a state with j#1/2 can satisfy the n.1,b.e. only in an
angle-averaged sense.) The parameter p (0,1} determines the average
separation of the left and right clusters. It serves as a variational
parameter in the sense we now describe,

For given p one can calcuiate the parameter §,

o = 2204 o409 q,00 2 0% (.3)

which corresponds to the internucleon distance at large separations,
and in any case serves as a measure of the cluster separation. Given
some value of the Lagrange multiplier C, and a separation &g of inter-
est, one can evaluate

H(C,8051) = <HyjT + C(8-85)> . (7.4)
For fixed C and 6; one can minimise Eq. {7.4) as a function of u. By
varying C, é{(u) at the minimum can be made equal to &§,. The expecta-
tion value of the MIT Hamiltonian at this constrained minimum is called
E(Sy,). By repeating the whole procesé for a new &, one can actually
map out the function E(éo). Note that thié calculation is complicated
by the fact tﬁat for each u, <Hy|7>'can only be evaluated subject to

the n.2.b.c. —so that R can also vary with &, in principle. Fortunately
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the radius of the 6-quark bag is essentially independent of §,—i.e.
aboutr 1.3 fm.

fn Fig. 7.1 we show the value of E(8) calculated by DeTar in a
number of spin-isospin channels. The repulsive core which we mentioned
earlier is clear. However, so is the very strong attraction at slightly
larger separations. The latter seems to be the result of a cancella-
tion that doesn't quite happen. A slight reduction of wc from 0.55 to
0.36 (consistent with the CBM description of the A-N mass splitting—
see Section 6.3.1) essentially kills this attraction without signifi-
cantly affecting the repulsive core (DeT 80).

Given the obvious qualitative similarities between Fig. 7.1 and
conventional N-N potentials it is ravher disappointing that not much
more has been done. The next stage requires some dynamical scheme for
bringing bags togetﬁer, lerting them coalesce and fission again. Un-
fortunately no realistic method of calculating this has yet been for-
mulated. This is certainly a very important problem to resolve.

7.1.2. Bucleon-nucleon force in the wnon-relativistic quark model

In view of the success of the non-relativistic quark model (NRQM}
in hadronic spectroscopy (lsg 80}, it is quite natural to consider ex-
tending it to treat the scattering of two composite hadrons. Moreover,
because the model is essentially non-relativistic, the standard nuclear
technique for scattering of two clusters (resonating group method) can
readily be applied. The group theory is a little more compiicated by
the extra colour degree of freedom, but these details have all been
worked out by Harvey (Har 80, Har 81}. For our present plrposes it
is sufficient to realize that once two composite nucleons overlap, it
is not enough to consider just N-N configurations. There will also be

a A~A component as well as a '"hidden-colour' C-C configuration.
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Harvey's first work (Har 81a, Har 81b), like that of DeTar in the
bag model, involved simply calculating the total energy of the system
as a function of the inter-cluster distance. As we mentioned in Sec-
tion 7,1.1 there is no compelling reason for comparing this with pheno-
menological N-N potentials since the effective interaction in a quark
model would be highly non-local. Nevertheless in DeTar's work this
procedure did produce strong, short range repulsion, and it was there-
fore quite disturbing when Harvey found no such effect. Indeed the
energy of his 6-quark system at zero separation (r=0} was very close to
2my.  The reason for this difference seems to be DeTar's insistence on
having all six quarks in the 1s;/y orbit (s®) at r=0, whereas Harvey
had quite a large s* p? (hidden colour) component. However, it must also be
pointed out that the definition of "separation' in these two calcuiations
is quite different. Whereas DeTar's definition actually means the separa-
tion between peaks in the matter distribution, Harvey's is the distance
between the origins for two sets of basis functions. Thus, '‘zero separa-
tion' may not be the same in the two calculations (DeT 82).

Recent work by Arima and collaborators has suggested an explanation

for this apparent discrepancy {Oka+ 81, OY 80). The essential problem was

aiready discussed in Section 2. That is, the NRQM consists of a one
gluon exchangé potential and a recipe for restricting the space in which
the diagonalisation is to be performed. Furthermore, only the baryon
spectrum with respect. to the nucleon is fitted— the nucleon mass [tself is
put in by hand. Arima et al. {Oka+ 81) used the gquark cluster model

of Oka and Yazaki (0Y 80) with Harvey's Hamiltonian to confirm his re-
sults in the six-quark system. However, they found that if 2% o ex-

citations were included in a variational calculation of the nucieon mass
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itself, then the effective nuclieon mass would be lowered by 540 MeV. In
that case the six-quark system would again be appreciably heavier than Zmy
at r=0—a net repulsion of 760 and 850 MeV inthe (5,T)=(1,0) and (0,1) channels
respectively. Clearly one needs to formulate an unambiguous truncation pro-
cedure that is equivalent in a system of three and six quarks.

A much more sophisticated program, which was begun recently by
Harvey and LeTourneux (Har 81c)ﬁ involves a direct solution of the

Schridinger equation (Lib 77, WS 80).

Hw(x) = Ev(x) , (7.5)
where
ZT +Z ZAAJ r[J‘) ’ (7.6)
i<j a=1

is the NRQM Ham:!tonlan (1sg 80). The radial form of the potential is
a harmonic oscillator
F(r) = Br? , (7.7}

where B < 0 guarantees confinement for a colourless hadron [see Eq.
(2.82)). As usual, the solution y{x} is constructed in terms of a set
of anti-symmetrised cluster wave functions ¢a(595) describing two 3-
quark clusters separated by a distance r,

yix) = Zde bo (x,0) Folr) . (7.8)
The solution of the Griffin:;iil-Whee}er equations (OL 80) for fa(i)
(with appropriate boundary conditions)

Jartaralesn) = € Nara oD V(D) = 0, (7.9)
yields the N-N phase shifts. (The function Ny is simpiy the overlap
of two clusters located at r and r'.)

With the addition of a long range pion-like interaction (for which

there is no compelling theoretical argument in the NRQM!)}, Harvey was

¥See also the very similar, recent work by Faessler and collaborators (Fae+ 82).
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able to obtain quite & good qualitative fit to the 351 N~N phase shifrs,
Significantly this fit reproduced the change of sign at about 250 MeV.
Thus the model clearly does incorporate a repulsive short range inter-
action.

The major advantage of this approach is that one can directly
follow the collision of two clusters without assumptions about the
radial configuration at r=0 (e.g. s® only). There are, however, a num-
ber of fundamental objections to overcome. As observed by Greenberg
and Lipkin the NRQM gives rise to unobserved, strong van der Waals
forces between hadrons—in contradiction with experiment (GL 81). On a
more technical level we have already recorded the ambiguity in restric-
ting the harmonic oscillator 3pace in which the diagonalisation should
be carried out—in the 3- and 6-quark systems. Finally, the treatment
of the quarks as non-relativistic is fundamental to this method. They
necessarily have a mass of about 360 MeV—one third of the average N
and A masses. Thus each cluster has a dynamical mass of 1080 MeV at ali
inter-cluster separations—unaffected by the dynamics. This is clearly
a crude approximation, and as Harvey has observed could be removed only
in atrulyrelativistic treatment, That is amajor challenge for the future.
7.1.3. The long range forece

Unlike the\NRQH where unobserved van der Waals forces occur natural-
ly at large distances, in the naive bag model there is no interaction
at all for non-overfapping_bags. 0f course, the static spherical bag
is an idealisation and in reality one would expect to deal with a finite
surface thickness and surface fluctuations. However, it is probably
reasonable to ignore this fuzziness in first order. Then the only
mechanism for interaction in the region r> 2R is pion exchange. For

this the chiral bag models are ideally suited.
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The first discussion of the long range N-N force generated by
pion coupling at the bag surface was that of Gross (Gro 79). Following
the first paper of Brown and Rho he considered the interaction between
bags resulting from a linear combination of pseudoscalar ()
and pseudovector (1-1) pion coupling at the surface. He showed that
this gave rise to an NNw vertex function

r(q?) ~ j,{qR) + (3x-2)jz(aR) , (7.10)
which reduces to that of the CBM [see Eq. (6.21)] in the case A=l.
Moreover, he observed —as many others have done since—that this form
factor did not alter the radial dependence of the OPE force for r > 2R,
because I'(q2) is an entire function of q2.

If for the moment we suppose that the OPE interaction can bé cal-
culated using the interaction Hamiltonian (6.24), even when two bags
overlap, then the CBM form-factor will cut down the OPE potential for
r<2R. It is interesting to see what evidence there is to suppert the
existence of such a form-factor. Clearly the matter will be complica-
ted by the tendency of p-meson like exchanges at short distance to also
damp the OPE. Nevertheless, by using experimental data to construct
the Fermi invariant amplitudes for N-N scattering (Gol+ 60, BJ 76),
and taking the appropriate linear combination of amplitudes to isolate
the isovector-pseudoscalar pole term, Gersten was able to plick out the
one-pion-exchange contribution (Ger 81). The data are consistent with
a form-factor of the CBM type with a radius between 0.65 and 1.0 fm—
although it is only the initial slope that is determined.

In another attempt to see such effects, Gersten and Thomas {(GT 81)
looked for Spécific partial waves in which the first iterated OPE Born

term was a good approximation to the two-pion-exchange box diagram—
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namely 3D,, £,, 365 and 36,. (One can not consider L too high or else
the form-factor has no effect at all.} Unfortunately the experimental
determination of the 3G; and 3G, phase shifts is not good. But for
both 3D, and €3 a bag radius R~0.8 fm produces a good fit to the data.

However, the fundamental question in all tﬁis is what happens rto
the one and two pion exchange force when the two bags do overlap. More
specifically, how much must the bags overlap before the ‘'Cheshire bag
approximation“* breaks down? It may well be that the answer to this
question is quite a lot! From DeTar's work (Section 7.1.1) we know
that (with ac~v0.36) nothing very dramatic happens when two bags begin
o overlap. Moreover the NNm coupling strength goes as ga/2f, and gp
depends on the spin-isospin structure, not on the radial size of a
hadron (or quark cluster). Finally, as we have argued, the pion is not
excluded from the bag interior (although it may have a somewhat differ-
ent mass there}. Thus, even with an individual nucleon of radius
(0.8-1.0) fm, it is conceivable that the usual OPE plus TPE potential
is not too far wrong down to (i.0-1.3) fm. The challenge in the next
years will be to turn qualitative statements like ''mot too far wrong'
into a quantitative theory.

For the present, one attractive, phenomenological option is to extend
the old Feshbach-Lomon boundary condition model (LF 68), to include NaA
and AA (and perhaps even (-C) components outside the boundary radius R,
(Lom 81). Inside the boundary radius one would describe the system

purely as six quarks (Hog+ 80, Kis 81, Mil 82). Naively one might identify

*The "Cheshire bag approximation' is a term coined by Fritz Coester to
describe the use of the CBM Hamiltonian even when two bags overlap.
Like Lewis Carroll's Cheshire cat, there is nothing to the bag exceprt

a "smile'',
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the boundary radius R, with the size of a 6~quark bag (i.e. about 202
bigger than the nucleon bag). For the backward electro-disintegration of
the deuteron, Kisslinger has shown that the quarks can make an important
contribution—particularty at high momentum transfer {q% > 10 fm 2). The
elastic deuteron form-factor seems to scale as expected for a 6-quark bag
at high momentum transfer and there has been a similar success for the deep
inelastic structure function—with about a 6% admixture of the 6~quark
component (BF 80). Even at very low energy, such as the circular polariza-
tion in thermal neutron capture (DO 81), it ha; been suggested that the
quark contribution could be crucial,
7-1.4.  Nucleon-antinucleon scattering

With the expectation of large quantities of high quality data from
LEAR in the near future, there is a renewed interest in the NN system.
Conventionally one obtains the NN potential from that for NN by G-
parity. One simply changes the sign of the N-N-meson coupling constant
for those mesons of odd G-parity (m, w, etc.). Thus the strong, short
range repulsion generated by w-exchange in the N-N system becomes a
very strongly attraqtive potential for NN—which can support many bound
states. Clearly in the case of large composite N and N even this
feature of the NN interaction may be in doubrt. However, our present
interest is not with that problem, but rather with the major ambiguirty
of any potential model, namely the effect of annihilation. The annihi-
lation in the NN system is in fact so strong that the deeply bound
states mentioned above would be unobservably broadA(MT 76). This
unfortﬁnate conclusion can only be avoided if for some reason, a) the
annihilation potential is extremely short range, or b) strongly state

dependent, or c),fhe optical model treatment is invalid.
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It was noticed by Wilets and collaborators (Wil+ 81) that the bag
model should yield a fairly definite idea of the shape of the annihila-
tion potential. Before the bags overlap there is no annihilation at
all. When the bags do overlap the process,

aqq > gluon (7.11)
becomes possible, and the remaining four quarks and gluon will arrange
themselves into mesons. The probability for the process (7.11) obvious-
ly depends on the amount of overlap of the N and ﬁ'bags. Thus, although
a perturbative calculation based on (7.11) would not be expected to
yield the correct magnitude of the annfhiiation process, one might ex-
pect the geometry to be well represented. Just as DeTar found nothing
dramatic when tw& nucleon bags start to overlap, so Wilets et ql. found
lTittie annihlation at r=2R. Most of the strength of the annihilation
seems to occur in the region r €(0.5R,R)., From their extensive analy-
sis of the presently available pp scattering data Wilets et al. found
a range of bag radius parameters between 0.7 and 1.0 fm, with the over-
all best fit 0.86 = 0.06 fm. This is in excellent agreement with the
radius expected in the CBM, as we discussed in Section 6. We can ex~
pect to hear much more about this problem in the.next few years.

7.1.5. Exotie states

It is an unavoidable consequence of the bag model that not only
will three-quark (3q) baryons exist, but in fact any colour singlet com-
bination—6q, 4q q etc. Were such states to be discovered as relatively
long-lived identifiable particies, it would be a real triumph for QCD.
Much theoretical effort has been devoted to calculating the spins,
parities and masses of such states (Joh 75, Jaf 77, WL 78, Mul+ 79,

Mul 80). Obviously it was very tempting to attribute the rapid energy
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dependence observed in Ao| and Aot at the Argonne ZGS (Apr+ 80) to such
a dibaryon resonance—certainly the energy regions coincided.

However, the dibaryon example reveals the essential problem of
almost ail éxorics. The structure in the 3F; N-N channel coincides with
the opening of the N-A p-wave, and the inclusion of this coupled channetl
alone can qualitatively reproduce the observed structure (Bet+ 82}. In
order to reach this conclusion one must perform rather complicated
three-body calculations (involving two nucleons and a pion), which
decently respect unitarity. The moral of the story is simply that
when an exotic is connected with several open channels it can not be
discussed in isolation. One rather simple attempt to deal with this
is the P-matrix formalism of Jaffe and Low (JL 79). VUsing this, it
has been suggested that indeed a number of B=0 and B=2 exotics would
not be expected to produce dramatic effects in w-m and N-N phase shifrts
(Low 79}. However, one would ideally like to see a consistent, unitary,
coupled channetls calculation. At least for those cases where pion
production is significant (like the dibaryons) the CBM should provide
the basis for such a treatment.

One very important exception is the doubly strange A-A bag, which
is actually predicted to be bound by about 80 MeV (Jaf 77} and there-
fore to have no strong decay channels. The experimental observation
of this state would be very exciting but it has not yet been seen (Car
78, Pau 82). One possible reason for its non-appearance is provided
by the chiral bag models. For example, in the CBM the pionic self-
energy contribution is of order -130 MeV for the A (Thé 82, TT 82).

But the di-lambda would be some 30% larger (because of the n.l.b.c.).

Because the pionic self-energy decreases like R3*3 as R increases, one
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would naively expect the pion self-energy for the di-lambda to be cut
in half. That alone would be enough to unbind the di-lambda and make
it rather difficult to see. A more refined calculation of the pionic
corrections to the exotics is presently underway (MT 82b).

In closing this very brief discussion of N-N forces we recall that
in Sections 7.1.1 and 7.1.2 we reviewed two attempts to describe the
short distance N-N force in terms of quarks—either in the NRQM or the
bag model. However, at no time did we discuss corrections associated
with chiral symmetry (because neither DeTar nor Harvey considered this).
Nevertheless, for exactly the reasons we have just outlined for the di-
lambda, the inclusion of pion self-energies will tend to provide some
short range repulsion! This will be true for the CBM and bags of the
MIT size, although a similar point was made by Vento et al. in the con-
text of the little hedgehog {Ven+ 81, see Section 5.3.2).

7.2. Symmetry Breaking as a Clue

Ultimately one m}ght hope to start from a microscopic model of the
nucleon (including chiral symmetry) and derive a precision fit to N-N
scattering data. Bur, as we hope is clear from the discussion in Sec-
tion 7.1 such a precision fit is a long way of f. Moreover, it would be
Strétching one's hopes too far to expect to convince unbelievers that
a quark level description is necessary on the basis of even an excellent
fit to N-N data alone. Nevertheless the situation is not as bad as it
may first appear—there are more subtle avenues of attack.

We have come to hold symmetrry prfnciples rather dear in nuclear
and particle physics, and viola;ions of any fundamental symmetry are
studied in great detail. It is not unreasonable to expect that the new

view of nuclear physics proposed here should have something new to say
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about symmetry violation. It is conceivable that predictions of sym-
metry violation made in our present, crude models might survive the
improvements necessary to obtain quantitative fits to nuclear data.
We might even hope to find cases where the quark model suggests a new
and beautifully simple explanation for a problem that has hitherto been
a puzzie for conventional nuclear theory, In this section we briefly
report on one example of each kind. Although these are the only ones
of which we are aware at present, the reader is graciously invited to
find more!
7-2.1. Charge symmetry violation in OPE

Whether or not a symmetry is fundamental depends, of course, on
one's point of view. In a quark mgdel it is quite apparent that con-
ventional isospin is an accidental symmetry. Indeed the u and d quark
masses are typically of order 5 and 10 MeV respectively (Wei 77, BT 82)
so SU(2) is badly broken at the Lagrangian level (see Section 7.2.2).
However, these masses are much smaller than the eigenvalue of the Dirac
equation for a light, confined quark [if wy/g~1400 MeV, wy/p~L402 MeV—
see Egs. (2.89)-{2.91)]—cthe constituent quark mass (Secrion 2.4).

Thus the microscopic breaking of the symmetry gets hidden and isospin
looks good at the hadronic level.

Since charge symmetry is a special case of isospin invariance,
corresponding to rotations by 180° about the y-axis in isospin space
{HM 79), it is clearly no longer 'fundamental'. Nevertheless there is
a great deal of experimental activity presently aimed at finding charge
symmetry violation (CSV)} in the N-N system (Dav+ 81). So far there is
no clear indication of CSV there. The classical case which has been

studied at length is the 130 scattering length. At present the best
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experimental values for nn and pp are -18.6 + 0.6 fm (Gab+ 79) and
-17.1 + 0.2 fm (Gur+ 80; after Coulomb corrections) respectively.
While this apparentiy indicates a small CSV, there is considerable dijs-
cussion of the meaning of the errors quoted.

In a recent LAMPF experiment Hollas and co-workers failed to see
a charge-symmetry-violating forward-backward asymmerry fn the process
np -+ dv® at a level of 0.5% (Hol+ B1). The most sensitive tests so far
should come from experiments presently underway at both 1UCF and TRIUMF,
where one is looking for a small difference in the position of the zero
in P and A in np elastic scattering (Dav+ 81},

Conventional theoretical models for CSV typically involve p-w and
m=n mixing in a one-boson-exchange picture (HM 79). The presence of
such mixing is & result of the u-d mass difference mentioned earlier
(LS 79). However, in view of our discussion of the short and medium
range NlN force in Section 7.1, it is not obvious that such mixing for
real mesons has anything to do with N-N scattering. It would seem more
appropriate to directly calculate N-N scattering in one of the ways dis-
cussed in Section 7.1 using m, # mq directly. This has not yet been
done,

What has been looked at is the possibility of a direct source of
CSV in the OPE interaction caused by my # mg (Tho+ 81b). Because of
the explicit appearance of quarks and pions in the Lagrangian density,
and its excellent convergence properties, the CBM is ideally suited to
this problem. \We recall from Eq. (5.103) that the pion-nucleon coupling
had strength gp/2f, where gp is the axial charge of the nucleon calcu-
lated in the bag model. In Section 3.3.1 we calculated gp explicitly

for the MIT bag model and showed why it gave such an improvement over
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the naive quark model. The presence of the lower piece of the Dirac
spinor for the quark gave a maximum suppression of about 34% of the
non-relativistic value (5/3) in the case mquark = 0 [Eq. (3.36)]. oOf
course, in the non-relativistic }imit of infinite quark mass the lower
component vanishes and the value of 5/3 is restored. |If one has two
masses in between the ultra-relativistic and non-realtivistic limits,
the suppression factor will be smaller, and hence ga larger, for the
heavier of the wwo.

In particular, if mq is (4-5) MeV heavier than my—as we require
in order to fit the n-p mass difference (BT 82) —then gp will be larger
for the d- than the u-quark. !f we consider 7° coupling to the n and
p, it should now be clear that the coupling to the neutron will be
larger than that to the proton, because the former contains more d-
quarks. In fact, using the spin-flavour wave functions

[Pt>cof = uguadg(tet + ¥4+ = 2444} /V6

|nt>g_f = didaug (44 + ¥+4 - 244)/V6 (7.12)

for distinguishable u- and d-quarks one can easily show that

n
EL R P (7.13)
of > .
where (1-8) is the ratio of gy for a single u-quark to that for a single
d-quark. Using the results of Golowich and collaborators (Gol 75, Don+
75) we find 8 = 0.64% for (mg-my) = 5 MeV, and hence gR/gR is greater
than one by 0.4%.

This is outrside the ltevel of accuracy for pfesent neutral current
experiments. However one may hope to see this effect through the dif-

ference in frony and fropp, implied by Eq. (5.103), viz:

m f/m'n' = gA/Z'F .
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Clearly we expect that the nnn® coupling constant should be about 0.4%
bigger than that for ppn®—in direct violation of charge symmetry.
For the N-N scattering length this implies |agn| - |agg Couly = 40.3 fm
(Tho+ 81b), which is in the same direction as experiment butr a little
small. (Although we stress again that the experimental numbers are
not conclusive.) Other systems in which we might hope to see this
CSV include the decay widths of the A, and the forward-backward asym-
metry in np > dm%—which may be enhanced for an appropriate polarization
observable,
7.2.2. The 3He-3H mass difference—a new perspective

Within the framework of non-retativistic potential theory the three-
nucleon system has been amenable to exact solution for about a decade.
As we observed in Section 1 the discrepancy between the experimental
binding energy of the triton and that obtained with realistic potentials
has usually been atrributed to relativistic or off-shell effecrs. How-
ever, a much more disturbing problem is the failure to fit the 3H-3He
mass difference. After removing the n-p mass difference there is a
residual 760 keV splitting between these mirror nuclei. Porential model
calculations using charge independent forces give typically 640 keV
and never more than 680 keV—see the Proceedings of the TRIUMF workshop
(Dav+ 81). The remaining 80 keV has been a mystery for at least 15
years. |If one takes all possible sources of CSV in a conventional OBE
potential model, and they all add coherently with maximum permissible
strength one can just about get the 80 keV. However, it is not a very
compelling explanation. -

In order to see what a quark level descriprion would imply for the

same problem, we first need to review the n-p mass difference itself.
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The calculation of the electromagnetic shift in the bag model is rather
complicated (Des+ 77} but- the answer can be understood quite simply.

Within about 10%

Q;Qi
MMe-p = Z R’ (7.14)
i<
where the bag radius R is a measure éf the average interquark distance.

For (AEB_,, - AEQ_,) this gives about 0.5 MeV {with R=1 fm}, in
agreement with Deshpande et al. Note that this effect acts in the wrong
way, tending to make the proton heavier than the neutron.

The only freedom in the bag model description is to take the u-
and d-quarks to have different masses. With a u-quark mass about
{4-5) MeV less than that of the d-quark the necessary 1.79 MeV mass
difference (1.29 MeV experimental plus 0.5 MeV from electromagnetic
effects) can be explained (BT 82). Aboutr 80% of the shift is simply
associated with the change in quark eigenfrequency [see Egs. {2.89)-
(2.91)], and the rest with the change in the colour magnetic term (Sec-
Tion 2.2.2).

Next we recall that 3He is one of the most dense nuclear systems
available. lts point nucleon distribution has an rms radius of onty
1.6 fm. Wizh the nucleon itself having a radius of about 1.0 fm, it is
hiéhly likely that in a random snapshot of the nucleus we shall find
two nucleons overlapping. Thus one obvious difference between 3H and
3He is that with some probability, P, we shall find the contents of two
neutrons in one bag in the former, whereas in the latter we would find
two protons. The essential point is that the mass splitting between a
2p-bag and a Sn-bag is not 2(my=-my).

First the n.1.h.c. implies that the radius of a 6-quark bag is big-

ger than that of a 3-quark bag.‘ We recall from Section 7.1.1 that
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DeTar found Rg~1.3 fm, compared with R3~1.0 fm. (In general one can
show that R~M/3  with M the mass of the multiquark system.) There-
fore we find at once a 30% reduction in the n-p mass splitting caused.
by my # mg. In additvion, a simple calculation with Eq. (7.14) shows
that even allowing for the increase in average interquark separation,
the Coulomb splitting increases in the wrong direction. The net result
is that the 2n and 2p bags are split by only 0.9 MeV, instead of
2(mn-mp) = 2.6 MeV. Alternatively, the effective n-p mass difference
for the fraction of time, P, that the bags overlap is onily 0.45 MeV.

A probability P of 10% would therefore suffice to explain the
80 keV discrepancy [(2.6-0.9/2) x 10% = 80 keV]. This is a perfectly
reasonable probability and indeed if we assume that when the centre of
one bag is within Ry of the centre of another they.have coalesced, one
obtains a probability (1.0/1.6)3 = 24% for 3He. it is clearly difficule
to make this argument more quantitative at the present time, but the
A=3 system does provide a beautiful example of just how different the
guark model perspective may be—even for a familiar problem. Further
work along these lines is presently being carried out (TG 82) to see
te what extent such ideas can contribute fo an explanation of the
famous Nolen-Schiffer anomaly (NS 69).
7.3. The Nuclear Many-Body Problem

As there is no published calculation of the properties of a many-
nucleon system near nuclear matter density (po) In the sort of model
which we have presented, this wil) be a brief section. (We exclude
from the present discussion the very high density limit of quark matrer,
where there are no individual bags at all.) Nevertheless it does seem
appropriate to collect together some of the ideas which may eventually

be applied to the problem,
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In a very stimulating attempt to understand how a system of finite
size bags might behave, Baym introduced the idea of percolation (Bay 79).
To introduce the concept, consider an infinfte array of cubit children's
blocks, some of which are copper and some wooden, |f they are arranged
at random there is a critical percentage of the blocks (PC = 31%) which
must be copper in order to guarantee that there is an infinite conduc-
ting chain through the array. !f instead of being cubic we have spheres
arranged on a regular lattice, P. is 15 * 1.5%. Finally for conducting
spheres only, arranged at random through space, the critical percentage
of space which must be occupied by spheres is 34%.

The analogy is of course that if two bags touch we expect that the
quarks (i.e. a colour current) will be able to flow between them.. {This
was exactly the assumption made by DeTar-—see'Section 7.1.2.) Conse-
quently, in infinite nuclear matter above a certain critical density
(Dc), we expect that there should be at least one iInfinite conducting
chain along which the quarks flow freely. This free flow of quarks is
known as ''percolation". Since the volume of a spherical bag is just
(4wR3/3), we expect that

pc = 0,31;/(531*4;3) , (7.15)
and hence {with p, = 0.17 fm™3), p_ is (1/204, Py, 1.4p,) for R =
(1.0, 0.8, 0.7) fm respectively.

We see that in the centre of a large nucleus like #%8pb, any accep-
table nucleon bag radius (following the considerations of Section 6,

R > 0.8 fm) will imply the presence of conducting chains. More to the
point, for a radius near the MIT value (R~1.0 fm} pc is of order p,/2,

and even the nuclear surface should contain such chains. Such is our

ignorance at present that it is not even clear whether this would have
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observable consequences! Qualitatively at least, it does seem easier
to reconcile the success of the conventional shel} model for valence
nucleons with a somewhat smaller bag radius—say R~0.8 fm. In that.
case pc~p, and one would expect little effect in the nuclear surface
where p~p,/2. On the other hand, one might expect that single par-
ticle ideas could fail in the nuclear interior.
7.3.1. Dense nuclear matter

There has been considerable theoretical and experimental interest
in the past few years in the possibility of exotic phenomena at densi-
ties higher than py,—phenomena like pion condensation and Lee-Wick
matter. Chiral symmetry plays a crucial role in the conventional des-
cription of such processes. Indeed the o-model, which we described at
length in Section 4.4 is the starting point for most of the work in
this area (LW 74, Bay 78, Cam 78, Mey 81). Clearly if we are to be con-
cerned about effects of the finite size of the nucleon in the centre or
even the surface of finite nuclei, it is unthinkable to ignore such
effects at densities twice that of nuclear matter or greater! Indeed
it would seem that pion condensation or Lee-Wick matter in the usual
scenario of point-like nucleons with spin-isospin ordering is quite un-
likely. Nevertheless the phenomenon which replaces it, namely over-
lapping bags with a free flow of colour through linked bags may be more
interesting!

Incidentally, if it makes sense to talk of finite size nucleons
exchanging pions even when they overlap a little (as discussed in Sec-
tion 7.1), the CBM should provide an admirable successor to the g-model.
As we observed in Sections § and 6, it naturally incorporates the A-

degree of freedom on the same footing as the nucleon. One does not
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have to put in ga# ! by hand (as in the o-model). Finally in its
linearised form the CBM is a rapidly convergent renormalisable theory
and one does not have the ambiguities of using a tree-level lagrangian
in a many-body system. Self-energy corrections are meaningful in the
CBM. In the final part of this section we wish to outline a new
approach to the nuclear many problem designed to exploit these advan-
Zrages of the CBM,
7.3.2. The &° formalism—a generalisation
In attempring to seolve for the properties of a many-body system for
a given Hamiltonian it is essential that one use a technique which allows
for systematic improvement. The coupled cluster expansion, or e forma-
lism, has played this role in conventional nuclear theory (Coe 69, Kum+
78, ZE 79). While making no attempt at a serious review of the formalism
{(the quoted articles fulfil that purpose) it is worthwhile to outline
its esséntial features here. Given a mapy-body Hamiltonian
H=Ho +V , (7.16)
where V includes all two-body interactions, the linked cluster expan-
sion amounts to writing the exact eigenfunction of H, namely ¥, as
y=eS o, (7.17)
where ¢ is a slater determinant describing the non-interacting Fermi
gas.
If we define creation operators for particles and holes (at{x),

b*{x) respectively) in the usual way, the operator s is

s= 3 sy, (7.18)

n>1
i + +
Sy = Tﬁfjillle . dxny/;yn eee dyp @ (x3) ... @ {xp) x

x b (yn) ... b*(y1) sn{xn, <o X135 Y5 --r ¥R) « {(7.19)
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Clearly sp is related to the amplitude for creating n particle~hole
pairs. What is less obvious is that it is the amplitude for creating
correlated particle-hole pairs. This is crucial in a low-density
system because one can prove rigorously that the importance of the n'th
order piece goes as (h3p)" ! where p is the density and h a ‘"healing
distance''—related to the range of the two-body interaction. With
h~1 fm and p,~0.17 fm™3, one has a systematically convergent
expansion at nuclear matter density. For completeness we note that in
the case of pure twwo-body interactions in Infinite nuclear matter, the
total energy can be calculated entirely in terms of s, (s;=0 by trans-
lational invariance). That is tﬁe total energy per particle Is given
by {(Coe 69)

(E/A) = o, " (8|H|®) + ‘;ﬁkfdp dP(p|V|k) s{k,p;P) , (7.20)

where
Sz(klkzi_Pzpl) = §(ky+ky = pp=py) s{k,p;P) . (7.21)

0f course, in order to obtain s; one must solve a set of coupled
cluster equations involving all amplictudes {s,}. These equations are
easily obtained by noting that

Hy=EY, (7.22)
and by Eq. (7.17)
e S HeS o=E ¢ . (7.23)

But any particle or hole destruction operator, d, acting on ¢ gives
zero, so that

<3|d €3 H eS|t =0 . (7.24)
More generally,
<¢[b(yy) ... 'bly,) alxy) ... alx;) €% H e]e> = 0,¥n (7.25)

which are the coupled cluster equations. After truncation at some

order N {(because of the proof of convergence noted above) one obtains



- 154 -
a closed set of non-linear integral equations. The cénvergence of the
iterative solution of those equations can be formally established for
certain conditions on V.

In recent years we have come to rea]ize-the importance of the A
in nuclear physics. A suitable generalisation of the €5 formalism to
include the A explicitly was recently developed by Coester (Coe 81) for
the Betz-Lee model (BL 81). In their model the only pion emission and
absorption alliowed are the processes A <> Nr. In such a simple field
theory there is no renormalisation of the nucleon, but the properties
of the A, and hence the intermediate range N-N force, will be densizty
dependent.

The excellent convergence properties of the CBM, and the fact that
the A (and other B=1 resonances) appears so naturally there, have promp-
ted us to develop a linked cluster expansion including pion degrees of
freedom explicitly (Coe+ 82). Formally all that is required is to re-

place Eqs. (7.18) and (7.19) by

s = :E: Sn,m : ' (7.26)

n,m>1

1 1
Sh,m =I_Tl-rWﬁkl eeo dky fdxy L. dx,—,fdyn eas dyp X

x at(ky) oo @t (kg aT{x1) ... at(xy) BF(yn) ... bT(y)) x

x Spom(Ky «ov Kmi X «ae X313 Y1 vl Yn) . (7.27)
In Eq. (7.27) o%(ky) creates a pion of momentum and isospin kj and
Sn,m 1S, of course, the amplitude for creating m pions and n particle-
hole pairs all correlated. The generalisation of Eq. (7.25) to obtain
the new coupled cluster equations is obvious. -
O0f course, in order to obtain equations which one can solve numer-

ically one must again be able to justify a truncation at some maximum
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value of n and m. The cut-off in n will again be justified in terms of
powers of (h3:). However, the cut-off in number of pions is a unique
feature of the CBM and its justification was presented in Section 6.
We expect that retaining all five amplitudes with m and n < 2 should
be sufficient at nuclear matter density (Coe+ 82).

Unfortunately there are no numerical results available yet from
this formalism, so one can not judge yet whether it will throw any new
light on the nuclear many~-body problem. Nevertheless there are solid
physical reasons for believing that it might. Because the nucleon bag
is relatively large, we have seen that the NNm form-factor (3j7 (kR)/kR)
is quite soft. An equivalent dipole, (k2+A2)71, would have a range
parameter A~640/R MeV (with R in fm). Thus the cut-off in all renor-
malisation integrals is of the order of the fermi momentum (kp~275 MeV/c).
In such an intermediate situation one might expect that the properties
of the many-body system as a function of density would be inextricably
linked with the renormalisation process. This problem does not appear
Tto have been seriously addressed before.

We can not conclude this section without a note of caution. There
are many more subtleties in describing a system of composite nucleons
than we have been able to address. The e5 formalism deals with the
creation of N, A, ... obeying standard fermion anti-commutation rela-
tions and dressed with a pion cloud. As we have argued in the earlier
sections, it is possible that for a bag radius in the lower range of
that permitted in a chiral bag model (R~0,8-0.9 fm), this may be a
reasonable approximation even up to nuclear matter density. However,
it must break down as the density increases and the quarks begin to

percolate. |t becomes increasingly difficult to assign a meaning to
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exchange terms, for example, as the density goes up. {f we are lucky,

we will begin to learn how to formulate this problem in a respectable

way in the next few vears. It is a noble endeavour!

Figure Caption

Fig. 7.1.

Interaction energy of a spherical 6-quark bag as a function

of the separation parameter 6 —from DeT 78.
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8. CONCLUSION

This is a moment of dramatic change in our conception of nuclear
physics. In the next decade the impact of the discoveries made by our
colleagues in high energy physics will have to be reconciled with the
conventional view of the nucleus. At the present stage we can only
begin to guess at how much richer and more fascinating our subject may
be. Amongst the admittedly crude models available to us in this detec-
tive work, we argued that the MIT bag model is a promising place to
start. In particular, we outlined the ideas which have led a number of
investigators to believe that it may have many of the properties of the
eventual solution of QCD (incorporating both confinement and asymptotic
freedom very concisely). For this reason we gave a detailed summary
of the model, its underlying assumptions, its solutions, its predictions
for the properties of single hadrons, and finally its unresolved
problems.

Next we explained the concept of chiral symmetry and why it must
be broken in nature—even though it is exact in pure QCD. The linear
g-model was used as the classic example of a spontanecusly broken sym-
metry —with the appearance of the pion as a Goldstone boson. On a
more fundamental level we mentioned the possibility that the pion may
be the result of dynamical symmetrry breaking caused by the strongly
artractive one-gluon-exchange force in that channel. |In that case its
appearance would be independent of the usual mechanism for confinement.
Then we reviewed the various attempts which have been made over the
last three years to make a bag model incorporating chiral symmetry.

We saw that the cloudy bag model (LBM)} in particular has produced

a number of striking results for the properties of single hadrons—e.g.
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the neutron electric form-factor, the magnetic moments of the neutron,
proton and other members of the nucleon octet, and finally the proton
lifetime. The CBM has led to a new and deeper understanding of the A=
resonance which, like all the other baryons, enters in a natural, uni-
fied manner consistent with chiral symmetry. It was possible to trans-
form the Lagrangian of the CBM so that it is a generalisation of the
Weinberg Lagrangian and naturally incorporates the Weinberg-Tomozawa
relationship for low energy pion scattering. Most significant for
nuctear physics applications are the excellent convergence properties
of the CBM. For example the bare NNm coupling constant is renormalised
by less than about 10% for any bag radius bigger than (0.7-0.8) fm.

Armed with a chiral bag model which had proven so successful in
one-body systems, we made some obserbétions in the last section about
the N-N interaction and the nuclear many-body problem. Clearly that
discussion was by far the most speculative. However, we did suggest
that with a little subtlety one might, even now, be able to see some
hints of the quark sub-structure in processes involving symmetry vio-
fation.

In order to be useful to the community a review must not only
point out the achievements of a particular model, but also its faults
and problems —the cutting edge of research often lies there. We have
tried to pinpoint such problems throughout the review, but let us
Stress a few of the major questions again. One would be to firmly
establish a relationship between the MIT bag model, soliton bag models
and QCD. Of course, the nature and origin of the pion itself {particu-
larly in relation to QCD} is an absolutely crucial question to answer.

The formal problems associated with doing many-body calculations in a
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dense system of composite nucleons are formidable, but must be addressed.
Finally there is a whole set of questions of a more rechnical nature,
such as how to iTnclude recoil corrections, whether the CBM ideas can
be generalised to SU(3)} x SU(3), and so on. There is no shortage of
work or challenge, and this whole review should be considered an invi-
tation to take part.
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APPENDIX I

Throughout these notes we follow the conventions of Bjorken and

- (0) -9

Drell (BD 64).

xH is a contravariant vector— (x?,x1,x?,x3) = (r,x), (1.2a)
gy =(é-1 0) , (1.2b)
-4
y=v%a, (r.3)
=45 = 740 1 2.3 (0] (x.4)
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oWV = Sy V], (x.5a)
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o i a I(oi 0') s (x.5c)
{yH,yV} = 2g¥¥ , (1.6)
g = v,p* = y¥p, = i3 . (T.7)
The Dirac equation is
(p-m) u(p,s} =0,
ulp,s) (g-m) =0, (1.8)
where
u=uy°, _ (x.9)

To conclude this section on notation we briefly review a useful

classification scheme for non-relativistic angular momentum eigenfunctions
1 . . _ (p=m)m y,1
| & 7w = |x§> —;C o %j|§m>|£(u-m)> . (x.10)
If we define
k =g-2 +1, (T.11)

then, because o+% has eigenvalues {j(j+1) - 2(2+1) - 3/4}, k has eigen-

values i



with
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|

Thus « alone specifies £ and j,

e =K XE , (r.12)

1
2 3
s, =2+ %—, (x.13)

for example

Sy/2 is k= -1,
Piyo is k = +1 ,
Py/p is k = -2, (1.14)
and so on.
In conclusion we note that {6+F)2 = 41, and o+F is pseudoscalar,

thus

o v (1.15)
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