
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16
http://cjtcs.cs.uchicago.edu/

SPECIAL ISSUE FOR CATS 2009

Edge-Selection Heuristics for Computing
Tutte Polynomials

David J. Pearce Gary Haggard Gordon Royle

Received: January 14, 2009; revised: December 18, 2009; published: June 22, 2010.

Abstract: The Tutte polynomial of a graph, also known as the partition function of the
q-state Potts model, is a 2-variable polynomial graph invariant of considerable importance
in both combinatorics and statistical physics. It contains several other polynomial invariants,
such as the chromatic polynomial and flow polynomial as partial evaluations, and various
numerical invariants, such as the number of spanning trees, as complete evaluations. We
have developed the most efficient algorithm to-date for computing the Tutte polynomial
of a graph. An important component of the algorithm affecting efficiency is the choice of
edge to work on at each stage in the computation. In this paper, we present and discuss two
edge-selection heuristics which (respectively) give good performance on sparse and dense
graphs. We also present experimental data comparing these heuristics against a range of
others to demonstrate their effectiveness.

1 Introduction

The Tutte polynomial of a graph G (which may have loops and multiple edges) is a 2-variable polynomial
T (G,x,y) that encodes a significant amount of information about the graph — indeed in a strong sense
it “contains” every graphical invariant that can be computed by deletion and contraction. In particular,
the Tutte polynomial can be explicitly evaluated at particular points (x,y) to give numerical graphical
invariants such as the number of spanning trees, the number of forests, the number of connected spanning
subgraphs, the dimension of the bicycle space and many more. In addition, the Tutte polynomial
specialises to a variety of single-variable graphical polynomials of independent combinatorial interest,
including the chromatic polynomial, the flow polynomial and the reliability polynomial.

c© 2010 David J. Pearce, Gary Haggard, and Gordon Royle
©cc Licensed under a Creative Commons Attribution License DOI: 10.4086/cjtcs.2010.006

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/articles/CATS2009/contents.html
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/cjtcs.2010.006

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

DELETION: CONTRACTION:
v

w

v

w

v

w

v

w

e e
v = w

a a a
z z z

G G - e G G/e

edge

deletion
vertex

identification

Figure 1: Deletion and Contraction of an Edge

The Tutte polynomial also plays an important role in the field of statistical physics where it appears as
the partition function of the q-state Potts model ZG(q,v) (see [12]). In fact, if G is a graph on n vertices
then

T (G,x,y) = (x−1)−c(y−1)−nZG((x−1)(y−1),(y−1))

and so the partition function of the q-state Potts model is simply the Tutte polynomial expressed in
different variables. There is a very substantial physics literature involving the calculation of the partition
function for specific families of graphs, usually sequences of increasingly large subgraphs of various
infinite lattices and other graphs with some sort of repetitive structure.

In knot theory, the Tutte polynomial appears in yet another guise as the Jones polynomial of an
alternating knot. However, computing the Jones polynomial of a non-alternating knot, which may have
some application in analysing knotted strands of DNA, requires the use of a signed Tutte polynomial,
which is considerably more involved. A more complete discussion of the theory and applications of Tutte
polynomials is found in [2, 3, 4, 5].

Of all the invariants associated with the Tutte polynomial, the chromatic polynomial plays a special
role in both combinatorics and statistical physics. In statistical physics, the chromatic polynomial occurs
as a special limiting case, namely the zero-temperature limit of the anti-ferromagnetic Potts model, while
in combinatorics its relationship to graph colouring and historical status as perhaps the earliest graph
polynomial has given it a unique position. As a result, particularly in the combinatorics literature, far more
is known about the chromatic polynomial than about the Tutte polynomial or any of its other univariate
specialisations such as the flow polynomial, and there are still fundamental unresolved questions in
these areas. Exploration of these questions is hampered by the lack of an effective general-purpose
computational tool that is able to deal with larger problem instances than the naive implementations found
in common software packages such as Maple and Mathematica.

We have developed the most efficient algorithm available for computing the Tutte polynomial of a
graph, and a detailed discussion of how it works is given in [6, 7]. Our implementation has been used
by several different researchers (e.g. [8]) to quickly test conjectures over a large range of graphs. In
particular, we ourselves managed to find several counterexamples to a conjecture of Dominic Welsh on
the location of the real flow roots of a graph [6, 7]. Since these counterexamples had 28 vertices or more,
it seems unlikely they would have been found by hand.

In [11], an algorithm is described that will compute Tutte polynomials of graphs with no more than
14 vertices that depends on generating all spanning trees of a graph. Similarly, an algorithm is given
in [10] to compute Tutte polynomials of moderate sized graphs, but again is not effective much beyond 14

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 2

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

vertices. In contrast, our algorithm can deal with graphs of this size in a relatively short amount of time,
and easily scales beyond this (see §5). More recently, an alternate strategy that uses “roughly 2n+1n words
of memory for an n-vertex graph” has been developed [1]. The authors comment that our algorithm is
“the fastest current program to compute Tutte polynomials”, although they identify certain graph classes
where their approach is more efficient.

In this paper, we concentrate on an important aspect of our algorithm not touched upon previously
— namely, the edge-selection heuristics. We discuss several heuristics and report on experiments com-
paring them. Our findings indicate that, of these, two stand out from the rest. Furthermore, whilst
one appears to perform particularly well on dense graphs, the other performs better on sparse graphs.
Finally, our implementation also supports efficient computation of chromatic and flow polynomials,
based on the same techniques presented in this and our previous paper, and can be obtained from
+http://www.ecs.vuw.ac.nz/ djp/tutte+.

2 Preliminaries

Let G = (V,E) be an undirected multi-graph; that is, V is a set of vertices and E is a multi-set of unordered
pairs (v,w) with v,w ∈V . An edge (v,v) is called a loop. If an edge (u,v) occurs more than once in E it
is called a multi-edge. The underlying graph of G is obtained by removing any duplicate entries in E.

Two operations on graphs are essential to understand the definition of the Tutte polynomial. The
operations are: deleting an edge, denoted by G− e; and contracting an edge, denoted by G/e. See
Figure 1.

Definition 2.1. The Tutte polynomial of a graph G = (V,E) is a two-variable polynomial defined as
follows:

T (G) =


1 E(G) = /0
xT (G/e) e ∈ E and e is a bridge
yT (G− e) e ∈ E and e is a loop
T (G− e) + e is neither a loop nor

T (G/e) a bridge

This definition of the Tutte polynomial, which Tutte showed is independent of the edge chosen [14],
outlines a simple recursive procedure for computing it. However, we are free to apply its rules in whatever
order we wish, and to choose any edge to operate on at each stage. The following illustrates this recursive
procedure being applied to a simple graph:

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 3

+
http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

21

3.

1

5.

1

6.

2

X . 1

1

X . 1

3

1.

Y . 1

1

X

2

2 3

1 2

2.

4.

Here, we have labelled each graph in the computation tree with a unique number. Looking at G1
(i.e. the graph labelled 1), we see that it contains no loops or bridges (edges which, if deleted, would
disconnect the graph). Thus, the delete/contract rule from Definition 2.1 applies:

T (G1) = T (G2)+T (G3)

where G2 = G1− (2,3) and G3 = G1/(2,3). Then, looking at G2 we see that both edges are bridges and,
thus, the bridging rule from Definition 2.1 applies to give:

T (G2) = x ·T (G4)

where G4 = G2− (1,3). Again, the bridging rule applies to G4 giving:

T (G4) = x ·T (G4− (1,2)) = x ·1

Here, T (G4− (1,2)) = 1 since its edge-set is empty. Continuing along these lines, we end up with the
following Tutte polynomial for G1:

T (G1) = x2 + x+ y

As an example of its utility, evaluating this polynomial at (x = 1,y = 1) gives the total number of spanning
trees for G1 (i.e. 3). Many more evaluation points are known in the literature (see e.g. [2, 3, 4, 5]), and
there is active research studying such properties of the polynomial.

Figure 2 provides a larger example to further illustrate the procedure, and to highlight some important
points. The Tutte polynomial for this graph is:

T (G1) = y+2y2 + y3 + x+4xy+2xy2 +3x2+
3x2y+3x3 + x4

In Figure 2, several aspects of the problem become apparent. Firstly, in several cases we apply known
properties of the Tutte polynomial to reduce a graph in a single step. For example, T (G8) = x4 as it is
well-known that a tree with n edges must reduce to xn. Secondly, it often arises during the computation

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 4

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

Y

X
2

X
3

X Y

X
4

X Y

Y

1.

2.
3.

4. 5. 6. 7.

8. 9. 10. 11.
12.

13.

14.

15.

16. 17.

18. 19.

X

Figure 2: Illustrating the application of Definition 2.1 to a small graph. Observe that vertices are not
drawn once they become isolated, as they play no further role.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 5

http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

that we reach a graph G which is isomorphic to one already seen. Thus, recomputing T (G) from scratch
each time is wasteful and should be avoided when possible. Instead, we want to store the polynomial for
G the first time it is computed, and then reuse this cached result whenever G is encountered again. For
example, in Figure 2 the triangle is reached four times during the computation.

The order in which the rules of Definition 2.1 are applied does not affect the polynomial which
results; however, it can significantly affect the size of the computation required. An “efficient” order can
reduce work in a number of ways. In particular, choices leading to graphs isomorphic to those already
encountered are clearly favourable. In Figure 2, there are several choices we might have made which
would have reduced the number of isomorphic “hits”. For example, had we not eliminated the loop in G7
immediately, we would not have reached a graph isomorphic to G12. Likewise, in G10, choosing any of
the other edges to delete/contract upon would not have lead to the triangle and, hence, another isomorphic
hit.

In this paper, we are concerned with heuristics that promote good edge selections and, hence, reduce
the amount of computation. We explore a range of edge selection heuristics and observe that, of these,
two perform considerably better than the others. The first, called MINSDEG, minimises the degree of either
end-point; that is, it chooses an edge where one endpoint has the smallest degree of any. The second,
called VORDER, relies on a fixed ordering of the vertices; starting from the first vertex in the order, it
continuously selects edges from the same vertex until none remain, before moving on to the next vertex
in the ordering. This is discussed in more detailed in §4.

There are many other well-known properties of the Tutte polynomial definition that can be exploited
to further prune the computation tree and, hence, improve performance. An important example of these
exploits the fact that the Tutte polynomial is multiplicative over the blocks (i.e., maximal 2-connected
components) of a graph and that these biconnnected components can be determined in linear time [14]:

Theorem 2.2. Let G = (V,E) be a graph with m blocks G1, G2, . . ., Gm. Then it follows that T (G) =

∏
m
i=1 T (Gi).

The above was first shown by Tutte [14]. Several other interesting properties that can be exploited to
further prune the computation tree are discussed further in [6, 7]. In particular, in certain situations, we
can immediately reduce the whole graph, or a subgraph, to a polynomial:

• Trees. A tree with k edges can be immediately reduced to xk by Definition 2.1.

• Loops. If the graph contains a vertex with k loops, then we can immediately remove them and
apply a factor of yk by Definition 2.1.

• Cycles. A cycle with k vertices can be immediately reduced to y+ x+ x2 + . . .+ xk−1.

• Multi-edges. If the graph contains k copies of an edge e, then we can immediately remove all but
one. If the remaining occurrence of e is a bridge, then we must apply a factor of x+y+y2+ . . .yk−1

when it is removed (instead of just x); otherwise, when we delete-contract upon it, we must apply a
factor of 1+ y+ y2 + . . .yk−1 to contract graph.

• Ears. An ear is a connected subgraph with vertices v1,v2, . . . ,vk, where v2, . . .vk−1 all have degree
two. If the graph contains an ear of length k, we can immediately replace this with a single edge

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 6

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

(v1,vk). If this is a bridge, then we must apply a factor of y+ x+ x2 + xk−1 when it is removed
(instead of just x); otherwise, when we delete-contract upon this edge, we must apply a factor
1+ x+ x2 + xk−1 to the delete graph.

• Multi-cycles. A multi-cycle (i.e. a cycle with at least one multi-edge) with k vertices can be
immediately reduced to a polynomial. The resulting polynomial is somewhat more complex than
the others, and the reader should consult [6, 7] for details.

• Multi-ears. A multi-ear (i.e. an ear with at least one multi-edge) with k vertices can be immediately
reduced to a polynomial factor. Again, the factor is somewhat more complex than we have space
for here, and the reader should consult [6, 7] for details.

3 Algorithm Overview

We now provide a brief overview of our algorithm to illustrate the main choices we have made. A more
detailed discussion of how the algorithm works can be found in [6, 7].

As the algorithm operates, it essentially traverses the computation tree in a depth-first fashion
(although the whole tree is never held in memory at once). That is, when a delete/contract operation is
performed on G, it recursively evaluates T (G− e) until its polynomial is determined, before evaluating
T (G/e). Other traversal strategies are possible and could offer some benefit, although we have yet to
explore this. At each node in the computation tree, the algorithm maintains and/or generates a variety of
information on the graph being processed — such as whether it is connected or biconnected — to help
identify opportunities for pruning the tree. In particular, the following approaches are employed:

i) Reductions. We exploit those properties discussed at the end of §2 which allow us to immediately
reduce either the whole graph, or a subgraph, to a polynomial. For example, our algorithm im-
mediately reduces a tree with k edges to xk. Likewise, we also eliminate any loops in the graph
immediately, whilst applying a factor of yk. Such optimisations simplify the computation tree and
can speed up the various operations performed on graphs in the subtree (of course, if the whole
graph is reduced there is no subtree!).

ii) Biconnectedness. Following Theorem 2.2, we break graphs which are not biconnected into their
non-trivial biconnected components and the residual forest. The polynomials for the biconnected
components are then computed independently, which is helpful as their computation trees may be
significantly smaller. At present, our system uses a standard algorithm for identifying biconnected
components [13], extracting the non-trivial biconnected components (that is, those with more than
2 vertices).

iii) Isomorph Cache. Computed polynomials for graphs encountered during the computation are
stored in a cache. Thus, if a graph isomorphic to one already resolved is encountered, we simply
recall its polynomial from the cache. This optimisation typically has a significant effect, since the

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 7

http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

whole branch of the computation tree below the isomorph is pruned.

iv) Edge Selection. As indicated already, the choice of edge for deletion and contraction affects the
likelihood of reaching a graph isomorphic to one already seen. Furthermore, it affects the chance of
exposing structures (e.g. cycles and trees) which can be immediately reduced. The contribution of
this paper is an exploration of several edge-selection heuristics and, in particular, the identification
of two which perform well.

To implement the cache for polynomials of graphs at nodes of the computation tree, a hash map
is used. This is keyed upon a canonical labeling of the graph obtained using nauty [9]. Since nauty
accepts only simple graphs, we transform multigraphs into simple graphs by inserting additional vertices
as necessary. Note that the isomorph check is performed at every step in the computation; whilst this may
seem expensive (and, indeed it is), the benefits significantly outweigh the costs. A proper study of the
benefits from using the isomorph cache can be found in [6, 7].

4 Edge-Selection Heuristics

In this section, we will present a range of edge-selection heuristics, some of which we have found to
perform well on certain classes of graph.

4.1 Vertex Order Heuristic

The first heuristic we consider is the vertex-order heuristic, or VORDER for short. In this heuristic, the
vertices of the graph are given a fixed, predefined ordering. Then, as the computation proceeds, edges
are selected from the lowest vertex in the order until it becomes disconnected; once this occurs, edges
are selected from the next lowest vertex until it becomes disconnected and so on. For contractions,
the resulting vertex maintains the lowest position in the order of those contracted. Furthermore, when
selecting an edge for some vertex v, we choose one whose other end-point is also the lowest of any
incident on v.

Figure 3 illustrates this process operating on the graph from Figure 2. In the figure, the position of
each vertex in the order is shown next to it. Thus, for the first delete/contract, an edge from vertex 1,
namely (1,2), is selected since 1 is lowest in the ordering and 2 is below the others adjacent to 1. On
the deletion side, that edge is simply removed and, thus, the next edge selected is also from 1 (this time,
it’s (1,3)); on the contract side, 1 and 2 are contracted, with the resulting vertex coming at the position
previously occupied by 1 in the order.

In comparing Figures 2 and 3 there are several interesting observations. Firstly, while the number of
isomorphic hits is the same with VORDER, those hits that do occur are at levels higher in the computation
tree. More importantly, the isomorphic hits that occur are almost always immediately isomorphic (i.e. no
permutation of vertices is required). To see why this is significant, let us imagine a larger graph which
differs only in that some big structure is reachable from vertex 5. Since this structure is not touched
during the computation shown, we know that the same isomorphic hits will apply. However, a detailed
analysis of Figure 2 reveals that this is not true of all the isomorphic hits that occur there; for example,

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 8

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

Y

X
2

X
3

X
4

3

5

4

1 2

3

5

4

1 2

3

5

4

1 2

3

5

1 2

1

5

4 3

5

21

4

X Y

1

5

1 5 1

1

4

5

1

5

1

4

5
5

21

4

X
2

1

4

5

3

5

1 2

1 2

5

1 2

5

3

5

4

1 2

X Y

Figure 3: Illustrating the VORDER heuristic on the small graph from Figure 2. The position of each vertex
in the order is shown next to it. Thus, the heuristic works aggressively on the vertex labelled 1, since this
is lowest in the order.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 9

http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

the triangle produced from G10 in Figure 2 is not immediately isomorphic to that of G14; likewise, the
triangle produced from G9 may or may not be immediately isomorphic to G14 — this depends upon
exactly which edges were chosen earlier on (and, since Figure 2 represents an arbitrary computation, we
have no guarantee of this, unlike with VORDER).

From the above line of reasoning, we conclude that VORDER promotes the likelihood of an isomorphic
match occurring, and that this explains why it performs so well on dense graphs (as we will see in §5).
Whilst studying this heuristic, we have also made some other observations. Firstly, contracting two
vertices such that the resultant vertex assumes the highest position of either generally does not perform as
well. Secondly, using an ordering where vertices with higher degree come lower in the ordering generally
also gives better performance.

4.2 Degree Selection Heuristics

The second kind of heuristic we consider are those which select edges based on their degree. The idea is
to choose an edge which either minimises or maximises the degree in some way, and we consider here a
family of related heuristics:

• Minimise Single Degree (MINSDEG): here the edge selected at each point in the computation tree
has an end-point with the minimal degree of any vertex.

• Minimise Degree (MINDEG): here the edge selected at each point in the computation has end-
points whose degree sum is the least of any edge.

• Maximise Single Degree (MAXSDEG): here the edge selected at each point in the computation
has an end-point with the maximum degree of any vertex.

• Maximise Degree (MAXDEG): here the edge selected at each point in the computation has
end-points whose degree sum is the most of any edge.

As we will see in §5, the MINSDEG heuristic is generally the better choice of these and, on sparse
graphs, it outperforms the VORDER heuristic from §4.1. Figure 4 illustrates MINSDEG operating on the
graph from Figure 2. Here, the shape of the computation tree seems quite different from those of Figures 2
and 3. For example, there are more terminations on single vertices with loops and, likewise, graphs
with higher degree multi-edges are encountered. Furthermore, whilst the number of isomorphic hits is
actually slightly higher than for Figure 3, most of these are not immediately isomorphic. This, we believe,
indicates the heuristic will not promote isomorphic matching as well as VORDER. This is because, in
larger graphs, more structures will be present that prevent isomorphic hits from occurring until much
later in the computation. For example, in Figure 4 consider the isomorphic hit that occurs between the
third and fourth levels. In this case, we have one graph with vertices {1,2,3} and another with vertices
{1,3,4}. Thus, if we imagine computing the polynomial of a larger graph which differs by having some
structure adjacent to vertex 4, then we can see that this isomorphic hit would not occur. In practice, with
MINSDEG, isomorphic hits typically occur at levels which are further down the computation tree than
with VORDER. Nevertheless, we find that MINSDEG does outperform VORDER on sparse graphs (see
§5), although the reason for this remains unclear. We believe, however, that it may be because MINSDEG

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 10

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

5

X
2

Y
3

Y
2

X

X

X

X Y

X

Y

1

2 3

4

5

1

1

1

1

1

1 1

1

1 1

1

1

1

2

2

2

2 2

2

2

2

2

2 2

2

1

3

3

3

3

3

3

3

3

2

1

11

3

3

3

1

4

4

4 4

4

44

41

Figure 4: Illustrating the MINSDEG heuristic on the small graph from Figure 2. This heuristic selects
edges whose end-point has the lowest degree of any vertex. The vertices of each graph have been labelled
to indicate how individual vertices progress through the computation.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 11

http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

tends to promote the breaking up of cycles which exposes large tree portions that can be automatically
reduced.

5 Experimental Results

In this section, we report on some experimental results comparing the performance of the different
heuristics discussed in §4 on a selection of random graphs. We consider (simple) random connected
graphs and (simple) random 3-regular and 4-regular graphs. The objective here is to give an indication of
the relative performance of these heuristics, and we must emphasise caution about drawing more general
conclusions from the results. Nevertheless, our personal experience in using the tool on general graphs is
indeed reflected in the results.

5.1 Experimental Procedure

To generate random connected graphs, we employed the tool genrang (supplied with nauty) to construct
random graphs with a given number of edges; from these, we selected connected graphs until there
were 50 for each value of |E|. The genrang tool constructs a random graph by generating a random

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 R
un

tim
e

(s
)

|E|

Random Connected Graphs, V=14

VORDER
MINSDEG

MINDEG
MAXSDEG

MAXDEG
RANDOM

Figure 5: Random Connected Graphs with |V |= 14 and varying |E|, where each data-point is averaged
over 50 graphs. Data illustrating the time taken for the five different heuristics discussed in §4 are shown,
as well as for a RANDOM policy (where edges are chosen uniformly at random). For each experiment,
the cache size was fixed at 512MB. A timeout of 5000s was used to deal with long running computations,
and this explains why the data for MAXDEG and RANDOM flattens out at the top.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 12

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

 1

 10

 100

 1000

 10000

 10 15 20 25 30 35 40

A
ve

ra
ge

 R
un

tim
e

(s
)

|V|

Random 3-Regular Graphs

VORDER
MINSDEG

MINDEG
MAXSDEG

MAXDEG
RANDOM

Figure 6: Random 3-Regular Graphs with varying |V |, where each data-point is averaged over 50 graphs.
Data illustrating the time taken for the five different heuristics discussed in §4 are shown, as well as for a
RANDOM policy (where edges are chosen uniformly at random). For each experiment, the cache size was
fixed at 512MB. A timeout of 5000s was used to deal with long running computations, and this explains
why the data for MAXDEG and RANDOM flattens out at the top.

edge, adding it to the graph (if not already present), and then repeating this until enough edges have
been added. To generate random regular graphs, we again used genrang. The machine used for these
experiments was an Intel Core 2 Duo 2.3GHz with 1GB of memory, running NetBSD v4.99.9. The
executables were compiled using gcc 4.1.3, with optimisation level “-O2” and timing was performed
using the gettimeofday function, which gives microsecond resolution.

5.2 Experimental Results

Figure 5 presents the data from our experiments on random connected graphs. Data is provided for each
of the five heuristics, as well as for a RANDOM policy (where edges are chosen uniformly at random).
Observe that a log scale is used on the y-axis. Also, a timeout of 5000s was used to deal with long running
computations, and this explains why the data for MAXDEG flattens out at the top. From the figure, it is
immediately obvious that the VORDER heuristic performs particularly well compared with the others.
The reason for this, we believe, is that it promotes the chance of reaching a graph which is isomorphic to
one already seen. Note, very dense graphs tend to be easier to solve, since their increased regularity leads
to a greater number of isomorphic hits in the cache.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 13

http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

 1

 10

 100

 1000

 10000

 10 12 14 16 18 20 22 24 26 28

A
ve

ra
ge

 R
un

tim
e

(s
)

|V|

Random 4-Regular Graphs

VORDER
MINSDEG

MINDEG
MAXSDEG

MAXDEG
RANDOM

Figure 7: Random 4-Regular Graphs with varying |V |, where each data-point is averaged over 50 graphs.
Data illustrating the time taken for the five different heuristics discussed in §4 are shown, as well as for a
RANDOM policy (where edges are chosen uniformly at random). For each experiment, the cache size was
fixed at 512MB. A timeout of 5000s was used to deal with long running computations.

Figures 6 and 7 report the data from our experiments on random 3-regular and 4-regular graphs.
Data is provided for each of the five heuristics, as well as for a RANDOM policy (where edges are chosen
uniformly at random). Again, observe that a log scale is used on the y-axis. For the 3-regular graphs, we
can see that the MINSDEG heuristic gives a significant performance benefit over the others. However,
on the 4-regular graphs (which are denser) we see the gap between MINSDEG and VORDER closes.
Furthermore, it is fairly evident that computing these graphs is considerably more expensive than for the
3-regular graphs.

From the plots, it is clear that computing the Tutte polynomial for large graphs quickly becomes
intractable. Thus, the improvements offered by MINSDEG may seem somewhat futile (since we only
extend the tractable range by a few vertices). However, it is important to consider that any improvements
to the range of graphs whose Tutte polynomial can be computed may be of considerable benefit to the
users of our program, who are typically searching for a counter-example to some conjecture.

6 Conclusion

In this paper, we have discussed several edge-selection heuristics in the context of a delete/contract-
style algorithm for computing Tutte polynomials. Of these, we have identified two which appear to

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 14

http://dx.doi.org/10.4086/cjtcs

EDGE-SELECTION HEURISTICS FOR COMPUTING TUTTE POLYNOMIALS

perform particularly well, compared with the others. To support this claim, we reported upon experiments
comparing their performance over random connected graphs, random 3-regular and random 4-regular
graphs. We believe that these heuristics provide a useful step in the search for efficient algorithms to
compute Tutte polynomials.

Finally, the complete implementation of our algorithm for computing Tutte polynomials can be ob-
tained from +http://www.ecs.vuw.ac.nz/ djp/tutte+. This also supports efficient computation of chromatic
and flow polynomials, based on the same techniques presented in this paper.

6.1 Acknowledgments

Thanks go to the anonymous reviewers for CJTCS and CATS who provided valuable insights and
comments. Thanks also go to the Isaac Newton Institute for funding the Workshop on Combinatorics and
Statistical Mechanics in 2008. This enabled the authors to gather together in the same hemisphere and
discuss the problem in person! Special thanks in particular go to Alan Sokal and Klas Markström for
many interesting discussions. Gary Haggard was also supported by a National Science Foundation (NSF)
grant (#0737730) during this time.

References

[1] ANDREA BJÖRKLUND, THORE HUSFELDT, PETTERI KASKI, AND MIKKO KOIVISTOR: Comput-
ing the Tutte polynomial in vertex-exponential time. In Proceedings of the IEEE Symposium on the
Foundations of Computer Science (FOCS), pp. 677–686, 2008. 3

[2] BÉLA BOLLOBÁS: Modern Graph Theory. Volume 184 of Graduate Texts in Mathematics. Springer,
New York NY, 1998. 2, 4

[3] T. BRYLAWSKI AND J. OXLEY: The Tutte poynomial and its applications. In Encyclopedia Math.
Appl., pp. 123–225. Cambridge Univ. Press, 1992. 2, 4

[4] J. ELLIS-MONAGHAN AND C. MERINO: Graph polynomials and their applications i: the Tutte
Polynomial. In Structural Analysis of Complex Networks. 2009. 2, 4

[5] J. ELLIS-MONAGHAN AND C. MERINO: Graph polynomials and their applications ii: interrelations
and interpretations. In Structural Analysis of Complex Networks. 2009. 2, 4

[6] G. HAGGARD, D. J. PEARCE, AND G. ROYLE: Computing Tutte polynomials. ACM Transactions
on Mathematical Software. To appear. 2, 6, 7, 8

[7] G. HAGGARD, D. J. PEARCE, AND G. ROYLE: Computing Tutte polynomials. Technical Report
NI09024-CSM, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2009. 2, 6, 7, 8

[8] BILL JACKSON: An inequality for Tutte polynomials. Technical report, School of Mathematical
Sciences, Queen Mary, University of London, 2008. 2

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 15

+
http://dx.doi.org/10.4086/cjtcs

DAVID J. PEARCE, GARY HAGGARD, AND GORDON ROYLE

[9] BRENDAN MCKAY: Nauty users guide (version 1.5). Technical report, Dept. Comp. Sci., Australian
National University, 1990. 8

[10] G. F. ROYLE: Computing the Tutte polynomial of sparse graphs. Technical Report CORR 88-35,
Dept. Comb. & Opt., University of Waterloo, 1988. 2

[11] K. SEKINE, H. IMAI, AND S. TANI: Computing the Tutte polynomial of a graph of moderate size.
Lecture Notes in Computer Science, 1004:224–233, 1995. 2

[12] ALAN D. SOKAL: The multivariate Tutte Polynomial (alias Potts model) for graphs and matroids.
In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., pp. 173–226.
Cambridge Univ. Press, Cambridge, 2005. 2

[13] ROBERT E. TARJAN: Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. 7

[14] W.T. TUTTE: A contribution to the theory of chromatic polynomials. Canadian Journal of
Mathematics, 6:80–81, 1954. 3, 6

AUTHORS

David J. Pearce
Computer Science Group
Victoria University of Wellington
New Zealand
djp [at] ecs [dot] vuw [dot] ac [dot] nz

Gary Haggard
Bucknell University
USA
haggard [at] bucknell [dot] edu

Gordon Royle
School of Mathematics and Statistics
University of Western Australia
gordon [at] maths [dot] uwa [dot] edu [dot] au

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 3, pages 1–16 16

http://dx.doi.org/10.4086/cjtcs

	Introduction
	Preliminaries
	Algorithm Overview
	Edge-Selection Heuristics
	Vertex Order Heuristic
	Degree Selection Heuristics

	Experimental Results
	Experimental Procedure
	Experimental Results

	Conclusion
	Acknowledgments

	References

