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We report a comprehensive Monte Carlo (MC) simulation study of the vapor-to-droplet transition in Lennard-
Jones fluid confined to a spherical container with repulsive walls, which is a case study system to investigate
homogeneous nucleation. The focus is made on the application of a modified version of the ghost field method
(Vishnyakov, A.; Neimark, A. V.J. Chem. Phys2003 119 9755) to calculate the nucleation barrier. This
method allows one to build up a continuous trajectory of equilibrium states stabilized by the ghost field
potential, which connects a reference droplet with a reference vapor state. Two computation schemes are
employed for free energy calculations, direct thermodynamic integration along the constructed trajectory and
umbrella sampling. The nucleation barriers and the size dependence of the surface tension are reported for
droplets containing from 260 to 2000 molecules. The MC simulation study is complemented by a review of
the simulation methods applied to computing the nucleation barriers and a detailed analysis of the vapor-to-
droplet transition by means of the classical nucleation theory.

1. Introduction atoms. The free energy of formation of solid clusters was found

- . to be in agreement with the microcrystal model. Melting and
Liquid clusters and droplets in supersaturated Lennard-Jones, . s . .
reezing transitions in small droplets were modeled by Kris-

= L
(LJ) vapor were among the firstinhomogeneous systems studied 3 .
using Monte Carlo (MC) and molecular dynamics (MD) tensen et al? and then by Briant and Burtort,who concluded

simulation methods in the 1970s. Since then, several simulationthat the surface tension increases with the cluster size in accord

; : . : with the Tolman equatiof?
techniques were invented for and applied to the calculation of In thei inal &L Bark d Abrah LBA
the free energy of critical droplets (nuclei), which determine n their seminal paper.Lee, Barker, an raham ( )

the rate of nucleatiofr.!* However, despite multiple efforts, performed canonical ensemble_ MC simulations of small_ L)
the problem of reliable simulations of droplet nucleation still droPIets (up to 100 molecules) in a metastable vapor confined

remains in the focus of energetic discussions, which recently :E?] aJ'n't? ;/olume.cell.qu f'nld tt.he Helmholtszree %ngrgthfh
revealed essential controversies and shortcomings of earlier € dropl€t, a series of simulalions were performed in whic

suggested simulation methods. The problem lies in the inherenttﬂe S'Zet?f th]? colnflnllng ]Selldwas _gllrﬂdually increased, keepkl]ng
instability of a nucleus in an open system, which makes it 1€ humber of molecules fixed, until the vapor state was reached.

difficult to relate its free energy to the free energy of a The Helmholtz free energy was found from the volume

thermodynamically stable reference state. Three basic ap_dependence of the pressure, assuming thapthi¥’ integral

proaches to computing the free energy of droplets have beenalong this pass gives the !reversible wc_:r_k of droplet formation.
presented in the literature: @jrect thermodynamic integration | "€ Pressure was determined by the virial equation. Later, Lee

by stabilizing the droplet in the canonical ensemble (closed et al:®applied the BarkerHenderson perturbation thedfy*®

system) and building a path of equilibrium configurations to a to the free energy of liquid LJ cIu_sters a}nd found the results in
state with the free energy known exactly or estimated from a agreement W't_h the molecu!a_lr _S|mulat|ons. Another route to
simple model (commonly an ideal vapor or an ideal crystal); generate a trajectory of equilibrium states for thermpdynamlc
(ii) pressure tensor calculatiooy stabilizing the droplet in the integration was undertaken by. GarCIa and Torfjayho
canonical ensemble and computing the surface energy from thedradually heated the cluster until it evaporated. Then, the free
radial profiles of normal and tangential pressures: @ifjorella ~ €N€'dy was obtained by integration from a vapor state at a high
sampling in an open systery generating droplets in a temperature. ) o o
homogeneous system under the constant pressure or constant The LBA approachwas used in several later publicatiGis:
chemical potential conditions using a configuration bias. To Ohand Zeng studied the influence of the mobility of the cluster

emphasize the objective of our work, we start from a brief center of mass on the frge energy predicted earlier by R_e_iss et
critical analysis of these methods. al24 Reguera et & considered the vapor-to-droplet transition

1.1. Direct Thermodynamic Integration. One of the first in a small spherical NVT system and calculated the Helmholtz
simulation studies of the free energy of small clusters was doneré€ energy from the dependence of the pressure on the cell
by McGinty in 197312 who performed MD simulations of volume at a constant loading. The auti8rdiscussed the

freezing and melting of small LJ clusters containing up to 100 Importance of accounting for the cluster motion. Because the
size of the simulation cell is comparable with the size of the

* Author to whom correspondence should be addressed. E-mail: Cluster, the configurations, in which the cluster approaches the
aneimark@triprinceton.org cell wall, have a nonzero statistical weight. The authors
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introduced a “extended modified liquid drop” model, which was pressure tensor calculations for small droplets. They demon-
found to be in good agreement with the MC data. strated a striking disagreement with the results of the constant-
The LBA approach is based on the assumption that a dropletPressure MC simulation of LJ droplets. In our recent stéfdy,
in a finite system can be formed reversibly in the process of We performed MD simulations to calculate the nucleation barrier
decreasing the system volume at a constant loading. However,n accord with the RB methdand found a qualitatively similar
as was shown first by Binder and co-worlk&r&afor the Ising discrepancy with the results of MC simulations rendered in
model, demonstrated by Kieeling and Pefwith nonuniform ~ accord with the approach employed in this work, thus confirm-
van der Waals theory, and discussed recently in detail by ing that the mechanical approach based on the calculation of
Requera et & for the LJ fluid, the vapor-to-droplet transition ~ the pressure tensor is inconsistent with the thermodynamic
in a finite system contains a spontaneous step. Thus, it is notinterpretation of the results of MC simulations.
possible to construct a truly continuous trajectory of equilibrium ~ 1.3. Umbrella Sampling in an Open SystemTen Wolde
states in the canonical ensemble, which would connect a dropletand Frenkélsuggested constant-pressure MC simulations with
state with a reference vapor state. Earlier works necessarilya configuration bias as a practical alternative to methods based
employed an interpolated trajectory unless the simulation on the canonical ensemble. Clusters, which emerge in an open
temperature was sufficiently close to the critical temperature. system as fluctuations, were sampled by imposing a fictitious
Moreover, Reiss and Reguéfaecently questioned the validity ~ potential that depended on the cluster size. To calculate the
of the virial equation for a heterogeneous system confined to a cluster free energy, the authors employed the umbrella sampling
small volume. Without application of the virial equation, the technique?®3’ The size dependence of the droplet free energy
pressure can be apparently estimated from the vapor densitywas derived from the droplet size distribution. Although the
on the periphery of the cell, as done, for example, in ref 3; umbrella sampling technique has a rigorous statistico-mechanical
however this intuitive method cannot be justified for small foundation, it is computationally demanding. It is worth noting
simulation cells either. The Widom insertion methbdeems also that the biasing potential depends on an accepted definition
to be the best scientifically sound approach to computing the of molecular clusters, which has a geometrical rather than a
chemical potential in canonical ensemble simulation; however thermodynamic nature. In this work, we employed the data of
its practical accuracy is not sufficient for dense and inhomo- ref 5 to verify the MC approach that we developed.
geneous systems such as liquid clustérs. Chen et aP® employed a combination of an aggregation-
1.2. Pressure Tensor CalculationDirect calculation of the ~ biased MC techniqu€3° and umbrella sampling to determine
pressure tensor is probably the most popular method for the nucleation barriers for LJ clusters composed of up to 300
computing the surface free energy of liquid clusters, which was molecules. The authors demonstrated the computational efficacy
introduced by Rusanov and Brodskaya (R@) 1977. The of their method. The results of ref 38 compare well with those
authors computed the normal component of the Irving of refs 5 and 22. Kusaka et &lemployed a grand canonical
Kirkwood3 pressure tensor of small LJ droplets of various sizes MC (GCMCY* simulation with restricted number of molecules
(up to 500 molecules) in a series of MD simulations. The work and estimated the free energy from a probability of observation
of cluster formation and, respectfully, the surface tension of of the cluster of a given size. Later, Kusaka and Oxfoby
the spherical interface was calculated by integrating the pressuredresented another approach that did not involve a cluster
tensor. This technique was employed later by Thomson &t al., criterion but explored the stochastic evolution of the metastable
who performed comprehensive MC and MD simulations of vapor phase with emerging clusters in GCMC simulation aided
larger (up to 2048 molecules) droplets and obtained the surfaceby the umbrella sampling. The authors attained a coarse-grained
tension and the location of the surface of tension. The results description of the stochastic process by introducing proper order
were qualitatively very similar to those of ref 3. The surface parameters (loading and potential energy) and evaluated the free
tension was an increasing function of the droplet radius of energy of cluster formation as a function of the order parameters.
tension that implied a positive Tolman length. Nijmeijer et al.  The statistical weights of the molecular configurations were
simulated even larger (up to 12 000 molecules) clusters. The modified to favor the formation of large clusters, which would
authors derived an expression for the surface tension, the radiug1ave a negligible chance to appear in unbiased simulations. From
of tension, and the Tolman length from the normal and tangential the distributions of cluster sizes, the authors derived the
components of the pressure tensor. In contrast to the results ofdependence of the free energy on the cluster size. Several
refs 3 and 31, they obtained small negative values of the Tolmanmethods employed calculations of free energy gains caused by
length with large deviations due to statistical errors in the adding a molecule to a cluster. For example, Hatalculated
tangential component. In subsequent discus&iéfBrodskaya the configurational Helmholtz free energy differences between
and Rusanov revisited the data of Nijmelfeand came to clusters consisting af andn — 1 molecules. From this “free
positive values of the Tolman length. Later, Haye and B¥uin ~ energy profile”, he obtained the entropy and effective surface
obtained a positive value of the Tolman length for a similar tension.
cluster at higher temperature. Recently, el Bardouni &b al. Although the umbrella sampling techniques are the best
calculated pressure profiles across flat, cylindrical, and spherical currently available methods for calculating the cluster free
interfaces and concluded that the surface tension is independengnergy, the biasing potential depends on an accepted cluster
of the interface shap®. criterion, which has a geometrical rather than a thermodynamic
An apparent inconsistency of the results reported in the nature. Different cluster criteria employed in different methods
literature shows that the pressure tensor method is questionablénay affect the results of simulations and cause deviations of
in nanoscale systems. It is worth noting that most authors, reported dat&®
including Brodskaya and Rusandassumed an ideal interpreta- In this work, we demonstrate a new MC simulation approach
tion of reference liquid and vapor phases (ideal vapor and to generate critical nuclei in a metastable vapor and to determine
incompressible liquid) that in our experience should have the nucleation barriers. We consider the vapor-to-liquid transi-
affected the calculated free energies substantially. Moreover,tion in LJ fluid confined to a spherical cell with repulsive walls.
ten Wolde and Frenkelquestioned the very validity of the  The approach, which technically could be associated with direct
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thermodynamic integration, is free of the shortcomings of the
techniques discussed above. It exploits two simulation methods
that we introduced recently and applied to modeling phase 0067
transitions in small pores: thgauge cell methqé?“3in which

clusters are stabilized by restricting the range of allowed density
fluctuations and the chemical potential of the cluster is measured,, , |
directly, and theghost field method! in which a potential well

of tunable magnitude is introduced to construct a continuous "
trajectory of states connecting a reference cluster and a low-
density vapor state and the cluster free energy is computed byo.02
the thermodynamic integration along this trajectory. The focus

is on the implementation and technical details of the ghost field
method.

The rest of the paper is structured as follows. In section 2 ' ' ' ' ' '
we employ the capillarity approximation of the classical 3 plpe * 5 6 7
nucleation theory (CNT) and qualitatively analyze the specifics Figure 1. Isotherms of droplets and vapor configurations in spherical
of the vapor-to-liquid transition in a finite volume, emphasizing cells of different radii (shown in the chart) with hard walls calculated
the key problems to be addressed in molecular simulations. using the CNT. Superspinodalg She states of zero compressibilty,
Section 3 describes the model systems considered in MC correspond to the minima of droplet isotherms, which separate
simulations and the simulation details of the gauge cell method a-c?r:icislitfstr?:ea%%?tigliﬁolczjgr\,‘osplet& The CNT does not work in the
and the ghost field methods employed. Simulation results and

free energy czglculaﬂons are presenteo_l In section 4. Thein MC simulations. Within these assumptions, eqs 1 and 2 give
nucleation barriers and the surface tension of droplets of LJ

. . ; . . . - . the isotherms of LJ droplets confined to a finite volume. A series
fluid are discussed in section 5. Conclusions are given in section . . ) -
6 of the droplet isotherms in the cells of different radii are

presented in Figure 1 as the average fluid density in thepcell
= N/V reduced to the molecular diameter cubpd?, versus
the supersaturatiop,/po. To provide the closest fit to the MC
simulation results and to avoid additional errors related to the

2. Vapor-to-Droplet Transition in a Finite Volume: An
Insight from the Classical Nucleation Theory

2.1. D-Droplets, E-Droplets, and Superspinodalln this conventional assumptions of an ideal vapor and of an incom-
work, we study the vapor-to-droplet transition in a LJ fluid pressible liquid, we employ the equation of state of a LJ fluid
confined to a spherical cell of radisand volumeV = 4/37R2. by the equation of Johnson, Zolveg, and Gibbins (JZ@)hich

To highlight the main problem to be addressed in simulations, takes into account the particular model employed for the
let us start from the capillarity approximation of the classical intermolecular potential. We assume a LJ fluid with Gutoff
nucleation theory?#4¢ which represents a liquid cluster as a atkT/e = 0.7625, which is studied below in MC simulations.
spherical droplet (CNT model). In the thermodynamic approach The surface tensiop. is the most sensitive parameter. Different
of Gibbs, the density and the pressure in the droplet as well asvalues ofy., were reported in the literature for these conditions.
the density and the pressure in the surrounding vapor areFigure S1 (Supporting Information) shows the dependence of
assumed to be uniform up to the dividing surface. The condition y,, on the temperature and the cutoff distance. We interpolated
of chemical equilibrium implies that the pressumgsandp v the results of different autho?8;8-4%assuming that.. is a linear
and densitiep | andpy of these uniform phases correspond via function of e/kT, and obtained values from 0.888 to 0.922.

the equation of state to the respective phases at a given chemicafhe value ofy, = 0.91¢/0? 8 was used in calculations.

potential u. The droplet radiug is defined from the mass As the supersaturation increases, the droplet size decreases
balance, namely, in accord with eq 2 whereas the vapor is getting denser. As a
result of the competition of these effects, the droplet isotherms
4 3 are nonmonotonic, Figure 1. At lower pressures, the densit
Ny(w) = V4 Zar - 1 » 719 - P , Y
) = p) 3 o) = Pl @ change with the increase of the vapor pressure is determined

by droplet contraction, while at higher pressures the contribution

where Ng(«) is the total number of molecules in the cell from the droplet becomes negligible and the isotherm approaches
distributed between the droplet and the vapor. The secondthe isotherm of bulk vapor (solid line). The bulk vapor isotherm,
summand in the right-hand side of eq 1 represents the excesshich was also calculated by the JZG equation, terminates at
droplet mass AN*(u), which does not depend on the cell the vapor spinodal\3reached at pressug = ps, = 0.0231
volume. The condition of the mechanical equilibrium is given eo™3 (p,/po = 6.95), where the vapor compressibility diverges.
by the Laplace equation, It should be noted that the CNT model with a constant surface
tension does not work at the vapor spinodal, and we do not
attempt to explore near-spinodal regions using this model.

The droplet isotherrp(py) has a minimum at pointss where
the vapor densification offsets the droplet shrinking. The system
whereAp = p| — py is the pressure difference between the liquid compressibility §o/dp,)v  increases monotonically from nega-
inside the droplet and vapor outside gnis the surface tension.  tive values for large droplets (low pressures) to positive values

In the CNT model used below, the difference between the for smaller droplets (high pressures). The minimugn &rre-
equimolar radius defined by eq 1 and the radius of tension, sponds to a state of zero compressibiligg/gp,)vt = 0. Note
which should be employed in eq 2, is ignored as well as the that here we are discussing the compressibility of the whole
radius dependence of the surface tension. For the latter, wesystem, droplet and vapor, rather than compressibility of a
assume the planar value of the surface tensiandetermined solitary droplet, which is always negative. By analogy with the

2
Ap==" 2)
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0.04 | \ E between the vapor spinodal and the superspinggal> p >
’ v pss., the CNT model gives three different states at the same
- density: “large” droplet D in a “low” density vapor (Figure 2),
“small” droplet E in a denser vapor at a higher pressure, and
vapor V at an even higher pressure.

As was shown by Binder and Kal83262who studied vapor-
to droplet transition in the Ising lattice model, and thoroughly
discussed recently by Reguera&®iyho studied a LJ fluid, the
E-droplets are entirely unstable even in the closed system. This
means that an E-droplet is unstable with respect to infinitesi-
mally small local fluctuations of the fluid density. In fact, an
E-droplet plays the role of a critical embryo (this is why we
named it an E-droplet) in the vapor-to-droplet transition resulting
in a D-droplet, which occurs at a constant loading.

2.2. Free Energy Analysis and Nucleation BarriersLet
us consider the work of formatiohWecg of the spherical droplet
po’ =0.0244 po’ =0.027 of radiusr in a vapor confined to a finite volunf8® The
b) subscript “CE” indicates that the system is considered in the
canonical ensemble at fixed, V, andT. AWcg(r) represents
20 | the difference of the Helmholtz free energy of the vapor with
the droplet of radius,

po

0.03

0.02

o’ = 0.0305 F = —(v - gm?’)pv(,u) — S0 + N+ 4y (3)

and that of the initial vapor state V without a droplet,
pc’ =0.038
] Fy = = V(P(ay) + o, 1,) (@)

AW(r) = Fy(p) — Fo(uy) )

In eq 3, the condition of chemical equilibrium between the liquid
rlc in the droplet and the vapor is assumed explicitly so that the

400 liguid and vapor pressures, and densitiepy, are parametrized

by the same chemical potentjalin accord with the equation

of state for bulk phases: is related to the droplet radius

through the equation of mass balance,

N = pV = pyu)V = Ny(u) =
PV + gﬂr3[P|(ﬂ) ~ pl] = Nyuy) = p, )V (6)

300

F/kT

Equation 6 implies that the droplet formation (dissolution) in
the process of vapor-to-droplet (droplet-to-vapor) transition
occurs at constant loadifg or at a constant overall densipy
100 = N/\./,. asV = constant. Vapor_-to-droplet and d]roplet-to-vapor
0.02 0.03 \ 0.04 tran'smons cor.respond to horizontal lines in F!gure 2a', where
pG the isotherms in thR = 12.5 cell are presented in coordinates,
Figure 2. (a) Vapor and droplet isotherms in R = 12.5 pore loadingN (total number of molecules) versus chemical potential
calculated using CNT. D, stable/metastable droplet configurations; V, u.
vapor configurations; E, unstable droplet configurations- I, states The work of droplet formatiodWcg(r) as a function of the
correspond to the vapedroplet equilibrium. SuperspinodalsS  droplet radius is given in Figure 2b (to be specific we present

separates D and E droplets. (b) The work of droplet formation as a ; - ; ;
function of droptet radius at constant loadindWyp > 0 at po® = calculations for the 12&cell). Atp > psy, it has a maximum

0.038,AWp < 0 atpo® = 0.027 and VDE corresponds go® = 0.0305 and a minimum determined from the conditi@a/ar |ny.r =

at AW = 0. The minima correspond to vapar< 0) and D droplets; 0, which, as follows from the direct differentiation of eq 3 with
the maxima correspond to E-droplets that play the role of critical taking into account the GibbsDuhem equationsipi/dult =
embryos and determine the height of nucleation barrier for vapor — pyy, implies the Laplace eq 2 reflecting mechanical equilib-

droplet transition (C) Helmoholtz free energy vs Ioading for vapor, rium between the drop|et and the VapAp =p—p = 2y/r

D-droplet, and E-droplets states. The intersection of the V and D Thus. the maxima and minima okWee(r) correspond to

branches correspond to the vapdroplet equilibrium. equilibrium droplet states, E and D, defined by eqs 1 and 2. By
substitution of the Laplace eq 2 into eq 3, the Helmholtz free

spinodal as a state of diverging compressibility, we refer to a energy of an equilibrium droplet state reduces to

state of the vanishing compressibility sisperspinoda?® The

superspinodal determines the lowest density of the system at F.=—V + N+ ﬂmz 7

which a droplet state can exist. Thus, in the range of densities d R) +u Y (7)
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The minimum of the work of droplet formation corresponds
to the large droplet state D on the droplet isotherm depicted in
Figure 2b. Depending on the loadiig the minimum ofAWce
(rg) can be either negative, positive, or zero. Negath\Wce-

Neimark and Vishnyakov

determine the rates of vapor-to-droplet and droplet-to-vapor
transitions in the closed system of voluveln an open system,

for example, in a supersaturated vapor kept at constant chemical
potential in the grand canonical ensemble, the nucleation barrier

(rq) corresponds to the droplet states that have a smallerfor the vapor-liquid transition is given by the Gibbs formula

Helmholtz free energy than that of the vapor state at the same

loading,Fp < Fy. Therefore, the vapor-to-droplet transition is

energetically favorable and leads to a stable droplet, transition

V1 — Dy in Figure 2a. PositiveAWcg(rq) corresponds to the

_dro, 2, s 16m)°
AQ, 3ry 3Apr 3Ap) (12)

droplet states that have a larger Helmholtz free energy than thatAQq represents the difference of the grand thermodynamic

of the vapor state at the same loadifg,> Fy. In this case,
the droplet-to-vapor-transition is energetically favorable and
leads to a stable vapor state, transitionB® V, in Figure 2.
The conditionAWg(rg) = O corresponds to the vapedroplet
equilibrium (VDE) in the closed system in a sense that=

Fv, transition  — V. in Figure 2a. The maximum work of
droplet formation corresponds to a small droplet E. Thus, an
E-droplet is entirely unstable; any fluctuation of its size is
energetically favorable. It is worth noting again that we are
considering a closed system, in which conditions of stability

potentials of a fixed volum& of the vapor with the droplet,
Qg = —(V — Yaurd)p, — Hamrdp, + 4nr?y, and without,Q, =
—Vp.

2.3. Lessons from the CNT Analysis.Albeit being an
approximate theory, the CNT model shows the main problems
to be addressed in molecular simulations of droplet nucleation
in a closed system. For a given cell volundgthere exists a
lower limit of droplet sizesrs,, which can be stabilized and
studied in the closed system. This limit corresponds to the
superspinodal &, the minimum point on the droplet isotherm,

are different from those in an open system; any droplet state Which separates metastable D-droplets of rs, and labile

would be unstable in an open system.
Stability analysis of droplet and vapor states in the closed
system is illustrated by the plot of the variation of the Helmholtz

E-droplets ofr < rs,. To study smaller droplets, the cell size
must be reduced. The dependencesgfon the cell volume is
given in Figure S2 (Supporting Information). Above the

free energy along the droplet and vapor isotherms as a functionsuperspinodal, the vapor and droplet states at the same loading

of the loading given in Figure 2c. The point of intersection of

are separated by an energy barrier that corresponds to the work

droplet and vapor branches corresponds to the VDE. At larger of formation of an E-droplet, eqs 7 and 8. Only when the

loadings,N > N, Fp < Fy. D-droplet states are stable, and
vapor states are metastable. At smaller loadiMgs, > N <

nucleation barrier at the VDEAWpe(N,V,T), is small enough
(in our experience not exceeding sevéeafor simulation runs

Ne, Fp > Fy, D-droplet states are metastable, and vapor statesOf several million MC steps), it is feasible to sample the whole

are stable. The left turnover point, which corresponds to the

configuration space and to construct a continuous isotherm

superspinodal &, separates metastable D-droplets and unstable connecting droplet and vapor states. Such small nucleation

E-droplets located on the upper branchSy. The Helmholtz

barriers are observed only in very small volumes or in the

free energy of the E-droplet states exceeds those of D-dropletvicinity of the critical temperature. Thus, KWype(N,V,T) is

states and the vapor states at the same loading.

The work of formation of the unstable droplef EEpresents
the nucleation barrier for the formation of the stable droplet D
in the closed system of volum¥. That is to say that the
nucleation barrier of the vapor-to-droplet transition is determined

by

AW (NV,T) = AW(re) =

A
V(p,(uy) — Pylug)) — (uy — ugN + ?rEZV 8
The difference between the Helmholtz free energies of the
metastable stable droplet,Dand the unstable droplet,E
determines the nucleation barrier for the droplet-to-vapor
transition,

AWy (NN,T) = Ffitg) — Folt) =
VIR, 1,) = Pyke)) + (e — )N = Bro? = vy (9)

At the superspinodal $p, the nucleation barrier for the
droplet-to-vapor transition vanishes, thus indicating the lower
limit of metastable D-droplets in the closed system. At the VDE,
the nucleation barrier for the droplet-to-vapor transition equals
the nucleation barrier for the vapor-to-droplet transition. The
VDE condition reads

4

V(pulitve) = Pulttp)) = (v, — tpdNe + =10 "y =0 (10)

low enough and the simulation is long enough, then a sequence
of jumps between D-droplets and vapor over E-droplet states
can be sampled in a single CEMC simulation, and the simulated
continuous isotherm exhibits a rounded step. This situation is
similar to that found in GCMC simulations of capillary
condensation in narrow porésin this case, the free energy of
droplets and, respectively, the nucleation barriers can be
calculated by the thermodynamic integration as was done in
refs 2, 22, and 23.

For practical applications, the most interesting range of
nucleation barriers is 2010KT. These barriers cannot be
overcome in unbiased MC simulations. That is to say that in
CEMC simulations we should expect to observe a hysteresis.
Due to a finite length of the simulation run, the sampling is
confined either to the domain of vapor configurations or to the
domain of D-droplet configurations. With the decrease of
loading from a stable D-droplet state, a spontaneous evaporation
occurs at some point between the VDE and the superspinodal
Ssi and vice versa. With the increase of loading from a stable
vapor state, a spontaneous condensation occurs at some point
between the VDE and the vapor spinodal. She resulting
hysteresis loop may look similar to the loop\Q V2D, in Figure
2a.

A discontinuous droplet-to-vapor transition in a finite volume
was first demonstrated by Binder and Kalos using a ferromag-
netic Ising lattice?>262Reguera et al. found a discontinuity of
droplet evaporation in a LJ fluid at a constant loading as the
cell volume increaset This process is similar to the process
of droplet evaporation in a cell of a fixed volume as the loading
decreases, which we consider here. To demonstrate this similar-

We should note that the nucleation barriers eqs 7 and 8ity, we show in Figure 3a the droplet and vapor isotherms at
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Figure 4. External potential field applied in Monte Carlo simulations
for systems 1 and 2. Bold solid lines S1 and S2 show the soft repulsion
— constant volume from the walls. Thin lines show the ghost field profile in different
— constant loading systems. G1 (solid);4e potential well in system 1; H1 (dashed)2e
potential well in system 1; G2 (dotted};,2¢ potential well in system

2; H2 (dasheddotted),—1e potential well in system 2.

trajectory connecting a vapor state and the reference droplet
state and to calculate its free energy by thermodynamic
integration.

st b) 3. Simulation Details

0.01 : ‘ 3.1 Model SystemsWe studied vapor-to-droplet transition
! 2 Pleo s 4 in a Lennard-Jones (LJ) fluid confined to a spherical cell with
Figure 3. (a) Isotherms of droplet and vapor states at constant loading repulsive walls (called below the pore) to prevent heterogeneous
N = 895 and variable volum¥ calculated using the CNT. Arrows  cleation. To provide a potential opportunity for comparison

indicate vapor-droplet and dropletvapor transitions (b) Droplet : - . . : )
isotherms at constant loadingl & 895) and constant volum@(= of the simulation results with experimental data, most simula

255) conditions. The isotherms coincide at the minimun showing that 10NS and a detailed analysis of the host field method employed
the 'superspinodal behavior does not depend on the route of varyingfor calculating the nucleation barrier were performed for a LJ

the supersaturation. model nitrogeP? at its normal boiling temperature of 77.4K
(system 1). To compare our approach with previously published
constant loading\ = 895, which corresponds to thg SatR = data, we also simulated the system studied by ten Wolde and

250. This plot is quite similar to that of ref 23. The turnover Frenke? (system 2). The parameters of these two systems are
point S is a superspinodal point of vanishing compressibility, as follows.

which separated metastable D-droplets and labile E-droplets. System 1 (Model NitrogenRelatively large dropletsN =
Figure 3a may be rebuilt ip — p, coordinates (Figure 3b).  800—1900 molecules) in a 2bpore cell and a LJ fluid with
The isotherm at the fixed loadindN(= 895) has the same the cutoff at & atkT/e = 0.7625 were used. The wall exerted

superspinodal as the isotherm in the fixed voluRe< 250). a repulsive potential as shown in Figure @(r) = 0 atr <
That is to say that the droplets smaller thrgn corresponding 22.50 and @¢(r) = 4e(r — 22.50) atr > 22.50.

to the superspinodal cannot be simulated at eftherconstant System 2 (ten Wolde and Frenkel Flui®maller droplets
or V = constant. (N = 270-600) in a 12.5 pore cell and a LJ fluid with the

To conclude, the superspinodal behavior makes it impossible cutoff at 2.% at kT/e = 0.741 were used. Ten Wolde and
in CEMC simulation to build a continuous path of equilibrium  Frenkel reported for this system the saturation prespyire
configurations connecting droplet states and vapor states becausg.83 x 1072 ¢/0° that is ca. 2% lower than the value pf =
it would necessarily include inherently unstable configurations 8.01 x 1072 €/¢® given by the JZG equation of steteThe
of E-droplets, which correspond to maxima of the Helmholtz wall exerted a repulsive potential as shown in Figure®4(r)
free energy. Integration along the excess isotherm of D-droplets= 0 atr < 2.50 and @s(r) = 2¢(r — 11.5%) atr > 11.5.
gives the variation of the nucleation barrier with the droplet  The vapor states, which are metastable in an open system,
size according to the general thermodynamic equation that stemswvere simulated by the standard grand canonical MC (GCMC)

from the nucleation theoref;?? method. The droplets, which are unstable in an open system,
were simulated using the gauge cell MC mettdth
_ o * 3.2. Gauge Cell MC Method. In the gauge cell MC
AQ(u) = AQ(ug) L//;DR AN*(x) Qu (12) method??43the simulation is performed simultaneously in two

cells, which are in chemical equilibrium at isothermal conditions.
Here, AQ(ug,T) is the nucleation barrier for the reference droplet One of the cells represents the pore, and the other is a gauge
at a certain chemical potentigirthat serves as a reference cell of a limited capacity. Mass exchange between the cells is
droplet state R. Because the isotherm of the D-droplets allowed; however, the cell volumes are kept unchanged. The
terminates abruptly, the nucleation barrier of the reference density fluctuations in the pore are controlled by the gauge cell
droplet has to be estimated independently. To calculate thecapacity (volume). In the limit of infinite capacity, the gauge
nucleation barrier of a selected droplet, we employ the ghost cell method is equivalent to the grand canonical MC (GCMC)
field method!! This method allows us to construct a continuous method. In the limit of vanishing capacity, it is equivalent to
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the canonical ensemble MC (CEMC) method. Choosing the ratio exerted by the pore wallsby(r), and the attractive potential

of the gauge cell and pore volumes sufficiently small, one can well in the pore center with tunable depth, the ghost figstes-
stabilize the fluid in a droplet state, which would be unstable (r): ®ex(r) = ®w(r) + {Ps(r). The profiles of the external

in an open system. The chemical potential of the droplet state potential with the full scale ghost field; (= 1) are shown in

is assigned equal to the chemical potential measured in the gaugéigure 4. The continuity of the potential in the radial direction
cell in accord with the JZG equation. Thus, the gauge cell has was secured by a transition zone, where the field changes
two functions, to prevent undesirable growth or decay of droplets linearly. To check the method consistency, we probed two
and to measure their chemical potential. Note that with the gaugedifferent ghost fields for each system. They differed in the depth
cell method one constructs the canonical ensemble isotR&rn of the potential wellPg(0): —4e and—2¢ in system 1 and-2¢

in the closed system. and —1e in system 2.

A cube with triply periodic boundary conditions was em-  Starting from a low-pressure vapor state, we first perform a
ployed as the gauge cell. The linear size of the gauge cell wasseries of gauge cell (or GCMC when applicable) simulations
at least 46 and was adjusted so that a sufficient number of to trace vapor condensation in the potential wgh(1), which
fluid molecules was contained in the gauge cell during the occurs as the vapor pressure increases. Second, once the droplet
simulation. The number of molecules in the gauge cell varied state of the desired densityr is achieved, the ghost field is
from 40 to 100. The standard simulation length was abowt 5  turned off gradually, step-by-step in a series of CEMC simula-
10* MC steps per molecule for system 1 and about 20° per tions performed with incremental changes of the ghost field
molecule for system 2. Each step included one attempt of magnitude fromf = 1 to { = 0, keepingNg unchanged. That
molecule displacement in each cell and two attempts of molecule s to say that the reference D-droplet is continuously connected
transfer between the cells. A constant external field was applied With the initial vapor state.
in the gauge cell to avoid fluid condensation in the gauge.

The internal structure of the droplet was characterized by 4- Simulation Results

profiles of local density from the droplet center of mass. We 4 1 |sotherms.The isotherms of the droplet and vapor states
did not constrict the droplet motion in the cell. Thus, the generated by the gauge cell MC simulation are shown in Figures
simulated droplet is an “RKC cluster” (after ref 24) rather than 55 and 5b. The vapor branches of the isotherms practically
an “LBA" (after ref 2)2? coincide with those obtained from the JZG equation with the
3.3. Ghost Field MC Method. To calculate the nucleation  density corrected to the repulsion from the wall. The droplet
barrier by integration of the excess droplet isotherm in accord isotherm is in semiquantitative agreement with the isotherm of
with the nucleation theorem, eq 12, it is necessary to determinethe D-droplets predicted by the CNT model, egs 1 and 2. In
the nucleation barriehQ(ur,T) for a reference droplet state R.  system 1, we started from a large cluster of about 1600
To this end, it is necessary to build up a continuous trajectory molecules = 7.70, about 1900 molecules in the cell) and
of equilibrium states, which would connect the reference droplet traced the D-branch down to a small cluster of about 370
state to a state with known Helmholtz free energy. Since the molecules ( = 4.8, about 800 molecules in the cell). As the
droplet isotherm cannot be continued in the region of small loading decreases further, the droplet evaporates, and a transition
droplet size due to their inherent instability, it is impossible to to a vapor configuration occurs. Vice versa, when we gradually
connect the droplet isotherm with a vapor state. Technically, it increase the density in the vapor phase, it experiences a
is possible to connect the droplet isotherm to a liquid state, a spontaneous transition to a D-droplet at a higher density. A
state at which the pore is completely filled by liquid. When similar hysteretic behavior was observed in system 2. The
this construction is possible, the free energy of the liquid state spontaneous transitions between droplet and vapor states are
can be determined, e.g., by the PetersGubbins techniqué shown by dotted arrows in Figures 5a and 5b.
employed in studies of hysteretic capillary condensation in  |n Figure 5c, we present the excess droplet isoth&hih =
mesopores. However, this construction is feasible only for a v(pp(u) — pv(«)) derived from the droplet and vapor isotherms
very small system where the droplet size can be increased upin system 2 and compare it with the data of ref 5 obtained using
to the size of the cell. Therewith, the droplet isotherm smoothly the umbrella sampling in NPT ensemble. At lower pressures
passes through a turnover point of the liquid spinodal and (and larger clusters), the two simulation methods agree very
transforms into the liquid isotherm, as shown in our simulation well. However, our simulation gives a larg&N* (which means
of the 7.5 cell (Supporting Information, Figure S3). However, a larger cluster) at the same supersaturation. The difference is
the total number of molecules in the@%quid droplet would more pronounced for small clusters. This discrepancy can be
be about 5< 10, which is too large for simulation to be feasible. explained by the different definitions of the clusters employed.
We employ the ghost field meth8do construct a continuous ~ The author3 defined clusters using a geometrical criterion
trajectory connecting the reference droplet state and a vaporcalculating the distances between the molecular centers. We rely
state and to calculate its free energy by thermodynamic on the purely thermodynamic definition of the excess mass,
integration. The ghost field method was established to calculatewhich is de facto an average over fluctuating cluster configura-
the nucleation barriers for capillary condensation in cylindrical tions sampled at the same loading in the gauge cell method.
capillaries with wetting wall$! In this work, we focus of the ~ The smaller the cluster, the more important it is the role of
technical details of the ghost method as applied to studies of cluster size fluctuations.
droplet nucleation. The reference droplet is constructed in the The density profilep(r) of the droplets calculated from the
following fashion. An external “ghost” field is introduced in  center of mass in system 1 are shown in Figure 6. They are
the cell center to provide the continuous formation of the droplet typical for spherical clusters. Except for the smallest one, the
state of a desired density. The ghost field represents a potentialdroplets are large enough to have a constant density in the core
well {dg(r) of tunable magnitude; (0 < ¢ < 1). £ =1 region, where the average fluid density is approximately the
corresponds to the full scale ghost fielfl= 0 corresponds to ~ same as that in the bulk liquid. Typical snapshots of droplet
its absence. That is to say that the fluid in the cell is subject to states are presented in Figure 7. The largest and the smallest
the external potential, which is a sum of the repulsive potential droplets stabilized in the gauge cell method are given in Figures
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Figure 5. Simulated isotherms of the LJ droplets and vapor in (a) system 1 and (b) system 2. Point G is the droplet state stabilized in the full-
strength ghost fieldg = 1); point R is the reference droplet state 0). The GR trajectory (horizontal dashed line) corresponds to ghost field
removal at constant loading. Horizontal arrows indicate the transitions between vapor (V) and droplet (D) states. (c) Comparison between the
excess isotherms of droplet states simulated in system 2 in this work and ref. (d) Isotherms of droplets stabilized in the ghost field (system 2). Van
der Waals type loops correspond to condensation in the potential well.
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Figure 6. Density profiles of the LJ droplets of different sizeskate

= 0.762. The dotted line shows the densities of the bulk equilibrium
liquid and vapor at saturatigm= po. Thin solid lines show the locations
of the equimolar dividing surfaces.

7a and 7b, respectively. In the vicinity of droptatapor
transition, the cluster surface becomes rough, and the boundaryFigures 5a and 5b) was stopped at point G (Figure 5a) once the
between the cluster and the surrounding vapor becomes mordoading Nr of the targeted reference droplet state R was
diffuse (Figure 7b). The fluid density in the vapor region achieved. The droplet formed in the ghost field has a higher
gradually decreases to a constant value, which is within ca. 5% density in the center due to the potential well and more distinct
of the bulk density at the same supersaturation. That is to sayboundaries. Typical snapshots of the droplet grown in the ghost
that the Gibbs construction is appropriate to determine in accordfield ({ = 1, state G) and of the reference droplet O, state

with eq 1 the equimolar droplet radius, which is marked by a R) are presented in Figures 7c and 7d, respectively. Density

dotted line.

The adsorption isotherms) in the cell with the ghost field
(¢ = 1) obtained using the gauge cell method are shown in
Figures 5a, 5b, and 5d. They all have a sigmoid shape
characteristic to capillary condensation in small pores clearly
seen in Figure 5d, where the isotherms are presented as functions
of the chemical potential. We start the isotherm from an ideal
gas state at a sufficiently low vapor density. A van der Waals
loop corresponds to the vapor condensation in the ghost field
potential well. For example, in system 1 with-&e well (open
triangles in Figure 5a), aio® = 3.4 x 10* (22 molecules in
the system) the fluid is vaporlike, but at® = 6.0 x 1074 (39
molecules) a small droplet already forms in the potential well
(Figure 5a). As the vapor pressure increases, the droplet grows
gradually, and apo® = 1.74 x 102 it achieves the size of the
D-droplets that were observed without the ghost field. The
isotherms in system 2 are qualitatively similar to those in system
1 (Figure 5).

In Figure 5d, we present two isotherms in system 2 that were
obtained by applying ghost field potentials of different depths.
As expected, in the deeper well, the condensation occurs at a
lower pressure.

The droplet growth in the ghost field (= 1, curve G in

profiles are given in Figure 8. The sharp interface makes fluid
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Figure 7. Snapshots of the LJ droplets (system 1). (a) One of the largest droplets (total 1805 molecules). (b) Smallest droplet obtained in system
1 (total 793 molecules). (c) Droplet grown in the ghost fieldat 1 (state G in Figure 5a). (d) Reference droplet of the same density=ad
(point R in Figure 5a).

to structure in distinct adsorbed layers that is typical for capillary along the CEMC trajectory & R ({ = 1— ¢ = 0), we employ

condensate in a small spherical pore (Figure 8a). In the the following scheme. Let us consider the Helmholtz free

subsequent series of CEMC simulations, shown by horizontal energy Fs(Ng,£), of the fluid in the ghost field of the magnitude

dotted lines G— R in Figures 5a and 5b, the ghost field was &. Fg(N,1) = Fg(Nr) andF(Ng,0) = Fp(Ng). F(N,&) is defined

gradually removed by incremental tuning of the host field through the canonical partition function

magnitude¢ from 1 to 0. In the process of the ghost field 1

removal, the density profile smoothens (Figures-8p and the = N - N N

fluid partly evaporates, because the undisturbed ghost field QNV.T.E) AN S exp-(®@() + E@cK

reference droplet R d@ = O corresponds to a highar, ug < (14)

ur- The density profiles in Figure 8 are reckoned from the center

of the cell. Due to droplet motion, they may differ from the &S

density profiles calculated from the droplet center of mass. _
4.2. Free Energy Calculation.4.2.1. Thermodynamic Inte- FINV.T.0) =~ KTIn QN.V.T.0) (15)

gration. The continuity of the droplet isotherm in the full scale  Here, d(rV) is the total potential energy of interactions between

ghost field,Ng(u), provided by the gauge cell method allows  the molecules and between the molecules and the repulsive wall,

us to calculate the Helmholtz free enerfi(N,V,T) of the  andzdg(rM) is the potential energy of particle interaction with

droplet state G (Figure 5) at overall loadifg = Nz in the the ghost field of magnitude. The derivative of with respect

ghost field by thermodynamic integration at constant temperaturetg the host field magnitude is represented as the canonical

T and volume of the celV ensemble average of the ghost field

_ _713Q
NVT Qg

— i oF
Fa(Ng) = = kNo()T = f; * No(t) du + uNg - (13) %
N N N N
Here, we assume that the integration starts from an ideal gas f dr™ @g(r") exp((P(r") + SPg(r))/KT) — @
state at = uc. ™ oxo (D™ + LDk = @clvre
To calculate the change of the Helmholtz free energy of the f = exp(=(®(r) + L@g(r))/KT)
droplet state in the process of the ghost field being turned off, (16)

NV, T
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Figure 8. Local density profiles of droplets in system 1 simulated at
a constant loading. (a) Droplet in the ghost field (stat&&; 1). (b)
Intermediate state; = 0.4. (c)& = 0, reference droplet, state R. (d)
Weighted local density profilecr(r) applied for calculations of the
free energy according to eq 21.

Here, [@g[d (subscriptsN, V, and T are omitted for clarity)

denotes the canonical ensemble average of the ghost field ovel®cld at &

the fluid configurations sampled in the ghost field of the
magnitudeg. [@gld can be calculated by weighting the host
field with the average fluid density.(r) in the ghost field of
the magnitude;

@ = [, Par)pc(r) dr 17)
The evolution of the density profile(r) along the trajectory
G — R is shown in Figure 8. Note that because the droplet
motion is not constricted:(r) is not the average droplet density
counted from the droplet center of mass.

Integration of the eq 16 along the CEMC trajectory gives a
practical formula for calculating the Helmholtz free enerigy,
at loadingNg

FIN.G) = F(Na) — ;[ dE =
FoNe) = f; J, @a(r)py(r) dr dZ (18)

J. Phys. Chem. B, Vol. 109, No. 12, 2005971
state without the ghost fielBip(NR) is given by

Fo(Ng) = F(Ng) — Wgr (19)
Here,Wgr is the reversible work of the host field removal that
is equal to

1

Wor= [ @I dg (20)
Equation 20 implies a numerical integration whose accuracy
depends on the number of CEMC simulations at diffeient
1, ...,¢, &+, ..., 0. An equivalent yet more practical formula
is obtained by changing the order of integration in eq 17.

Wor= [, Pc(r)per(r) dr (21)
Here, per(r) is the average local density in the droplet states
along the CEMC trajectory computed by averaging over all
sampled configurations. The profile pggr(r) for system 1 is
given in Figure 8d.

In practice, the ghost field method was implemented as
follows. In system 1, the difference of free energies of the
droplet configurations with and without the ghost field was
estimated apr= 0.0173 3 (Ngr = 1121). In the course of the
ghost field removal, the chemical potential is increased from
uc = —9.0ZF (§ = 1 in —4e ghost field) tour=05 = —9.024
(G configuration in—2¢ ghost field) tougr = —8.97% (¢ =0,
reference state), which corresponded to an increase in super-
saturationp,/po from 1.56 to 1.70. In system 2, we used the
lowest number of molecules available for the calculatibr
286; uc = —8.01%F (—2¢ ghost field),ur=05 = —9.02% (G
configuration in—1e ghost field), andur = —8.3%. For the
thermodynamic integration, we performed a series of 13 CEMC
simulations for each system §t= 1, 0.9, 0.8, ..., 0.1, 0.05,
0.02, 0.

As shown in Figure 9, despite the fact that the total loading
is fixed, [@g[d increases monotonically frod= 1 to { = 0,
because of a redistribution of molecules in the droplet as
decreases. At = 1, more molecules are located within the
potential well, and the interface between the liquid droplet and
vapor is sharper (Figure 7). The sharp increase of the magnitude
of [dgld at £ — O (Figure 9) is caused by the droplet motion.
= 0 is the potential energy of the fluid interaction
with the full-scale ghost field averaged over the configurations
of the reference droplet R and thus undisturbed by the ghost
field. In this way, the droplet is not pinned and may move
around the pore. Configurations A (droplet in the center) and

0 0
<— —o—system 2 1 200
-100 —&—gystem 1 E——
o
8 800
¢
-200
1 -1200
-300 T T T T I -1600
0 0.2 0.4 0.6 0.8 1

¢

Figure 9. The contribution of the ghost field into the Helmholtz free

Thus, the sought Helmholtz free energy of the reference dropletenergy@®g[{ for systems 1 and 2, eq 17.
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o2

Figure 10. Schematic explanation of the sharp increaseliald at ¢

— 0. At ¢ = 0, configurations with the droplet in the center (A) and
on the periphery (B) have a comparable statistical weight. However,
only configuration A makes a substantial contributiorida;[] When

C is appreciabled > 0.05), the droplet is always pinned to the potential
well (configuration A).

B (droplet on the periphery) in Figure 10 have practically equal
statistical weight. Yet, configuration A gives a large contribution
to [dg[g, while the contribution of configuration B is minute.

Neimark and Vishnyakov

4.2.2. Umbrella SamplingA powerful method to calculate
the Helmholtz free energy is the umbrella sampling technique
of Torrie and Vallea#l (see ref 29), which we employed to
check the accuracy of the thermodynamic integration. Equations
14 and 15 imply that the incremental difference in the Helmholtz
free energy of two states sampled in CEMC simulation with
the ghost field of magnitudes andgi+1, AFi+1j, equals

AR ;=

—kTIn

J A exp(=(@(™) + £, DM)IKT) -
S dM exp(= (@(™) + D(r)KT)

AFi41j can be expressed through the ensemble average-at
Gias
AFi ;= —KTIn [exp(— (G, — §)P/KNE  (23)

As shown in ref 11, a better overlap of the sampled configura-

The average density in the pore center is smaller than that oftions, and respectively a better estimate, is achieved by using

the fluid subjected to the ghost field. A possibility of droplet
motion requires the use of smaller interval§ as¢ — 0. At
larger¢, the potential energy of fluid interaction with the ghost
field keeps the droplet within the potential well located in the
center of the cell. Although the location of the center of mass
is allowed to fluctuate, the statistical weight of any configuration
with the droplet located on the peripheral parts of the cell is
close to zero.

Simulations with two different ghost fields, the depth of which
differed by the factor of 2, provide a perfect test of the accuracy
of the method. Apparently, the state in the deeper well &t
0.5 is equivalent to the state in the shallower welEat 1.
Thus, the calculated Helmholtz free enerdy(Ng,%), in the
deeper well at < 0.5 should be equal #6(Ng,25), as calculated

in the shallower well. For system 2, we have obtained excellent

agreement; the difference was justil4For system 1, we have
obtained a substantial difference of cakTI8lt is clear that

that the method precision deteriorates when applied to larger . ) ; ? A
ecanonlcal ensemble sampling with the canonical weighting

systems because of a large compensation by the integral in th
right part of eq 13

oo NeleeT) e

which is strongly negative, byWgg, which is strongly positive.
For example, in system 1

Si5ING(@T) du = —179KT

for the deeper ghost field, aneWgr = 165&T. That is to say
that a—4e ghost field does not provide an acceptable estimate
of the free energy barrier. The nucleation rate is proportional

to the exponent of the nucleation barrier, which means that the
absolute rather than the relative error should be taken into

account. However, for system 2

" Ng(u,T) du = —27KT

MG

—Wer = 304T. Given the length and the accuracy of
simulations for this system, the estimated statistical error of

the ensemble average performed in the CEMC simulation with
the ghost field of the intermediate magnitugfe = & + (Ci+1
— &)/2, defining

AF T [exp((Givy — §¥) /KT, (24)

I Cexp(G* — &) P/KTL.
The total change of the Helmholtz free energy of the fluid gives
the work of the ghost field removal

Wer= ) AF, (25)

In the limit of (&i+1 — &)®s(0)KT < 1, both methods, eqs 19
and 20 and eqs 24 and 25, are precise and give identical results.
To apply the umbrella sampling technique for estimation of

AWsr, CEMC states ati* were generated using the regular

function. At each state, the free energy differendg between

the state€;* — 0.05 andZ* + 0.05 was calculated according
to egs 22-24. For example, the result of the simulationZat

= 0.45 is the free energy difference between the configurations
at¢ = 0.4 and¢ = 0.5. Figure 11 demonstrates the evaluation
of F(N,V,T) — Fs(N,V,T) with both methods, thermodynamic
integration and umbrella sampling. Strictly speaking, the
umbrella sampling technique is reliable when the droplet is
centered in the center of the cell, because accounting for the
cluster motion at lowet; becomes problematic. In system 1,
the total contribution of the ghost field to the potential energy
totals about—300T at { = 1. Thus, the cluster is pinned to
the potential well, although we do not impose any restriction
to the location of the center of mass. Eveniat 0.01, the
ghost field produces a heavy bias to the location of the cluster
in the cell. Thus, there may be no good overlap between the
configurations at larger and smallér For example, configu-
ration B in Figure 10 has a significant weight &t= 0 but
would have a negligible weight d = 0.02. Comparing the
two techniques, we should note that the estimate of the statistical
error for the umbrella sampling method is somewhat problem-
atic, because it is hardly possible to evaluate whether the

2.5Tis very reasonable. The simulation scheme should be built configurations obtained at a certdjrare representative §t+

in a way to avoid the compensation whenever possible. In

AC. As seen in Figure 11, which shows the augment of the

particular, it is better to use a smaller droplet as a reference Helmholtz free energf¥(N, V, T, £ + 0.5) — F(N, V, T, —

state and a weaker ghost field.

0.5), the two methods agree well with each other for system 1
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Figure 11. Variation of the Helmholtz free energy of the system (b)
associated with the ghost field removal. (a) Free energy related to that
of state G, integral of Figure 9. (b) Free energy differerdes(&)
between the neighboring points (for example, point & 0.05 is the B T T T T
difference between the free energies at 0.05 andé — 0.05). Solid 13 15 17 1.9 217P0 23

squares, integration ovér(eq 20) with equilibration over 50 000 steps ~ Figure 12. Nucleation barriers for droplet formation in an open system
per molecule in each single simulation; open squares, umbrella samplingcomputed using the ghost field method (integration technique egs 19
over 150 000 steps per molecule (egs 23 and 24); open triangles, same1). (a) System 1; (b) system 2. Solid lines, CNT predictions for a
with umbrella sampling over 150 000 steps per molecule. given LJ fluid, eq 11.

though the umbrella sampling gives somewnhat larger fluctuations ¢/¢2 48 for system 1, andy.. = 0.494 e/o? 55 for system 2.
at the same simulation length. Numerically, the integration Technically, it is possible to get a better agreement by fitting
technique for obtainingVer is more consistent. The umbrella  the surface tension in eq 10; however the agreement gained by
sampling technique gives larger fluctuations and is more fitting may be misleading.
expensive computationally. For system 2, we also present the results of ten Wolde and
Frenkel® Given the difference in the definition of clusters
discussed above, the agreement is quite reasonable; the differ-
The nucleation barrier for the reference droplet at the chemical ence varies from 1K to 5kT. Our calculation gives a faster
potentialupr, AQ(upr,T), is calculated as increase in the nucleation barriers with the droplet size that is
consistent with the fact that our clusters have a larger excess
AQ(ug, T) = Fp(Ng,V,T) — ugNg — Q,(ug)  (26) massAN* at sameu (Figure 4d). Remarkably, three data points
reported by Chen et &.for this system practically coincide
whereQ,(ur) is the grand thermodynamic potential of the vapor with ours. Chen et & employed a different cluster criterion
state apx = ur. Now, we can apply the nucleation theorem, eq than ten Wolde and Frenkelwhich hinders a reliable com-
12, to calculate the variation of the nucleation barrier with the parison of results.
chemical potential or with the supersaturation, which is related It is tempting to discuss the dependence of the surface tension,
to u via the JZG equation of stafé.The results are given in  which is related to the nucleation barrier, on the droplet size.
Figure 12. For system 1, we present the results obtained with Note that neither droplet radius nor the surface tension can be
the weaker ghost field of-2¢. We also plot the nucleation  determined directly from MC data without invoking an equation
barriers predicted by the CNT model via eq 11 for a LJ fluid of state to calculate equilibrium pressures and densities in
complied with the JZG equation of state. Despite a qualitative respective bulk phases. To this end, we employ the JZG equation
agreement, a quantitative comparison is problematic due to anof state. The equimolar radius is determined from the excess
uncertainty in the choice of the value of the surface tension droplet isotherm obtained in the MC simulation in accord with
discussed above. For systemr} € 50, kT/le = 0.762), we eq 1. Alternatively, one can determine the radius of tension of
found values from 0.888/02 49 to 0.922¢/02.38 For system 2 the spherical droplet in accord with the Laplace eq 2. The radius
(re = 2.50, kT/e = 0.741), interpolation of the recent simulation  of tension must be used for a consistent estimate of the surface
dat&849:55 gives values ofy. from 0.494 used in ref 5 for  tension from the MC nucleation barrier based on the Gibbs eq
comparison to 0.586/02.49 We used the same values employed 11. Thus, using different forms of eq 11, we can calculate the
for constructing the droplet isotherms in Figure)&; = 0.91 radius of tensiorrs and the surface tensiops from AQ and

5. Nucleation Barriers and Surface Tension
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the simulation cell, (d) account for natural fluctuations of the
0o | cluster mass, (e) employ a rigorous thermodynamic definition
’ of the cluster mass as an excess quantity rather then a
W geometrical prescription, and (f) calculate the cluster free energy

and the nucleation barrier. A new MC simulation approach that

07 we have developed fulfills these requirements. This approach
exploits two simulation methods that we introduced and applied
to modeling phase transitions in small pores, the gauge cell

method?43to generate the excess isotherm of droplet states and
05| 000000000 | stem 1. 2¢ ghost the ghost field method to compute the nucleation barriers.

o system 1, -4¢ ghost We considered the vapor-to-liquid transition in a LJ fluid
o system 2, -¢ ghost field confined to a spherl_cal cell with repulsive ngls, which is a
03 ‘ ‘ ‘ ‘ case study for modeling homogeneous nucleation. To emphasize
3 4 5 6 7 8 the key problems to be addressed in molecular simulations, we
rdo analyzed the specifics of the vapor-to-liquid transition in a finite
Figure 13. Dependence of the surface tensjyon the droplet size  volume using the capillarity approximation of the classical
(radius of tensiomrs). Data obtained with the weaker ghost field of  nycleation theory (the CNT model). Similarly to the recent work
—2¢ is more reliable. We present the results obtained with the stronger of Reguera et afwe demonstrated that the isotherm of droplet
ghost field—4¢ to demonstrate the range of possible errors. - . : .
states in a closed system is not a monotonic function of the

determine the dependence of the surface tension on the dropleBupersaturation; at a given loading (the total number of
radiusy«(rs). This dependence is presented in Figure 13. In both Molecules), two types of droplet states are distinguished, a
systems, the surface tension increases monotonically with the‘large” D-droplet in a “low” density vapor and a “small”
droplet size and asymptotically approaches a constant value,E-dropletin a denser vapor at a higher pressure. E-droplets are

}/502/8

which should be attributed to the planar surface tensign entirely unstable and correspond to the critical embryos for the
The results presented in Figure 13 can be interpreted by fitting Vapor-to-droplet transition at a constant loading, resulting in
the dependencey(rs) with the Tolman equatidfi the formation of a stable D-droplet. The minimum of the droplet
isotherm corresponds to the superspinodal state of zero
_ 1- 20 27) compressibility2°2 The superspinodal marks the lower limit of
V= Va re sizes of D-droplets, which can be stabilized in canonical

ensemble simulations. E-droplets cannot be generated in simula-

wherey., is the limiting surface tension of a planar surface and tions. The superspinodal behavior makes construction of a
o is the Tolman length, which is assumed to be independent of continuous trajectory of droplet states for thermodynamic
the droplet size. Therewith;., may be either taken from an integration in a direct way impossible without invoking a
independent simulation (as we did above in CNT calculations) stabilizing potential. This problem was solved by applying the
or treated as a second adjustable parameter. Lines in Figure 13Jhost field MC simulation method.
show a fit to the simulation results obtained with the adjustable  We simulated two model LJ fluids: the LJ model nitrogfen
7. The simulation results are fitted nicely by the Tolman at its normal boiling temperature of 77.4 Ko(Butoff, kT/e =
equation. We obtainegl, = 1.03¢/0? ando = 0.49 and 1.01  0.7625) and the system studied earlier by ten Wolde and
elo? ando = 0.38 from the two simulation series discussed in Frenke} and Chen et a8 (2.50 cutoff, kT/e = 0.741). The
the previous sections for system 1. However, the valugs.of  isotherms of vapor states were generated by the GCMC method,
> 1 elo?y., significantly exceed the highest valuejof = 0.92 and the isotherms of D-droplets were generated by the gauge
E/Uz 10 reported earlier in the literature for this LJ fIUId, and the cell method. The gauge cell method was shown to be compu-
Tolman length values are too large. At the same time, the tationally efficient. It allows one to stabilize a droplet state by
Tolman equation with parameteps = 0.91¢/0? andd = 0.2 providing a controlled level of density fluctuations. The droplet
provides a reasonable fit in a narrower range of radii frono 7.5 mass is defined from the excess droplet isotherm without
to 60. This means that the results for system 1 cannot be fitted evoking any geometrical definition of a liquid cluster. There
by the Tolman equation in the whole range of droplet radii. zre no artificial constraints imposed on the droplet location. The
The best fit of the MC results for system 2 gives = 0.54 chemical potential of the droplet state is measured directly. As
6/0.2 and 6 = 0.15, which can be considered as a reasonable expected from the CNT model analysis, the vapor-to-droplet
estimate; although., exceeds the value of 0.494° *>adopted  and droplet-to-vapor transitions occurred spontaneously at
above in the CNT model calculations, it is smaller than 0.580 gjtferent loadings, forming a horizontal hysteresis loop. As the
elo? reported in ref 49. This analysis shows an ambiguity of gyperspinodal is approached, D-droplet states become kinetically
interpretation of the size de.penden.ce of the sgrfage tensmn.lnunstame, and thus, it is not possible to continue the droplet
terms of the Tolman equation. This problem is discussed in jsotherm to smaller droplets. The superspinodal marks the
detail elsewheré® smallest droplet that can be stabilized by reducing the gauge
cell capacity to zero, which corresponds to the closed system
in the canonical ensemble. We found that the droplet isotherms

A critical review of the molecular simulation approaches are in a qualitative agreement with predictions of the CNT model
employed to study homogeneous nucleation of droplets in afor a given LJ fluid. However, a quantitative comparison is
metastable vapor shows that conventional methods have con-hindered due to an uncertainty in the value of the surface tension.
siderable drawbacks. A desirable approach should allow one toAt the same time, we found a reasonable agreement with earlier
(a) stabilize a liquid cluster, which is entirely unstable in an simulations of ten Wolde and FrenRelind Chen et af® who
open system, (b) determine the pressure or chemical potentialemployed different umbrella sample techniques. The gauge cell
in the surrounding vapor, (c) account for cluster motion within method makes constructing the excess isotherm of droplet states

7. Conclusion
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in a wide range of droplet sizes (up to 2000 molecules in system assessment is hindered due to an uncertainty in the planar surface
1) possible, which is limited from below by the superspinodal. tension. We have also found that the size dependence of the
To extend the isotherm to smaller droplets, the size of the surface tension cannot be described by the Tolman equation
simulation cell must be reduced. A prominent example of the with sufficient accuracy. The difference between the radius of
efficient use of cells of different size is presented elsewhere. tension and the equimolar radius defined from the MC simula-
Since the droplet stabilized in the closed system by using the tions depends on the cluster size. The data that we reported can
gauge cell method corresponds to the critical nucleus in an openserve as a touchstone to verify theoretical conclusions.
system at the same chemical potential, the constructed excess Good agreement was found for the system studied earlier by
isotherm represents the isotherm of critical nuclei. ten Wolde and Frenkeband Chen et a® (2.50 cutoff, kT/e =

The excess isotherm of dr0p|ets can be emp|0yed to Ca|cu|ateo.74l). However, it is difficult to make solid conclusions since
the nucleation barrier of Vapehql_“d transition in accord with different cluster criteria were used in these works. It is worth
the nucleation theorem, eq 7, provided the nucleation barrier hoting that our method does not involve any cluster criterion
for a reference cluster is determined independently. We applied@nd is based on the rigorous thermodynamic definition of the
the ghost field methdd to construct a continuous trajectory of ~ cluster mass through the excess quantity. This makes the method
states Connecting a reference cluster and a |ow-density Vaporrobust and versatile. Itis applicable to other nucleation processes
state and to determine the cluster free energy by the thermo_more Complex than the droplet nucleation in LJ fluid considered
dynamic integration along this trajectory. Special attention was here. The problem of bridging in nanochannels considered in

paid to the implementation and technical details of the ghost 'ef 11 gives an instructive example of the method’s applicability
field method. to a system, which could hardly be studied by other methods.

Within the ghost field method, a reference cluster is con-
structed in two series of simulations. First, a droplet of a given
density stabilized by a ghost filed potential is generated in a
continuous manner starting from a low-density vapor in a series
of gauge cell simulations. The ghost field potential represents
a potential well located in the cell center. As the vapor pressure
increases, vapor condenses in the well, forming a growing clusterIit
pinned to the well. We employed two ghost fields with different
depths of the potential wells to check the method consistency
and accuracy. Second, the ghost field is gradually removed in
a series of CEMC simulations, keeping the fluid density fixed
and decreasing the ghost field magnituggom 1 to 0. In the
terminology of adsorption science, the trajectory of equilibrium g atarences and Notes
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