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MOTIVATION

Theoretical physicists live in a classical world, looking out
into a quantum mechanical wcrld. The latter we describe only subject-
ively, in terms of procedures and resuits in our classical domain.
This subjective description is effected by means of quantum mechanical
state functions Q/ s Wwhich characterize the classical conditioning of
quantum mechanical systems and permit predictions about subsequent
events at the classical level. The classical world of course is des-
cribed quite directly - "as it is". We could specify for example the
actual positions /\1, /\2,... of material bodies, such as the
switches defining experimental conditions and the pointers, or print,
defining experimental results. Thus in contemporary theory the most
cbmplete description of the state of the world as a whole, or of any

part of it extending into our classical domain, is of the form

(A Ay - ===, V) (1.1)

with both classical variables and one or more quantum mechanical wave

functions,

Now nobody knows just where the boundary hetween the classical
and quantum domains is situated., Most feel that experimental switch
settings and pointer readings are on this side. But some would think
the boundary nearer, other would think it farther, and many would prefer
not to think about it. In fact, the matter is of very little importance
in practice. This is because of the immense difference in scale between
things for which quantum mechanical description is numerically essential
and those ordinarily perceptible by human beings. Nevertheless, the
movability of the boundary is of only approximate validity; demonstra-
tions of it depend on neglecting numbers which are small, but not zero,
which might tend to zero for infinitely large systems, but are only very
small for real finite systems. A theory founded in this way on arguments
of manifestly approximste character, however good the approximation, is
surely of provisional nature., It seems legitimate to speculate on how
the theory.might evolve, But of course no one is obliged to join in

such speculation.
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L possibility is that we find exactly where the boundary lies.
More plausible to me is that we will Ffind that there is no boundary.
Tt is hard for me to envisage intelligible discourse about a world with
no classical parb — no base of given events, be they only mental events
in a single consciousness, to0 be correlated. On the other hand, it is
easy to imagine that the classical domain could be extended to cover
the whole, The wave Tunctions could prove to be a provisional or
incomplete description of the quantum mechanical part, of which an
objective account would become possible. Tt ig this possibility, of
a homogeneous account of the world, which is for me the chief motiva-

tion of the study of the so-called "hidden variable™ possibility.

A second motivation is connected with tae statistical character
of quantum mechanical predictions. Once the incompleteness of the wave
function description is suspected, it can be conjectured that the seem-
ingly random statistical fluctuations are determined by the extra
"hidden" variables - "nhidden" because at this stage we can only conjecture
their existence and certainly cannot control them. Analogously, the
description of Brownian motion for example might first have been developed
in a purely statistical way, the statistics becoming intelligible later
with the nypothesis of the molecular constitution of fluids, this hypo-
thesis then pointing to previously unimagined experimental possibilities,
the exploitation of which made the hypothesis entirely convincing. For
me the possibility cf determinism is less compelling than the possibility
of having one world instead of two. But, by requiring it, the programme

becomes much tetter defined and more easy to come 1o grips with.

A 1hird motivation is in the peculiar character of some quantum
mechanical predictions, which seem 2lmost to cry out for a hidden
variable interpretation. This is the famous argument of Einstein,
Podolsky and Rosen ! o Consider the example, advanced by Bohm 2), of
a pair of spin—% particles formed somehow in the singlet spin state and
then moving freely in opposite directions. Measurements can be made,
say by Stern-Gerlach magnets, on selected components of the spins 531
and E;Z' If measurement of E§1-é, where & 1is some unit vector,
yields the value 41, then, according to quantum mechanics, measurement
of Eé-é must yield the value -1, and vice versa. Thus we can know

—~
in advance the result of measuring any component of C, by previously,
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and possibly at a very distant place, measuring the corresponding com-
ponent of :31. This strongly suggests that the outcomes of such
measurements, along arbitrary directions, are actually determined in
advance, by variables over which we have nc cortrol, bu’ which are
sufficiently revealed by the first measurement so that we can anticipate
the result of the second. There ueed then be no temptation to regard
the performance of one measurement as a causal influence on the result
of the second, distant, measurement. The description of the situation
could be manifestly "local". This idea seems at least to merit

investigation.

We will find, in fact, that no local deterministic hidden
variable theory can reproduce all the experimental predictions of
quantum mechanics, This opens the possibility of bringing the question
into the experimental domain, by trying to approximate as well as
possible the idealized situations in which local hiddern variables and
quantum mechanics cannot agree. However, before coming to this, we
must clear the ground by some remarks on various mathematical invest-
igations that have been made on the possibility of hidden variables in

quantum mechanics without any reference to locality.

THE ABSENCE OF DISPERSION FREE STATES IN VARTOUS FORMATLISMS

DERIVEL FROM QUANTUM MECFANICS

Ccnsider first the usual Heisenberg uncertainty principle. It
sayvs that for quantum mechanical states the predictions for measure-
ments for at lesst one ¢f a pair of conjugate varisbles must be
statistically uncertain. Thus no quantum mechanical state can be
Mdispersion free" for every observable, It follows thaet if a hidden
varieble account is possible, in which the results of all observations
are Tully determined, each quantum mechanical state must correspond to
an ensemble of states each with different values of the hidden variables.
Only these component states will be dispersicn “ree. ©So one way to
formulate the hidden variable problem is as a search for a formalism

permitting such dispersion free gtates,
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An early, and very celebrated, example of such an investigation
was that of von Neumann 3)° He observed that in quantum mechanics an
observable whose operator is a linear combination of operators for other

observables
A= B +YC

has for expectation value the corresponding linear combination of

expectation values :

<AY = B> + ¥ <<» (2.1)

He considered more general schemes in which this particular feature Was‘
preserved. Now for the hypothetical dispersion free states there is no
distinction between expectation values and eigenvalues - for each such
state must yield with cerbtainty a particular one of the possible results
for any measurement. But eigenvalues are not additive, Consider for
example components of spin for a particle of spin—%w The operator for

the component along the direction half way between x and y axes is

((j; + ny,) /ﬁ?i?

whose eigenvalues <1 are certainly not the corresponding linear combi-

nations
(£] =1) A=z

of eigenvalues of Cf% and O}, Thus the requirement of additive
expectation values excludes the possibility of dispersion free states.
Von Neumann concluded that a hidden variable interpretation is not
possible for quantum mechanics : "it is therefore not, as is often
assumed, a question of reinterpretation of quantum mechanics — the
present system of quantum mechanics would have to be objectively false
in order that another description of the elementary process than the

statistical one be possible™.

Tt seems therefore that von Neumann considered the additivity

(201) more as an obvious axiom than as a possible postulate. But
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consider what it means in terms of the actual physical situation.

Measurements of the three quantities
Ox Oy Ex + o) T

iequire three different orientations of the Stern-Gerlach magnet, and
cannot be performed simultaneously. It is just this which makes
intelligible the non-additivity of the eigenvalues — the values

observed in specific instances. It is by no means a question of

simply measuring different components of a pre—existing vector, but
rather of observing different products of different physical procedures.
That the statistical averages should then turn out to be additive is

really a quite remarkable feature of quantum mechanical states, which
could not be guessed a priori. It is by no means a "law of thought"

and there is no a priori reason to exclude the possibility of states

for which it is false, It can be objected that although the additivity
of expectation values is not a law of thcught, it is after all experi-
mentally true. Yes, but what we are now investigating is precisely the

| hypothesis that the states presented to us by nature are in fact mixtures

of component states which we cannot (for the present) prepare individually,.

The component states need only have such properties that.ensembles of

them have the statistical properties of observed states.

It has subsequently been shown that in various other mathematical
schemes, derived from quantum mechanics, dispersion free states are not
possible 4)0 The persistence in these schemes of a kind of uncertainty
principle is of course useful and interesting to people working with
those schemes, However, the importance of these results, for the
question that we are concerned with, is easily exaggerated. The postu-
lates often have great intrinsic appeal to those approaching quantum
mechanics in an abstract way. Translated into assumptions about the
behaviour of actual physical equipment, they are again seen to be of a
far from trivial or inevitable nature 4)°

On the other hand, if no restrictions whatever are imposed on he
nidden variables, or on the dispersion free states, it is trivially clear
that such schemes can be found to account for any experimental resulté

whatever, Ad hoc schemes of this kind are devised every day when expe-—

rimental physicists, to optimize the design of their equipment, simulate
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the expected results by deterministic computer programmes drawing on a

table of random numbers. Such schemes, from our present point of view,
are not very interesting. Certainly what Einstein wanted was a compre-
hensive account of physical processes evolving continuously and locally
in ordinary space and time. We proceed now to describe a very instruct-

ive attempt in that direction.

A STMPLE EXAMPLE

Consider the simple hidden variable picture of elementary wave

5)

mechanics advanced originally by de Broglie and subsequently clarified
by Bohm 6)° Take the case of a single particle of spin-+ moving in a

magnetic field H. The Schrddinger equation is
0 > [ L EL_) - >
It \V(r>t) '{zm(iay’ AN MB"H} W (7, £) (3.1)

where the wave function \y is a two-component Pauli spinor. Let us

supplement this quantum mechanical picture by an additional (hidden)
—

variable )\ , a single three-vector, which evolves as a function of

time according to the law

QLEE _ Eﬁ; (~X ,l:)
d b O (X, £) (5:2)

where '5 and Q are probability currents and densities calculated in

the usual way

RGO A G E A ¢4
A CAR ALY

i

9, (¥ t)
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With summation over suppressed spinor indices understood. It is
supposed that the quantum mechanical state specified by the wave function
-—?
ﬂv corresponds to an ensemble of states (X ,4/) in which the A's
_-’
occur with probability density Q (A ﬁﬂ such that

Q(X)t) = ?\((X,t\

-’
It is easy to see that if the distribution ? of A is equal to ?*,
in this way at some initial time, then in virtue of the equations of

motion (3.1) and (3.2) it remains so at later times.

, The fundamental interpretative rule of the model is just that
TX (t) is the real position of the particle at time t, and that
observation of position will yield this wvalue. Thus the quantum
statistics of position measurements, the probability density ?W y 1is
recovered immediately. But many other measurements reduce to measure-
ments of position. For example, to "measure the spin component x"‘
the particle is allowed to pass through a Stern-Gerlach magnet and we see
whether it is deflected up or down, i.e., we observe position at a sub-
sequent time. Thus the quantum statistics of spin measurements is also

reproduced, and so on.

This scheme is readily generalized to many particle systems,
within the framework of non-relativistic wave mechanics. The wave

function is now in the 3n dimensional configuration space

\P(H7E’)"~ 7':)

and the Schr8dinger equation can contain interactions between the

particles. The hidden variables are n vectors

- SN

/\\a )\1?--—

moving according to

(07 /46 = Ty Ty - 2} R (T, By == ,8)
QW(,X’WYL)-'—';I:) = l\v(;\).e-./-\,zg "_,t)ly_
Ty Ry hym==08) = (3 ) 9 WHBARDVY [p3
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Again the ensemble corresponding to the quantum mechanical state
has the _)\’ 's initially distributed with probability density |\]/|2
in the 3n dimensional space, and this remains so in virtue of the
equations of motion. Thus the quantum statistics of position measure-
ments, and of any procedure ending up in a position measurement (be it

only the observation of a pointer reading) can be reproduced.

What happens to the hidden variables during and after the measure-
ment 1s a delicate matter. Note only that a prerequisite for a speci-
fication of what happens to the hidden variables would be a specification
of what happens to the wave function. But it is just at this point that
the notoriously vague "reduction of the wave packet"™ intervenes, at some
ill-defined time, and we come up against the ambiguities of the usual
theory, which for the moment we aim only to reinterpret rather than to
replace. It would indeed be very interesting to go beyond this point.
But we will not make the attempt here, for we will find a very striking
difficulty at the level to which the scheme has been developed already.
Before coming to this, a number of instructive features of the scheme

are worth indicating.

One such feature is this. We have here a picture in which '
although the wave has two components, the particle has only position .Z .
The particle does not "spin", although the experimental phenomena
associated with spin are reproduced. Thus the picture resulting from a
hidden variable account of quantum mechanics need not very much resemble
the traditional classical picture that the researcher may, secretly,
have been keeping in mind. The electron need not turn out to be a small

spinning yellow sphere.

A second way in which the scheme is instructive is in the explicit
picture of the very essential role of the apparatus. The result of a
"spin measurement", for example, depends in a very complicated way on the
initial position 'X of the particle and on the strength and geometry of
the magnetic field. Thus the result of the measurement does not actually
tell us about some property previously possessed by the system, but about
something which has come into being in the combination of system and
apparatus. Of courée, the vital role of the complete physical set-up we
learnt long ago, especially from Bohr. When it is forgotten, it is more

easy to expect that the results of the observations should satisfy some
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simple algebraic relations and to feel that these relations should be
preserved even by the hypothetical dispersion free states of which
quantum mechanical states may be composed. The model illustates how

the algebraic relations valid for the statistical ensembles, which are

‘the quantum mechanical states, may be built up in a rather complicated

way. Thus the contemplation of this simple model could have a liberal-

izing effect on mathematical investigators.

Finally, this simple scheme is also instructive in the following
way. Even if the infamous boundary, between classical and quantum
worlds, should not go away, but rather become better defined as the
theory evolves, it seems to me that some classical variables will remain
essential (they may describe Mmacroscopic" objects, or they may be

finally restricted to apply only to my sense data.) Moreover, it seems

~ to me that the present "quantum theory of measurement" in which the

quantum and classical levels interact only fitfully during highly ideal-
ized "measurements" should be replaced by an interaction of a continuous,
if variable, character. The equations (3.1) and (3.2) of the simple
scheme form a sort of prototype of a master equation of the world in
which classical variables are continuously influenced by a quantum

mechanical state.

A DIFFICULTY

The difficulty is this. Tooking at (3.2) one sees that the

v d
behaviour of a given variable X,1 is determined not only by the

conditions in the immediate neighbourhood (in ordinary Egree—space) but
_9

also by what is happening at all the other positions )12, )\3, cee o

That is to say, that although the system of equations is "local"™ in an
obvious sense in the 3n dimensional space, it is not at all local in
ordinary three-space. As applied to the Einstein-Podolsky-Rosen
gituation, we find that this scheme provides an explicit causal mecha-
nism by which operations on one of the two measuring devices can in-
fluence the response of the distant device, This is quite the reverse

of the resolution hoped for by EPR, who envisaged that the first device
could serve only to reveal the character of the information already stored

in space, and propagating in an undisturbed way towards the other equipment.
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The question then arises : can we not find another hidden
variable scheme with the desired local character ? It can be shown

7),8),9)

that this is not possible The demonstration moreover is in
no way restricted to the context of non-relativistic wave mechanics,
but depends only on the existence of separated systems highly correlated

with respect to quantities such as spin.

Consider again for example the system of two spin—% particles.
Suppose they have been prepared somehow in such a state that they then
move in different directions towards two measuring devices, and that
these devices measure spin components along directions & and B
respectively. Suppose that the hypothetical complete description of
the initial state is in terms of hidden variables x with probability
distribution §>(X) for the given quantum mechanical state. The
result A (=i1) of the first measurement can clearly depend on x and
on the setting & of the first instrument. Similarly, B can depend

on )\ and B. But our notion of locality requires that A does not

depend on B, nor B on A. We then ask if the mean value P(4,B)
of the product AB, i.e.,

P(a,5) = (a) g0) A(&)) B(E,N (o)

can equal the quantum mechanical prediction.

Actually we can, and should, be somewhat more general. The
instruments themselves could contain hidden variables 10 which could
influence the results. If we average first over these instrument

variables, we obtain the representation

P(&, B) = go\)\ QW) A(a,n) B () (4.2)

where the averages A and B will be independent of B and &,

respectively, if the corresponding distributions of instrument variables

are independent of ©® and &, respectively, although of course they

may depend on & and B, respectively. Instead of

A: + | B: | (4.3)
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we now have

| A1 <y \Bl < (4.4)

and this suffices to derive an interesting restriction on P.

In practice, there will be some occasions on which one or both
instruments simply fail to register either way. One might then 1)
count A and/or B as zero in defining P, A, and B; (4.4) remains

true and the following reasoning remains valid.

Let &' and ©B' be alternative settings of the instruments.
Then

P(a,t) - PCa,t)

]

Fax s) [ BB NBIBN) ~ A8, B(3,A)
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Then using (4.4)

fargey (1 = A&, E (R, 0)

A AN\ _ A Ay | <:' .
P(4,5)~ P(&, 8] e fange (12 AN B(E,)

[P, 1) = PL&, )| § 2% (P(aSY) + P(3)E))

or more symmetrically

IPC&@)- PG, )| +|P(aTT) + P(&’)L)] < 2 (4.5)

With &' =01' and assuming



P(E‘)l’) :_I (4.6)

equation (4.5) yields
IPC&,8) - PL&E)] < v+ P (L)) (4.7)

This is the original form of the result 7). Note that to realize (4.6)

it is necessary that the equality sign holds in (4.4), i.e., for this
case the possibility of the results depending on hidden variables in

2)

the instruments can be excluded from the beginning ! .

The more general relation (4.5) (essentially) was first written

- by Clauser, Holt, Horne and Shimony & for the restricted representation

-
i

[

(4.1).

Suppose now, for example, that the system was in the singlet state

0T the two spins. Then quantum mechanically P(é,B) is given by the

" expectation value in that state

-

{ o & T b> = — d- % (4.8)

This function has the property (4.6), but does not at all satisfy (4.7).
With P(é,ﬁ);:—é-ﬁ one finds, for example, that for small angle between
B and B! the left-hand side of (4.7) is in general of first order in
this angle, while the right-hand side is only of second order. Thus the
quantum mechanical result cannot be reproduced by a hidden variable

theory which is local in the way described.

This result opens up the possibility of bringing the questions
that we have been considering into the experimental area. Of course,
the situation envisaged above is highly idealized. It is supposed that
the system is initially in a known spin state, that the particles are
known to proceed towards the instruments, and to be measured there with
complete efficiency. The question then is whether the inevitable _
departures from this ideal situation can be kept sufficiently small in

practice that the quantum mechanical prediction still violates the in-

equality (4.5).
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In this connection other systems, for example the two-photon

8) 13)

of twowspin—% particles. A very serious study of the photon case will

system or the two-kaon system , may be more promising than that
be reported to this meeting by Shimony. The experiment described by him,
him, and now under way, is not sufficiently close to the ideal to be
conclusive for a quite determined advocate of hidden variables. However
for most a confirmation of the quantum mechanical predictions, which

14)

is orly to be expected given the general success of quantum mechanics

would be a severe discouragement.
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Note that the spontaneous decay times of the two kaons, because
they cannot be set at the will of the experimenter, are not to
be regarded as analogous to the settings 4 and B of the
Stern-Gerlach magnets. The thicknesses of a pair of slabs of
matter placed in the lines of flight would be more relevant.

I am told by Professor B. d'Espagnat that the rapid decay of
the short-lived kaon is a major obstacle to devising a critical
experiment.
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example, H.A. Bethe and E.E. Salpeter, Handbuch der Physik,
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