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We report a comprehensive Monte Carlo (MC) simulation study of the vapor-to-droplet transition in Lennard-
Jones fluid confined to a spherical container with repulsive walls, which is a case study system to investigate
homogeneous nucleation. The focus is made on the application of a modified version of the ghost field method
(Vishnyakov, A.; Neimark, A. V.J. Chem. Phys.2003, 119, 9755) to calculate the nucleation barrier. This
method allows one to build up a continuous trajectory of equilibrium states stabilized by the ghost field
potential, which connects a reference droplet with a reference vapor state. Two computation schemes are
employed for free energy calculations, direct thermodynamic integration along the constructed trajectory and
umbrella sampling. The nucleation barriers and the size dependence of the surface tension are reported for
droplets containing from 260 to 2000 molecules. The MC simulation study is complemented by a review of
the simulation methods applied to computing the nucleation barriers and a detailed analysis of the vapor-to-
droplet transition by means of the classical nucleation theory.

1. Introduction

Liquid clusters and droplets in supersaturated Lennard-Jones
(LJ) vapor were among the first inhomogeneous systems studied
using Monte Carlo (MC) and molecular dynamics (MD)
simulation methods in the 1970s. Since then, several simulation
techniques were invented for and applied to the calculation of
the free energy of critical droplets (nuclei), which determine
the rate of nucleation.1-11 However, despite multiple efforts,
the problem of reliable simulations of droplet nucleation still
remains in the focus of energetic discussions, which recently
revealed essential controversies and shortcomings of earlier
suggested simulation methods. The problem lies in the inherent
instability of a nucleus in an open system, which makes it
difficult to relate its free energy to the free energy of a
thermodynamically stable reference state. Three basic ap-
proaches to computing the free energy of droplets have been
presented in the literature: (i)direct thermodynamic integration
by stabilizing the droplet in the canonical ensemble (closed
system) and building a path of equilibrium configurations to a
state with the free energy known exactly or estimated from a
simple model (commonly an ideal vapor or an ideal crystal);
(ii) pressure tensor calculationby stabilizing the droplet in the
canonical ensemble and computing the surface energy from the
radial profiles of normal and tangential pressures; (iii)umbrella
sampling in an open systemby generating droplets in a
homogeneous system under the constant pressure or constant
chemical potential conditions using a configuration bias. To
emphasize the objective of our work, we start from a brief
critical analysis of these methods.

1.1. Direct Thermodynamic Integration. One of the first
simulation studies of the free energy of small clusters was done
by McGinty in 1973,12 who performed MD simulations of
freezing and melting of small LJ clusters containing up to 100

atoms. The free energy of formation of solid clusters was found
to be in agreement with the microcrystal model. Melting and
freezing transitions in small droplets were modeled by Kris-
tensen et al.13 and then by Briant and Burton,14 who concluded
that the surface tension increases with the cluster size in accord
with the Tolman equation.15

In their seminal paper,2 Lee, Barker, and Abraham (LBA)
performed canonical ensemble MC simulations of small LJ
droplets (up to 100 molecules) in a metastable vapor confined
to a finite volume cell. To find the Helmholtz free energy of
the droplet, a series of simulations were performed in which
the size of the confining cell was gradually increased, keeping
the number of molecules fixed, until the vapor state was reached.
The Helmholtz free energy was found from the volume
dependence of the pressure, assuming that thep dV integral
along this pass gives the reversible work of droplet formation.
The pressure was determined by the virial equation. Later, Lee
et al.16 applied the Barker-Henderson perturbation theory17-19

to the free energy of liquid LJ clusters and found the results in
agreement with the molecular simulations. Another route to
generate a trajectory of equilibrium states for thermodynamic
integration was undertaken by Garcia and Torroja,20 who
gradually heated the cluster until it evaporated. Then, the free
energy was obtained by integration from a vapor state at a high
temperature.

The LBA approach2 was used in several later publications.21-23

Oh and Zeng22 studied the influence of the mobility of the cluster
center of mass on the free energy predicted earlier by Reiss et
al.24 Reguera et al.23 considered the vapor-to-droplet transition
in a small spherical NVT system and calculated the Helmholtz
free energy from the dependence of the pressure on the cell
volume at a constant loading. The authors23 discussed the
importance of accounting for the cluster motion. Because the
size of the simulation cell is comparable with the size of the
cluster, the configurations, in which the cluster approaches the
cell wall, have a nonzero statistical weight. The authors
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introduced a “extended modified liquid drop” model, which was
found to be in good agreement with the MC data.

The LBA approach is based on the assumption that a droplet
in a finite system can be formed reversibly in the process of
decreasing the system volume at a constant loading. However,
as was shown first by Binder and co-workers25,26afor the Ising
model, demonstrated by Kieeling and Percus26bwith nonuniform
van der Waals theory, and discussed recently in detail by
Requera et al.23 for the LJ fluid, the vapor-to-droplet transition
in a finite system contains a spontaneous step. Thus, it is not
possible to construct a truly continuous trajectory of equilibrium
states in the canonical ensemble, which would connect a droplet
state with a reference vapor state. Earlier works necessarily
employed an interpolated trajectory unless the simulation
temperature was sufficiently close to the critical temperature.
Moreover, Reiss and Reguera27 recently questioned the validity
of the virial equation for a heterogeneous system confined to a
small volume. Without application of the virial equation, the
pressure can be apparently estimated from the vapor density
on the periphery of the cell, as done, for example, in ref 3;
however this intuitive method cannot be justified for small
simulation cells either. The Widom insertion method28 seems
to be the best scientifically sound approach to computing the
chemical potential in canonical ensemble simulation; however
its practical accuracy is not sufficient for dense and inhomo-
geneous systems such as liquid clusters.29

1.2. Pressure Tensor Calculation.Direct calculation of the
pressure tensor is probably the most popular method for
computing the surface free energy of liquid clusters, which was
introduced by Rusanov and Brodskaya (RB)3 in 1977. The
authors computed the normal component of the Irving-
Kirkwood30 pressure tensor of small LJ droplets of various sizes
(up to 500 molecules) in a series of MD simulations. The work
of cluster formation and, respectfully, the surface tension of
the spherical interface was calculated by integrating the pressure
tensor. This technique was employed later by Thomson et al.,31

who performed comprehensive MC and MD simulations of
larger (up to 2048 molecules) droplets and obtained the surface
tension and the location of the surface of tension. The results
were qualitatively very similar to those of ref 3. The surface
tension was an increasing function of the droplet radius of
tension that implied a positive Tolman length. Nijmeijer et al.4

simulated even larger (up to 12 000 molecules) clusters. The
authors derived an expression for the surface tension, the radius
of tension, and the Tolman length from the normal and tangential
components of the pressure tensor. In contrast to the results of
refs 3 and 31, they obtained small negative values of the Tolman
length with large deviations due to statistical errors in the
tangential component. In subsequent discussion,32,33Brodskaya
and Rusanov revisited the data of Nijmeijer33 and came to
positive values of the Tolman length. Later, Haye and Bruin34

obtained a positive value of the Tolman length for a similar
cluster at higher temperature. Recently, el Bardouni et al.35

calculated pressure profiles across flat, cylindrical, and spherical
interfaces and concluded that the surface tension is independent
of the interface shape.35

An apparent inconsistency of the results reported in the
literature shows that the pressure tensor method is questionable
in nanoscale systems. It is worth noting that most authors,
including Brodskaya and Rusanov,3 assumed an ideal interpreta-
tion of reference liquid and vapor phases (ideal vapor and
incompressible liquid) that in our experience should have
affected the calculated free energies substantially. Moreover,
ten Wolde and Frenkel5 questioned the very validity of the

pressure tensor calculations for small droplets. They demon-
strated a striking disagreement with the results of the constant-
pressure MC simulation of LJ droplets. In our recent study,36

we performed MD simulations to calculate the nucleation barrier
in accord with the RB method3 and found a qualitatively similar
discrepancy with the results of MC simulations rendered in
accord with the approach employed in this work, thus confirm-
ing that the mechanical approach based on the calculation of
the pressure tensor is inconsistent with the thermodynamic
interpretation of the results of MC simulations.

1.3. Umbrella Sampling in an Open System.Ten Wolde
and Frenkel5 suggested constant-pressure MC simulations with
a configuration bias as a practical alternative to methods based
on the canonical ensemble. Clusters, which emerge in an open
system as fluctuations, were sampled by imposing a fictitious
potential that depended on the cluster size. To calculate the
cluster free energy, the authors employed the umbrella sampling
technique.29,37 The size dependence of the droplet free energy
was derived from the droplet size distribution. Although the
umbrella sampling technique has a rigorous statistico-mechanical
foundation, it is computationally demanding. It is worth noting
also that the biasing potential depends on an accepted definition
of molecular clusters, which has a geometrical rather than a
thermodynamic nature. In this work, we employed the data of
ref 5 to verify the MC approach that we developed.

Chen et al.38 employed a combination of an aggregation-
biased MC technique10,39 and umbrella sampling to determine
the nucleation barriers for LJ clusters composed of up to 300
molecules. The authors demonstrated the computational efficacy
of their method. The results of ref 38 compare well with those
of refs 5 and 22. Kusaka et al.7 employed a grand canonical
MC (GCMC)40 simulation with restricted number of molecules
and estimated the free energy from a probability of observation
of the cluster of a given size. Later, Kusaka and Oxtoby6

presented another approach that did not involve a cluster
criterion but explored the stochastic evolution of the metastable
vapor phase with emerging clusters in GCMC simulation aided
by the umbrella sampling. The authors attained a coarse-grained
description of the stochastic process by introducing proper order
parameters (loading and potential energy) and evaluated the free
energy of cluster formation as a function of the order parameters.
The statistical weights of the molecular configurations were
modified to favor the formation of large clusters, which would
have a negligible chance to appear in unbiased simulations. From
the distributions of cluster sizes, the authors derived the
dependence of the free energy on the cluster size. Several
methods employed calculations of free energy gains caused by
adding a molecule to a cluster. For example, Hale41 calculated
the configurational Helmholtz free energy differences between
clusters consisting ofn andn - 1 molecules. From this “free
energy profile”, he obtained the entropy and effective surface
tension.

Although the umbrella sampling techniques are the best
currently available methods for calculating the cluster free
energy, the biasing potential depends on an accepted cluster
criterion, which has a geometrical rather than a thermodynamic
nature. Different cluster criteria employed in different methods
may affect the results of simulations and cause deviations of
reported data.38

In this work, we demonstrate a new MC simulation approach
to generate critical nuclei in a metastable vapor and to determine
the nucleation barriers. We consider the vapor-to-liquid transi-
tion in LJ fluid confined to a spherical cell with repulsive walls.
The approach, which technically could be associated with direct
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thermodynamic integration, is free of the shortcomings of the
techniques discussed above. It exploits two simulation methods
that we introduced recently and applied to modeling phase
transitions in small pores: thegauge cell method,42,43 in which
clusters are stabilized by restricting the range of allowed density
fluctuations and the chemical potential of the cluster is measured
directly, and theghost field method,11 in which a potential well
of tunable magnitude is introduced to construct a continuous
trajectory of states connecting a reference cluster and a low-
density vapor state and the cluster free energy is computed by
the thermodynamic integration along this trajectory. The focus
is on the implementation and technical details of the ghost field
method.

The rest of the paper is structured as follows. In section 2
we employ the capillarity approximation of the classical
nucleation theory (CNT) and qualitatively analyze the specifics
of the vapor-to-liquid transition in a finite volume, emphasizing
the key problems to be addressed in molecular simulations.
Section 3 describes the model systems considered in MC
simulations and the simulation details of the gauge cell method
and the ghost field methods employed. Simulation results and
free energy calculations are presented in section 4. The
nucleation barriers and the surface tension of droplets of LJ
fluid are discussed in section 5. Conclusions are given in section
6.

2. Vapor-to-Droplet Transition in a Finite Volume: An
Insight from the Classical Nucleation Theory

2.1. D-Droplets, E-Droplets, and Superspinodal.In this
work, we study the vapor-to-droplet transition in a LJ fluid
confined to a spherical cell of radiusRand volumeV ) 4/3πR3.
To highlight the main problem to be addressed in simulations,
let us start from the capillarity approximation of the classical
nucleation theory,44-46 which represents a liquid cluster as a
spherical droplet (CNT model). In the thermodynamic approach
of Gibbs, the density and the pressure in the droplet as well as
the density and the pressure in the surrounding vapor are
assumed to be uniform up to the dividing surface. The condition
of chemical equilibrium implies that the pressurespl and p v

and densitiesF l andFv of these uniform phases correspond via
the equation of state to the respective phases at a given chemical
potential µ. The droplet radiusr is defined from the mass
balance, namely,

where Nd(µ) is the total number of molecules in the cell
distributed between the droplet and the vapor. The second
summand in the right-hand side of eq 1 represents the excess
droplet mass,∆N*(µ), which does not depend on the cell
volume. The condition of the mechanical equilibrium is given
by the Laplace equation,

where∆p ) pl - pv is the pressure difference between the liquid
inside the droplet and vapor outside andγ is the surface tension.

In the CNT model used below, the difference between the
equimolar radius defined by eq 1 and the radius of tension,
which should be employed in eq 2, is ignored as well as the
radius dependence of the surface tension. For the latter, we
assume the planar value of the surface tension,γ∞, determined

in MC simulations. Within these assumptions, eqs 1 and 2 give
the isotherms of LJ droplets confined to a finite volume. A series
of the droplet isotherms in the cells of different radii are
presented in Figure 1 as the average fluid density in the cellF
) N/V reduced to the molecular diameter cubed,Fσ3, versus
the supersaturationpv/p0. To provide the closest fit to the MC
simulation results and to avoid additional errors related to the
conventional assumptions of an ideal vapor and of an incom-
pressible liquid, we employ the equation of state of a LJ fluid
by the equation of Johnson, Zolveg, and Gibbins (JZG),47 which
takes into account the particular model employed for the
intermolecular potential. We assume a LJ fluid with 5σ cutoff
at kT/ε ) 0.7625, which is studied below in MC simulations.
The surface tensionγ∞ is the most sensitive parameter. Different
values ofγ∞ were reported in the literature for these conditions.
Figure S1 (Supporting Information) shows the dependence of
γ∞ on the temperature and the cutoff distance. We interpolated
the results of different authors,38,48,49assuming thatγ∞ is a linear
function of ε/kT, and obtained values from 0.888 to 0.92ε/σ2.
The value ofγ∞ ) 0.91 ε/σ2 48 was used in calculations.

As the supersaturation increases, the droplet size decreases
in accord with eq 2 whereas the vapor is getting denser. As a
result of the competition of these effects, the droplet isotherms
are nonmonotonic, Figure 1. At lower pressures, the density
change with the increase of the vapor pressure is determined
by droplet contraction, while at higher pressures the contribution
from the droplet becomes negligible and the isotherm approaches
the isotherm of bulk vapor (solid line). The bulk vapor isotherm,
which was also calculated by the JZG equation, terminates at
the vapor spinodal SV reached at pressurepv ) pSV ) 0.0231
εσ-3 (pv/p0 ) 6.95), where the vapor compressibility diverges.
It should be noted that the CNT model with a constant surface
tension does not work at the vapor spinodal, and we do not
attempt to explore near-spinodal regions using this model.

The droplet isothermF(pv) has a minimum at point SSL where
the vapor densification offsets the droplet shrinking. The system
compressibility (∂F/∂pv)V,T increases monotonically from nega-
tive values for large droplets (low pressures) to positive values
for smaller droplets (high pressures). The minimum SSL corre-
sponds to a state of zero compressibility (∂F/∂pv)V,T ) 0. Note
that here we are discussing the compressibility of the whole
system, droplet and vapor, rather than compressibility of a
solitary droplet, which is always negative. By analogy with the

Figure 1. Isotherms of droplets and vapor configurations in spherical
cells of different radii (shown in the chart) with hard walls calculated
using the CNT. Superspinodals SSL the states of zero compressibilty,
correspond to the minima of droplet isotherms, which separate
D-droplets and unstable E-droplets. The CNT does not work in the
vicinity of the vapor spinodal SV.

Nd(µ) ) Fv(µ)V + 4
3
πr3[Fl(µ) - Fv(µ)] (1)

∆p ) 2γ
r

(2)
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spinodal as a state of diverging compressibility, we refer to a
state of the vanishing compressibility assuperspinodal.50a The
superspinodal determines the lowest density of the system at
which a droplet state can exist. Thus, in the range of densities

between the vapor spinodal and the superspinodal,FSV > F >
FSSL, the CNT model gives three different states at the same
density: “large” droplet D in a “low” density vapor (Figure 2),
“small” droplet E in a denser vapor at a higher pressure, and
vapor V at an even higher pressure.

As was shown by Binder and Kalos,25,26awho studied vapor-
to droplet transition in the Ising lattice model, and thoroughly
discussed recently by Reguera et,23 who studied a LJ fluid, the
E-droplets are entirely unstable even in the closed system. This
means that an E-droplet is unstable with respect to infinitesi-
mally small local fluctuations of the fluid density. In fact, an
E-droplet plays the role of a critical embryo (this is why we
named it an E-droplet) in the vapor-to-droplet transition resulting
in a D-droplet, which occurs at a constant loading.

2.2. Free Energy Analysis and Nucleation Barriers.Let
us consider the work of formation∆WCE of the spherical droplet
of radius r in a vapor confined to a finite volume.50b The
subscript “CE” indicates that the system is considered in the
canonical ensemble at fixedN, V, andT. ∆WCE(r) represents
the difference of the Helmholtz free energy of the vapor with
the droplet of radiusr,

and that of the initial vapor state V without a droplet,

In eq 3, the condition of chemical equilibrium between the liquid
in the droplet and the vapor is assumed explicitly so that the
liquid and vapor pressurespl/v and densitiesFl/v are parametrized
by the same chemical potentialµ in accord with the equation
of state for bulk phases.µ is related to the droplet radiusr
through the equation of mass balance,

Equation 6 implies that the droplet formation (dissolution) in
the process of vapor-to-droplet (droplet-to-vapor) transition
occurs at constant loadingN or at a constant overall densityF
) N/V, asV ) constant. Vapor-to-droplet and droplet-to-vapor
transitions correspond to horizontal lines in Figure 2a, where
the isotherms in theR) 12.5σ cell are presented in coordinates,
loadingN (total number of molecules) versus chemical potential
µ.

The work of droplet formation∆WCE(r) as a function of the
droplet radius is given in Figure 2b (to be specific we present
calculations for the 12.5σ cell). At F > FSSL, it has a maximum
and a minimum determined from the condition,∂Fd/∂r|N,V,T )
0, which, as follows from the direct differentiation of eq 3 with
taking into account the Gibbs-Duhem equations,∂pl/v/∂µ|T )
- Fl/v, implies the Laplace eq 2 reflecting mechanical equilib-
rium between the droplet and the vapor,∆p ) pl - pv ) 2γ/r.
Thus, the maxima and minima of∆WCE(r) correspond to
equilibrium droplet states, E and D, defined by eqs 1 and 2. By
substitution of the Laplace eq 2 into eq 3, the Helmholtz free
energy of an equilibrium droplet state reduces to

Figure 2. (a) Vapor and droplet isotherms in aR ) 12.5σ pore
calculated using CNT. D, stable/metastable droplet configurations; V,
vapor configurations; E, unstable droplet configurations. Ve-De states
correspond to the vapor-droplet equilibrium. Superspinodal SSL

separates D and E droplets. (b) The work of droplet formation as a
function of droptet radiusr at constant loading∆WVD > 0 at Fσ3 )
0.038,∆WVD < 0 atFσ3 ) 0.027 and VDE corresponds toFσ3 ) 0.0305
at ∆WVD ) 0. The minima correspond to vapor (r ) 0) and D droplets;
the maxima correspond to E-droplets that play the role of critical
embryos and determine the height of nucleation barrier for vapor-
droplet transition (c) Helmoholtz free energy vs loading for vapor,
D-droplet, and E-droplets states. The intersection of the V and D
branches correspond to the vapor-droplet equilibrium.

Fd ) -(V - 4
3

πr3)pv(µ) - 4
3

πr3pl(µ) + µN + 4πr2γ (3)

Fv ) - V(pv(µV) + µFv(µV)) (4)

∆WCE(r) ) Fd(µ) - Fv(µV) (5)

N ) FV ) Fd(µ)V ) Nd(µ) )

Fv(µ)V + 4
3

πr3[Fl(µ) - Fv(µ)] ) Nv(µV) ) Fv(µ)V (6)

Fd ) -Vpv(µ) + µN + 4
3

πr2γ (7)
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The minimum of the work of droplet formation corresponds
to the large droplet state D on the droplet isotherm depicted in
Figure 2b. Depending on the loadingN, the minimum of∆WCE-
(rd) can be either negative, positive, or zero. Negative∆WCE-
(rd) corresponds to the droplet states that have a smaller
Helmholtz free energy than that of the vapor state at the same
loading,FD < FV. Therefore, the vapor-to-droplet transition is
energetically favorable and leads to a stable droplet, transition
V1 f D1 in Figure 2a. Positive∆WCE(rd) corresponds to the
droplet states that have a larger Helmholtz free energy than that
of the vapor state at the same loading,Fd > FV. In this case,
the droplet-to-vapor-transition is energetically favorable and
leads to a stable vapor state, transition D2 f V2 in Figure 2.
The condition∆WCE(rd) ) 0 corresponds to the vapor-droplet
equilibrium (VDE) in the closed system in a sense thatFd )
FV, transition De f Ve in Figure 2a. The maximum work of
droplet formation corresponds to a small droplet E. Thus, an
E-droplet is entirely unstable; any fluctuation of its size is
energetically favorable. It is worth noting again that we are
considering a closed system, in which conditions of stability
are different from those in an open system; any droplet state
would be unstable in an open system.

Stability analysis of droplet and vapor states in the closed
system is illustrated by the plot of the variation of the Helmholtz
free energy along the droplet and vapor isotherms as a function
of the loading given in Figure 2c. The point of intersection of
droplet and vapor branches corresponds to the VDE. At larger
loadings,N > Ne, FD < FV. D-droplet states are stable, and
vapor states are metastable. At smaller loadings,NSSL > N <
Ne, FD > FV, D-droplet states are metastable, and vapor states
are stable. The left turnover point, which corresponds to the
superspinodal SSL, separates metastable D-droplets and unstable
E-droplets located on the upper branch SSLSV. The Helmholtz
free energy of the E-droplet states exceeds those of D-droplet
states and the vapor states at the same loading.

The work of formation of the unstable droplet E1 represents
the nucleation barrier for the formation of the stable droplet D1

in the closed system of volumeV. That is to say that the
nucleation barrier of the vapor-to-droplet transition is determined
by

The difference between the Helmholtz free energies of the
metastable stable droplet D2 and the unstable droplet E2

determines the nucleation barrier for the droplet-to-vapor
transition,

At the superspinodal SSL, the nucleation barrier for the
droplet-to-vapor transition vanishes, thus indicating the lower
limit of metastable D-droplets in the closed system. At the VDE,
the nucleation barrier for the droplet-to-vapor transition equals
the nucleation barrier for the vapor-to-droplet transition. The
VDE condition reads

We should note that the nucleation barriers eqs 7 and 8

determine the rates of vapor-to-droplet and droplet-to-vapor
transitions in the closed system of volumeV. In an open system,
for example, in a supersaturated vapor kept at constant chemical
potential in the grand canonical ensemble, the nucleation barrier
for the vapor-liquid transition is given by the Gibbs formula

∆Ωd represents the difference of the grand thermodynamic
potentials of a fixed volumeV of the vapor with the droplet,
Ωd ) -(V - 4/3πr3)pv - 4/3πr3pl + 4πr2γ, and without,Ωv )
-Vpv.

2.3. Lessons from the CNT Analysis.Albeit being an
approximate theory, the CNT model shows the main problems
to be addressed in molecular simulations of droplet nucleation
in a closed system. For a given cell volumeV, there exists a
lower limit of droplet sizes,rSSL, which can be stabilized and
studied in the closed system. This limit corresponds to the
superspinodal SSL, the minimum point on the droplet isotherm,
which separates metastable D-droplets ofr > rSSL and labile
E-droplets ofr < rSSL. To study smaller droplets, the cell size
must be reduced. The dependence ofrSSL on the cell volume is
given in Figure S2 (Supporting Information). Above the
superspinodal, the vapor and droplet states at the same loading
are separated by an energy barrier that corresponds to the work
of formation of an E-droplet, eqs 7 and 8. Only when the
nucleation barrier at the VDE,∆WVDE(N,V,T), is small enough
(in our experience not exceeding severalkT for simulation runs
of several million MC steps), it is feasible to sample the whole
configuration space and to construct a continuous isotherm
connecting droplet and vapor states. Such small nucleation
barriers are observed only in very small volumes or in the
vicinity of the critical temperature. Thus, if∆WVDE(N,V,T) is
low enough and the simulation is long enough, then a sequence
of jumps between D-droplets and vapor over E-droplet states
can be sampled in a single CEMC simulation, and the simulated
continuous isotherm exhibits a rounded step. This situation is
similar to that found in GCMC simulations of capillary
condensation in narrow pores.43 In this case, the free energy of
droplets and, respectively, the nucleation barriers can be
calculated by the thermodynamic integration as was done in
refs 2, 22, and 23.

For practical applications, the most interesting range of
nucleation barriers is 20-100kT. These barriers cannot be
overcome in unbiased MC simulations. That is to say that in
CEMC simulations we should expect to observe a hysteresis.
Due to a finite length of the simulation run, the sampling is
confined either to the domain of vapor configurations or to the
domain of D-droplet configurations. With the decrease of
loading from a stable D-droplet state, a spontaneous evaporation
occurs at some point between the VDE and the superspinodal
SSL and vice versa. With the increase of loading from a stable
vapor state, a spontaneous condensation occurs at some point
between the VDE and the vapor spinodal SV. The resulting
hysteresis loop may look similar to the loop D1V1V2D2 in Figure
2a.

A discontinuous droplet-to-vapor transition in a finite volume
was first demonstrated by Binder and Kalos using a ferromag-
netic Ising lattice.25,26aReguera et al. found a discontinuity of
droplet evaporation in a LJ fluid at a constant loading as the
cell volume increased.23 This process is similar to the process
of droplet evaporation in a cell of a fixed volume as the loading
decreases, which we consider here. To demonstrate this similar-
ity, we show in Figure 3a the droplet and vapor isotherms at

∆WVD(N,V,T) ) ∆WCE(rE) )

V(pv(µV) - pv(µE)) - (µV - µE)N + 4π
3

rE
2γ (8)

∆WDV(N,V,T) ) Fd(µE) - Fd(µV) )

V(pv(µV) - pv(µE)) + (µE - µV)N - 4π
3

(rD
2 - rE

2)γ (9)

V(pv(µVe) - pv(µDe
)) - (µVe

- µDe)Ne + 4π
3

rDe

2γ ) 0 (10)

∆Ωd ) 4π
3

r2γ ) 2π
3

∆pr3 ) 16πγ3

3(∆p)2
(11)
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constant loadingN ) 895, which corresponds to the SSL atR )
25σ. This plot is quite similar to that of ref 23. The turnover
point SSL is a superspinodal point of vanishing compressibility,
which separated metastable D-droplets and labile E-droplets.
Figure 3a may be rebuilt inF - pv coordinates (Figure 3b).
The isotherm at the fixed loading (N ) 895) has the same
superspinodal as the isotherm in the fixed volume (R ) 25σ).
That is to say that the droplets smaller thanrSSL corresponding
to the superspinodal cannot be simulated at eitherN ) constant
or V ) constant.

To conclude, the superspinodal behavior makes it impossible
in CEMC simulation to build a continuous path of equilibrium
configurations connecting droplet states and vapor states because
it would necessarily include inherently unstable configurations
of E-droplets, which correspond to maxima of the Helmholtz
free energy. Integration along the excess isotherm of D-droplets
gives the variation of the nucleation barrier with the droplet
size according to the general thermodynamic equation that stems
from the nucleation theorem,51,52

Here,∆Ω(µR,T) is the nucleation barrier for the reference droplet
at a certain chemical potentialµRthat serves as a reference
droplet state R. Because the isotherm of the D-droplets
terminates abruptly, the nucleation barrier of the reference
droplet has to be estimated independently. To calculate the
nucleation barrier of a selected droplet, we employ the ghost
field method.11 This method allows us to construct a continuous

trajectory connecting a vapor state and the reference droplet
state and to calculate its free energy by thermodynamic
integration.

3. Simulation Details

3.1 Model Systems.We studied vapor-to-droplet transition
in a Lennard-Jones (LJ) fluid confined to a spherical cell with
repulsive walls (called below the pore) to prevent heterogeneous
nucleation. To provide a potential opportunity for comparison
of the simulation results with experimental data, most simula-
tions and a detailed analysis of the host field method employed
for calculating the nucleation barrier were performed for a LJ
model nitrogen53 at its normal boiling temperature of 77.4K
(system 1). To compare our approach with previously published
data, we also simulated the system studied by ten Wolde and
Frenkel5 (system 2). The parameters of these two systems are
as follows.

System 1 (Model Nitrogen).Relatively large droplets (N )
800-1900 molecules) in a 25σ pore cell and a LJ fluid with
the cutoff at 5σ at kT/ε ) 0.7625 were used. The wall exerted
a repulsive potential as shown in Figure 4:Φsf(r) ) 0 at r <
22.5σ andΦsf(r) ) 4ε(r - 22.5σ) at r > 22.5σ.

System 2 (ten Wolde and Frenkel Fluid).Smaller droplets
(N ) 270-600) in a 12.5σ pore cell and a LJ fluid with the
cutoff at 2.5σ at kT/ε ) 0.741 were used. Ten Wolde and
Frenkel reported for this system the saturation pressurep0 )
7.83× 10-3 ε/σ3 that is ca. 2% lower than the value ofp0 )
8.01 × 10-3 ε/σ3 given by the JZG equation of state.47 The
wall exerted a repulsive potential as shown in Figure 4:Φsf(r)
) 0 at r < 2.5σ andΦsf(r) ) 2ε(r - 11.5σ) at r > 11.5σ.

The vapor states, which are metastable in an open system,
were simulated by the standard grand canonical MC (GCMC)
method. The droplets, which are unstable in an open system,
were simulated using the gauge cell MC method.42,43

3.2. Gauge Cell MC Method. In the gauge cell MC
method,42,43the simulation is performed simultaneously in two
cells, which are in chemical equilibrium at isothermal conditions.
One of the cells represents the pore, and the other is a gauge
cell of a limited capacity. Mass exchange between the cells is
allowed; however, the cell volumes are kept unchanged. The
density fluctuations in the pore are controlled by the gauge cell
capacity (volume). In the limit of infinite capacity, the gauge
cell method is equivalent to the grand canonical MC (GCMC)
method. In the limit of vanishing capacity, it is equivalent to

Figure 3. (a) Isotherms of droplet and vapor states at constant loading
N ) 895 and variable volumeV calculated using the CNT. Arrows
indicate vapor-droplet and droplet-vapor transitions (b) Droplet
isotherms at constant loading (N ) 895) and constant volume (R )
25σ) conditions. The isotherms coincide at the minimun showing that
the superspinodal behavior does not depend on the route of varying
the supersaturation.

∆Ω(µ) ) ∆Ω(µR) - ∫µDR

µ
∆N*(µ) dµ (12)

Figure 4. External potential field applied in Monte Carlo simulations
for systems 1 and 2. Bold solid lines S1 and S2 show the soft repulsion
from the walls. Thin lines show the ghost field profile in different
systems. G1 (solid),-4ε potential well in system 1; H1 (dashed),-2ε

potential well in system 1; G2 (dotted),-2ε potential well in system
2; H2 (dashed-dotted),-1ε potential well in system 2.

Ghost Field Method Study of a LJ Fluid J. Phys. Chem. B, Vol. 109, No. 12, 20055967



the canonical ensemble MC (CEMC) method. Choosing the ratio
of the gauge cell and pore volumes sufficiently small, one can
stabilize the fluid in a droplet state, which would be unstable
in an open system. The chemical potential of the droplet state
is assigned equal to the chemical potential measured in the gauge
cell in accord with the JZG equation. Thus, the gauge cell has
two functions, to prevent undesirable growth or decay of droplets
and to measure their chemical potential. Note that with the gauge
cell method one constructs the canonical ensemble isothermN(µ)
in the closed system.

A cube with triply periodic boundary conditions was em-
ployed as the gauge cell. The linear size of the gauge cell was
at least 40σ and was adjusted so that a sufficient number of
fluid molecules was contained in the gauge cell during the
simulation. The number of molecules in the gauge cell varied
from 40 to 100. The standard simulation length was about 5×
104 MC steps per molecule for system 1 and about 2× 105 per
molecule for system 2. Each step included one attempt of
molecule displacement in each cell and two attempts of molecule
transfer between the cells. A constant external field was applied
in the gauge cell to avoid fluid condensation in the gauge.

The internal structure of the droplet was characterized by
profiles of local density from the droplet center of mass. We
did not constrict the droplet motion in the cell. Thus, the
simulated droplet is an “RKC cluster” (after ref 24) rather than
an “LBA” (after ref 2).22

3.3. Ghost Field MC Method. To calculate the nucleation
barrier by integration of the excess droplet isotherm in accord
with the nucleation theorem, eq 12, it is necessary to determine
the nucleation barrier∆Ω(µR,T) for a reference droplet state R.
To this end, it is necessary to build up a continuous trajectory
of equilibrium states, which would connect the reference droplet
state to a state with known Helmholtz free energy. Since the
droplet isotherm cannot be continued in the region of small
droplet size due to their inherent instability, it is impossible to
connect the droplet isotherm with a vapor state. Technically, it
is possible to connect the droplet isotherm to a liquid state, a
state at which the pore is completely filled by liquid. When
this construction is possible, the free energy of the liquid state
can be determined, e.g., by the Peterson-Gubbins technique54

employed in studies of hysteretic capillary condensation in
mesopores. However, this construction is feasible only for a
very small system where the droplet size can be increased up
to the size of the cell. Therewith, the droplet isotherm smoothly
passes through a turnover point of the liquid spinodal and
transforms into the liquid isotherm, as shown in our simulation
of the 7.5σ cell (Supporting Information, Figure S3). However,
the total number of molecules in the 25σ liquid droplet would
be about 5× 104, which is too large for simulation to be feasible.

We employ the ghost field method11 to construct a continuous
trajectory connecting the reference droplet state and a vapor
state and to calculate its free energy by thermodynamic
integration. The ghost field method was established to calculate
the nucleation barriers for capillary condensation in cylindrical
capillaries with wetting walls.11 In this work, we focus of the
technical details of the ghost method as applied to studies of
droplet nucleation. The reference droplet is constructed in the
following fashion. An external “ghost” field is introduced in
the cell center to provide the continuous formation of the droplet
state of a desired density. The ghost field represents a potential
well úΦG(r ) of tunable magnitudeú (0 e ú e 1). ú ) 1
corresponds to the full scale ghost field;ú ) 0 corresponds to
its absence. That is to say that the fluid in the cell is subject to
the external potential, which is a sum of the repulsive potential

exerted by the pore walls,ΦW(r ), and the attractive potential
well in the pore center with tunable depth, the ghost fieldúΦG-
(r ): Φext(r ) ) ΦW(r ) + úΦG(r ). The profiles of the external
potential with the full scale ghost field (ú ) 1) are shown in
Figure 4. The continuity of the potential in the radial direction
was secured by a transition zone, where the field changes
linearly. To check the method consistency, we probed two
different ghost fields for each system. They differed in the depth
of the potential wellΦG(0): -4ε and-2ε in system 1 and-2ε

and-1ε in system 2.
Starting from a low-pressure vapor state, we first perform a

series of gauge cell (or GCMC when applicable) simulations
to trace vapor condensation in the potential well (ú ) 1), which
occurs as the vapor pressure increases. Second, once the droplet
state of the desired densityNR is achieved, the ghost field is
turned off gradually, step-by-step in a series of CEMC simula-
tions performed with incremental changes of the ghost field
magnitude fromú ) 1 to ú ) 0, keepingNR unchanged. That
is to say that the reference D-droplet is continuously connected
with the initial vapor state.

4. Simulation Results

4.1. Isotherms.The isotherms of the droplet and vapor states
generated by the gauge cell MC simulation are shown in Figures
5a and 5b. The vapor branches of the isotherms practically
coincide with those obtained from the JZG equation with the
density corrected to the repulsion from the wall. The droplet
isotherm is in semiquantitative agreement with the isotherm of
the D-droplets predicted by the CNT model, eqs 1 and 2. In
system 1, we started from a large cluster of about 1600
molecules (r ) 7.7σ, about 1900 molecules in the cell) and
traced the D-branch down to a small cluster of about 370
molecules (r ) 4.8σ, about 800 molecules in the cell). As the
loading decreases further, the droplet evaporates, and a transition
to a vapor configuration occurs. Vice versa, when we gradually
increase the density in the vapor phase, it experiences a
spontaneous transition to a D-droplet at a higher density. A
similar hysteretic behavior was observed in system 2. The
spontaneous transitions between droplet and vapor states are
shown by dotted arrows in Figures 5a and 5b.

In Figure 5c, we present the excess droplet isotherm∆N* )
V(FD(µ) - FV(µ)) derived from the droplet and vapor isotherms
in system 2 and compare it with the data of ref 5 obtained using
the umbrella sampling in NPT ensemble. At lower pressures
(and larger clusters), the two simulation methods agree very
well. However, our simulation gives a larger∆N* (which means
a larger cluster) at the same supersaturation. The difference is
more pronounced for small clusters. This discrepancy can be
explained by the different definitions of the clusters employed.
The authors5 defined clusters using a geometrical criterion
calculating the distances between the molecular centers. We rely
on the purely thermodynamic definition of the excess mass,
which is de facto an average over fluctuating cluster configura-
tions sampled at the same loading in the gauge cell method.
The smaller the cluster, the more important it is the role of
cluster size fluctuations.

The density profilesF(r) of the droplets calculated from the
center of mass in system 1 are shown in Figure 6. They are
typical for spherical clusters. Except for the smallest one, the
droplets are large enough to have a constant density in the core
region, where the average fluid density is approximately the
same as that in the bulk liquid. Typical snapshots of droplet
states are presented in Figure 7. The largest and the smallest
droplets stabilized in the gauge cell method are given in Figures
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7a and 7b, respectively. In the vicinity of droplet-vapor
transition, the cluster surface becomes rough, and the boundary
between the cluster and the surrounding vapor becomes more
diffuse (Figure 7b). The fluid density in the vapor region
gradually decreases to a constant value, which is within ca. 5%
of the bulk density at the same supersaturation. That is to say
that the Gibbs construction is appropriate to determine in accord
with eq 1 the equimolar droplet radius, which is marked by a
dotted line.

The adsorption isothermsF(µ) in the cell with the ghost field
(ú ) 1) obtained using the gauge cell method are shown in
Figures 5a, 5b, and 5d. They all have a sigmoid shape
characteristic to capillary condensation in small pores clearly
seen in Figure 5d, where the isotherms are presented as functions
of the chemical potential. We start the isotherm from an ideal
gas state at a sufficiently low vapor density. A van der Waals
loop corresponds to the vapor condensation in the ghost field
potential well. For example, in system 1 with a-4ε well (open
triangles in Figure 5a), atFσ3 ) 3.4 × 10-4 (22 molecules in
the system) the fluid is vaporlike, but atFσ3 ) 6.0× 10-4 (39
molecules) a small droplet already forms in the potential well
(Figure 5a). As the vapor pressure increases, the droplet grows
gradually, and atFσ3 ) 1.74× 10-2 it achieves the size of the
D-droplets that were observed without the ghost field. The
isotherms in system 2 are qualitatively similar to those in system
1 (Figure 5).

In Figure 5d, we present two isotherms in system 2 that were
obtained by applying ghost field potentials of different depths.
As expected, in the deeper well, the condensation occurs at a
lower pressure.

The droplet growth in the ghost field (ú ) 1, curve G in
Figures 5a and 5b) was stopped at point G (Figure 5a) once the
loading NR of the targeted reference droplet state R was
achieved. The droplet formed in the ghost field has a higher
density in the center due to the potential well and more distinct
boundaries. Typical snapshots of the droplet grown in the ghost
field (ú ) 1, state G) and of the reference droplet (ú ) 0, state
R) are presented in Figures 7c and 7d, respectively. Density
profiles are given in Figure 8. The sharp interface makes fluid

Figure 5. Simulated isotherms of the LJ droplets and vapor in (a) system 1 and (b) system 2. Point G is the droplet state stabilized in the full-
strength ghost field (ú ) 1); point R is the reference droplet state (ú ) 0). The GR trajectory (horizontal dashed line) corresponds to ghost field
removal at constant loading. Horizontal arrows indicate the transitions between vapor (V) and droplet (D) states. (c) Comparison between the
excess isotherms of droplet states simulated in system 2 in this work and ref. (d) Isotherms of droplets stabilized in the ghost field (system 2). Van
der Waals type loops correspond to condensation in the potential well.

Figure 6. Density profiles of the LJ droplets of different sizes atkT/ε
) 0.762. The dotted line shows the densities of the bulk equilibrium
liquid and vapor at saturationp ) p0. Thin solid lines show the locations
of the equimolar dividing surfaces.
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to structure in distinct adsorbed layers that is typical for capillary
condensate in a small spherical pore (Figure 8a). In the
subsequent series of CEMC simulations, shown by horizontal
dotted lines Gf R in Figures 5a and 5b, the ghost field was
gradually removed by incremental tuning of the host field
magnitudeú from 1 to 0. In the process of the ghost field
removal, the density profile smoothens (Figures 8a-c), and the
fluid partly evaporates, because the undisturbed ghost field
reference droplet R atú ) 0 corresponds to a higherµ, µG <
µR. The density profiles in Figure 8 are reckoned from the center
of the cell. Due to droplet motion, they may differ from the
density profiles calculated from the droplet center of mass.

4.2. Free Energy Calculation.4.2.1. Thermodynamic Inte-
gration.The continuity of the droplet isotherm in the full scale
ghost field,NG(µ), provided by the gauge cell method allows
us to calculate the Helmholtz free energyFR(N,V,T) of the
droplet state G (Figure 5) at overall loadingNG ) NR in the
ghost field by thermodynamic integration at constant temperature
T and volume of the cellV

Here, we assume that the integration starts from an ideal gas
state atµ ) µIG.

To calculate the change of the Helmholtz free energy of the
droplet state in the process of the ghost field being turned off,

along the CEMC trajectory Gf R (ú ) 1 f ú ) 0), we employ
the following scheme. Let us consider the Helmholtz free
energy,FG(NR,ú), of the fluid in the ghost field of the magnitude
ú. FG(N,1) ) FG(NR) andF(NR,0) ) FD(NR). F(N,ú) is defined
through the canonical partition function

as

Here,Φ(rN) is the total potential energy of interactions between
the molecules and between the molecules and the repulsive wall,
andúΦG(rN) is the potential energy of particle interaction with
the ghost field of magnitudeú. The derivative ofF with respect
to the host field magnitude is represented as the canonical
ensemble average of the ghost field

Figure 7. Snapshots of the LJ droplets (system 1). (a) One of the largest droplets (total 1805 molecules). (b) Smallest droplet obtained in system
1 (total 793 molecules). (c) Droplet grown in the ghost field atú ) 1 (state G in Figure 5a). (d) Reference droplet of the same density atú ) 0
(point R in Figure 5a).

FG(NR) ) - kNG(µIG)T - ∫µIG

µG NG(µ) dµ + µNR (13)

Q(N,V,T,ú) ) 1

Λ3NN!
∫ drN exp(-(Φ(rN) + úΦG(rN))/kT)

(14)

F(N,V,T,ú) ) - kT ln Q(N,V,T,ú) (15)

∂F
∂ú|N,V,T

) - kT
1
Q

∂Q
∂ú |N,V,T

)

∫ drN ΦG(rN) exp(-(Φ(rN) + úΦG(rN))/kT)

∫ drN exp(-(Φ(rN) + úΦG(rN))/kT)
) 〈ΦG〉N,V,T,ú

(16)
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Here, 〈ΦG〉ú (subscriptsN, V, and T are omitted for clarity)
denotes the canonical ensemble average of the ghost field over
the fluid configurations sampled in the ghost field of the
magnitudeú. 〈ΦG〉ú can be calculated by weighting the host
field with the average fluid densityFú(r ) in the ghost field of
the magnitudeú

The evolution of the density profileF(r) along the trajectory
G f R is shown in Figure 8. Note that because the droplet
motion is not constrictedFú(r ) is not the average droplet density
counted from the droplet center of mass.

Integration of the eq 16 along the CEMC trajectory gives a
practical formula for calculating the Helmholtz free energy,FG

at loadingNR

Thus, the sought Helmholtz free energy of the reference droplet

state without the ghost fieldFD(NR) is given by

Here,WGR is the reversible work of the host field removal that
is equal to

Equation 20 implies a numerical integration whose accuracy
depends on the number of CEMC simulations at differentú )
1, ..., úI, úI+1, ..., 0. An equivalent yet more practical formula
is obtained by changing the order of integration in eq 17.

Here,FGR(r ) is the average local density in the droplet states
along the CEMC trajectory computed by averaging over all
sampled configurations. The profile ofFGR(r ) for system 1 is
given in Figure 8d.

In practice, the ghost field method was implemented as
follows. In system 1, the difference of free energies of the
droplet configurations with and without the ghost field was
estimated atFR) 0.0173σ-3 (NR ) 1121). In the course of the
ghost field removal, the chemical potential is increased from
µG ) -9.03ε (ú ) 1 in -4ε ghost field) toµú)0.5 ) -9.024ε
(G configuration in-2ε ghost field) toµR ) -8.97ε (ú )0,
reference state), which corresponded to an increase in super-
saturationpv/p0 from 1.56 to 1.70. In system 2, we used the
lowest number of molecules available for the calculationN )
286; µG ) -8.019ε (-2ε ghost field),µú)0.5 ) -9.025ε (G
configuration in-1ε ghost field), andµR ) -8.33ε. For the
thermodynamic integration, we performed a series of 13 CEMC
simulations for each system atú ) 1, 0.9, 0.8, ..., 0.1, 0.05,
0.02, 0.

As shown in Figure 9, despite the fact that the total loading
is fixed, 〈ΦG〉ú increases monotonically fromú ) 1 to ú ) 0,
because of a redistribution of molecules in the droplet asú
decreases. Atú ) 1, more molecules are located within the
potential well, and the interface between the liquid droplet and
vapor is sharper (Figure 7). The sharp increase of the magnitude
of 〈ΦG〉ú at ú f 0 (Figure 9) is caused by the droplet motion.
〈ΦG〉ú at ú ) 0 is the potential energy of the fluid interaction
with the full-scale ghost field averaged over the configurations
of the reference droplet R and thus undisturbed by the ghost
field. In this way, the droplet is not pinned and may move
around the pore. Configurations A (droplet in the center) and

Figure 8. Local density profiles of droplets in system 1 simulated at
a constant loading. (a) Droplet in the ghost field (state G,ú ) 1). (b)
Intermediate state,ú ) 0.4. (c)ú ) 0, reference droplet, state R. (d)
Weighted local density profileFGR(r) applied for calculations of the
free energy according to eq 21.

FD(NR) ) FG(NR) - WGR (19)

WGR ) ∫0

1
〈ΦG〉ú dú (20)

WGR ) ∫V
ΦG(r )FGR(r ) dr (21)

Figure 9. The contribution of the ghost field into the Helmholtz free
energy〈ΦG〉ú for systems 1 and 2, eq 17.

〈ΦG〉N,ú ) ∫V
ΦG(r )Fú(r ) dr (17)

F(N,ú) ) FG(NR) - ∫ú

1
〈ΦG〉N,ú dú )

FG(NR) - ∫ú

1 ∫V
ΦG(r )Fú(r ) dr dú (18)
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B (droplet on the periphery) in Figure 10 have practically equal
statistical weight. Yet, configuration A gives a large contribution
to 〈ΦG〉ú, while the contribution of configuration B is minute.
The average density in the pore center is smaller than that of
the fluid subjected to the ghost field. A possibility of droplet
motion requires the use of smaller intervals∆ú asú f 0. At
largerú, the potential energy of fluid interaction with the ghost
field keeps the droplet within the potential well located in the
center of the cell. Although the location of the center of mass
is allowed to fluctuate, the statistical weight of any configuration
with the droplet located on the peripheral parts of the cell is
close to zero.

Simulations with two different ghost fields, the depth of which
differed by the factor of 2, provide a perfect test of the accuracy
of the method. Apparently, the state in the deeper well atú )
0.5 is equivalent to the state in the shallower well atú ) 1.
Thus, the calculated Helmholtz free energy,F(NR,ú), in the
deeper well atú e 0.5 should be equal toF(NR,2ú), as calculated
in the shallower well. For system 2, we have obtained excellent
agreement; the difference was just 2.4kT. For system 1, we have
obtained a substantial difference of ca. 18kT. It is clear that
that the method precision deteriorates when applied to larger
systems because of a large compensation by the integral in the
right part of eq 13

which is strongly negative, by-WGR, which is strongly positive.
For example, in system 1

for the deeper ghost field, and-WGR ) 1658kT. That is to say
that a-4ε ghost field does not provide an acceptable estimate
of the free energy barrier. The nucleation rate is proportional
to the exponent of the nucleation barrier, which means that the
absolute rather than the relative error should be taken into
account. However, for system 2

-WGR ) 304kT. Given the length and the accuracy of
simulations for this system, the estimated statistical error of
2.5kT is very reasonable. The simulation scheme should be built
in a way to avoid the compensation whenever possible. In
particular, it is better to use a smaller droplet as a reference
state and a weaker ghost field.

4.2.2. Umbrella Sampling.A powerful method to calculate
the Helmholtz free energy is the umbrella sampling technique
of Torrie and Valleau37 (see ref 29), which we employed to
check the accuracy of the thermodynamic integration. Equations
14 and 15 imply that the incremental difference in the Helmholtz
free energy of two states sampled in CEMC simulation with
the ghost field of magnitudesúi andúi+1, ∆Fi+1,i, equals

∆Fi+1,i can be expressed through the ensemble average atú )
úi as

As shown in ref 11, a better overlap of the sampled configura-
tions, and respectively a better estimate, is achieved by using
the ensemble average performed in the CEMC simulation with
the ghost field of the intermediate magnitudeúi* ) úi + (úi+1

- úI)/2, defining

The total change of the Helmholtz free energy of the fluid gives
the work of the ghost field removal

In the limit of (úi+1 - úi)ΦG(0)/kT , 1, both methods, eqs 19
and 20 and eqs 24 and 25, are precise and give identical results.

To apply the umbrella sampling technique for estimation of
∆WGR, CEMC states atúi* were generated using the regular
canonical ensemble sampling with the canonical weighting
function. At each state, the free energy difference∆Fi between
the statesúi* - 0.05 andúi* + 0.05 was calculated according
to eqs 22-24. For example, the result of the simulation atú*
) 0.45 is the free energy difference between the configurations
at ú ) 0.4 andú ) 0.5. Figure 11 demonstrates the evaluation
of F(N,V,T) - FG(N,V,T) with both methods, thermodynamic
integration and umbrella sampling. Strictly speaking, the
umbrella sampling technique is reliable when the droplet is
centered in the center of the cell, because accounting for the
cluster motion at lowerú becomes problematic. In system 1,
the total contribution of the ghost field to the potential energy
totals about-3000kT at ú ) 1. Thus, the cluster is pinned to
the potential well, although we do not impose any restriction
to the location of the center of mass. Even atú ) 0.01, the
ghost field produces a heavy bias to the location of the cluster
in the cell. Thus, there may be no good overlap between the
configurations at larger and smallerú. For example, configu-
ration B in Figure 10 has a significant weight atú ) 0 but
would have a negligible weight atú ) 0.02. Comparing the
two techniques, we should note that the estimate of the statistical
error for the umbrella sampling method is somewhat problem-
atic, because it is hardly possible to evaluate whether the
configurations obtained at a certainú are representative atú +
∆ú. As seen in Figure 11, which shows the augment of the
Helmholtz free energyF(N, V, T, ú + 0.5) - F(N, V, T,ú -
0.5), the two methods agree well with each other for system 1

Figure 10. Schematic explanation of the sharp increase in〈ΦG〉ú at ú
f 0. At ú ) 0, configurations with the droplet in the center (A) and
on the periphery (B) have a comparable statistical weight. However,
only configuration A makes a substantial contribution to〈ΦG〉. When
ú is appreciable (ú > 0.05), the droplet is always pinned to the potential
well (configuration A).

∫µIG

µR NG(µ,T) dµ

∫µIG

µR NG(µ,T) dµ ) -1797kT

∫µIG

µR NG(µ,T) dµ ) -271kT

∆Fi+1,i )

-kT ln
∫ drN exp(-(Φ(rN) + úi+1ΦG(rN))/kT)

∫ drN exp(- (Φ(rN) + úiΦG(rN))/kT)
(22)

∆Fi+1,i ) -kT ln 〈exp(- (úi+1 - úi)ΦG/kT)〉úi
(23)

∆Fi ) -kT ln
〈exp(-(úi+1 - úi*)ΦG/kT)〉úi

/

〈 exp((úi* - úi)ΦG/kT)〉úi
/

(24)

WGR ) ∑
i

∆Fi (25)
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though the umbrella sampling gives somewhat larger fluctuations
at the same simulation length. Numerically, the integration
technique for obtainingWGR is more consistent. The umbrella
sampling technique gives larger fluctuations and is more
expensive computationally.

5. Nucleation Barriers and Surface Tension

The nucleation barrier for the reference droplet at the chemical
potentialµDR, ∆Ω(µDR,T), is calculated as

whereΩv(µR) is the grand thermodynamic potential of the vapor
state atµ ) µR. Now, we can apply the nucleation theorem, eq
12, to calculate the variation of the nucleation barrier with the
chemical potential or with the supersaturation, which is related
to µ via the JZG equation of state.47 The results are given in
Figure 12. For system 1, we present the results obtained with
the weaker ghost field of-2ε. We also plot the nucleation
barriers predicted by the CNT model via eq 11 for a LJ fluid
complied with the JZG equation of state. Despite a qualitative
agreement, a quantitative comparison is problematic due to an
uncertainty in the choice of the value of the surface tension
discussed above. For system 1 (rc ) 5σ, kT/ε ) 0.762), we
found values from 0.888ε/σ2 49 to 0.922ε/σ2.38 For system 2
(rc ) 2.5σ, kT/ε ) 0.741), interpolation of the recent simulation
data38,49,55 gives values ofγ∞ from 0.494 used in ref 5 for
comparison to 0.580ε/σ2.49 We used the same values employed
for constructing the droplet isotherms in Figure 5;γ∞ ) 0.91

ε/σ2 48 for system 1, andγ∞ ) 0.494 ε/σ2 55 for system 2.
Technically, it is possible to get a better agreement by fitting
the surface tension in eq 10; however the agreement gained by
fitting may be misleading.

For system 2, we also present the results of ten Wolde and
Frenkel.5 Given the difference in the definition of clusters
discussed above, the agreement is quite reasonable; the differ-
ence varies from 1.5kT to 5kT. Our calculation gives a faster
increase in the nucleation barriers with the droplet size that is
consistent with the fact that our clusters have a larger excess
mass∆N* at sameµ (Figure 4d). Remarkably, three data points
reported by Chen et al.38 for this system practically coincide
with ours. Chen et al.38 employed a different cluster criterion
than ten Wolde and Frenkel,5 which hinders a reliable com-
parison of results.

It is tempting to discuss the dependence of the surface tension,
which is related to the nucleation barrier, on the droplet size.
Note that neither droplet radius nor the surface tension can be
determined directly from MC data without invoking an equation
of state to calculate equilibrium pressures and densities in
respective bulk phases. To this end, we employ the JZG equation
of state. The equimolar radius is determined from the excess
droplet isotherm obtained in the MC simulation in accord with
eq 1. Alternatively, one can determine the radius of tension of
the spherical droplet in accord with the Laplace eq 2. The radius
of tension must be used for a consistent estimate of the surface
tension from the MC nucleation barrier based on the Gibbs eq
11. Thus, using different forms of eq 11, we can calculate the
radius of tensionrs and the surface tensionγs from ∆Ω and

Figure 11. Variation of the Helmholtz free energy of the system
associated with the ghost field removal. (a) Free energy related to that
of state G, integral of Figure 9. (b) Free energy difference∆FG(ú)
between the neighboring points (for example, point atú ) 0.05 is the
difference between the free energies atú + 0.05 andú - 0.05). Solid
squares, integration overú (eq 20) with equilibration over 50 000 steps
per molecule in each single simulation; open squares, umbrella sampling
over 150 000 steps per molecule (eqs 23 and 24); open triangles, same
with umbrella sampling over 150 000 steps per molecule.

∆Ω(µR,T) ) FD(NR,V,T) - µRNR - Ωv(µR) (26)

Figure 12. Nucleation barriers for droplet formation in an open system
computed using the ghost field method (integration technique eqs 19-
21). (a) System 1; (b) system 2. Solid lines, CNT predictions for a
given LJ fluid, eq 11.
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determine the dependence of the surface tension on the droplet
radiusγs(rs). This dependence is presented in Figure 13. In both
systems, the surface tension increases monotonically with the
droplet size and asymptotically approaches a constant value,
which should be attributed to the planar surface tensionγ∞.

The results presented in Figure 13 can be interpreted by fitting
the dependenceγs(rs) with the Tolman equation15

whereγ∞ is the limiting surface tension of a planar surface and
δ is the Tolman length, which is assumed to be independent of
the droplet size. Therewith,γ∞ may be either taken from an
independent simulation (as we did above in CNT calculations)
or treated as a second adjustable parameter. Lines in Figure 13
show a fit to the simulation results obtained with the adjustable
γ∞. The simulation results are fitted nicely by the Tolman
equation. We obtainedγ∞ ) 1.03ε/σ2 andδ ) 0.49 and 1.01
ε/σ2 andδ ) 0.38 from the two simulation series discussed in
the previous sections for system 1. However, the values ofγ∞
> 1 ε/σ2γ∞ significantly exceed the highest value ofγ∞ ) 0.92
ε/σ2 10 reported earlier in the literature for this LJ fluid, and the
Tolman length values are too large. At the same time, the
Tolman equation with parametersγ∞ ) 0.91ε/σ2 andδ ) 0.2
provides a reasonable fit in a narrower range of radii from 7.5σ
to 6σ. This means that the results for system 1 cannot be fitted
by the Tolman equation in the whole range of droplet radii.
The best fit of the MC results for system 2 givesγ∞ ) 0.54
ε/σ2 and δ ) 0.15, which can be considered as a reasonable
estimate; althoughγ∞ exceeds the value of 0.494ε/σ2 55 adopted
above in the CNT model calculations, it is smaller than 0.580
ε/σ2 reported in ref 49. This analysis shows an ambiguity of
interpretation of the size dependence of the surface tension in
terms of the Tolman equation. This problem is discussed in
detail elsewhere.36

7. Conclusion

A critical review of the molecular simulation approaches
employed to study homogeneous nucleation of droplets in a
metastable vapor shows that conventional methods have con-
siderable drawbacks. A desirable approach should allow one to
(a) stabilize a liquid cluster, which is entirely unstable in an
open system, (b) determine the pressure or chemical potential
in the surrounding vapor, (c) account for cluster motion within

the simulation cell, (d) account for natural fluctuations of the
cluster mass, (e) employ a rigorous thermodynamic definition
of the cluster mass as an excess quantity rather then a
geometrical prescription, and (f) calculate the cluster free energy
and the nucleation barrier. A new MC simulation approach that
we have developed fulfills these requirements. This approach
exploits two simulation methods that we introduced and applied
to modeling phase transitions in small pores, the gauge cell
method42,43to generate the excess isotherm of droplet states and
the ghost field method11 to compute the nucleation barriers.

We considered the vapor-to-liquid transition in a LJ fluid
confined to a spherical cell with repulsive walls, which is a
case study for modeling homogeneous nucleation. To emphasize
the key problems to be addressed in molecular simulations, we
analyzed the specifics of the vapor-to-liquid transition in a finite
volume using the capillarity approximation of the classical
nucleation theory (the CNT model). Similarly to the recent work
of Reguera et al.,23 we demonstrated that the isotherm of droplet
states in a closed system is not a monotonic function of the
supersaturation; at a given loading (the total number of
molecules), two types of droplet states are distinguished, a
“large” D-droplet in a “low” density vapor and a “small”
E-droplet in a denser vapor at a higher pressure. E-droplets are
entirely unstable and correspond to the critical embryos for the
vapor-to-droplet transition at a constant loading, resulting in
the formation of a stable D-droplet. The minimum of the droplet
isotherm corresponds to the superspinodal state of zero
compressibility.50a The superspinodal marks the lower limit of
sizes of D-droplets, which can be stabilized in canonical
ensemble simulations. E-droplets cannot be generated in simula-
tions. The superspinodal behavior makes construction of a
continuous trajectory of droplet states for thermodynamic
integration in a direct way impossible without invoking a
stabilizing potential. This problem was solved by applying the
ghost field MC simulation method.

We simulated two model LJ fluids: the LJ model nitrogen53

at its normal boiling temperature of 77.4 K (5σ cutoff, kT/ε )
0.7625) and the system studied earlier by ten Wolde and
Frenkel5 and Chen et al.38 (2.5σ cutoff, kT/ε ) 0.741). The
isotherms of vapor states were generated by the GCMC method,
and the isotherms of D-droplets were generated by the gauge
cell method. The gauge cell method was shown to be compu-
tationally efficient. It allows one to stabilize a droplet state by
providing a controlled level of density fluctuations. The droplet
mass is defined from the excess droplet isotherm without
evoking any geometrical definition of a liquid cluster. There
are no artificial constraints imposed on the droplet location. The
chemical potential of the droplet state is measured directly. As
expected from the CNT model analysis, the vapor-to-droplet
and droplet-to-vapor transitions occurred spontaneously at
different loadings, forming a horizontal hysteresis loop. As the
superspinodal is approached, D-droplet states become kinetically
unstable, and thus, it is not possible to continue the droplet
isotherm to smaller droplets. The superspinodal marks the
smallest droplet that can be stabilized by reducing the gauge
cell capacity to zero, which corresponds to the closed system
in the canonical ensemble. We found that the droplet isotherms
are in a qualitative agreement with predictions of the CNT model
for a given LJ fluid. However, a quantitative comparison is
hindered due to an uncertainty in the value of the surface tension.
At the same time, we found a reasonable agreement with earlier
simulations of ten Wolde and Frenkel5 and Chen et al.,38 who
employed different umbrella sample techniques. The gauge cell
method makes constructing the excess isotherm of droplet states

Figure 13. Dependence of the surface tensionγs on the droplet size
(radius of tensionrs). Data obtained with the weaker ghost field of
-2ε is more reliable. We present the results obtained with the stronger
ghost field-4ε to demonstrate the range of possible errors.

γ ) γ∞(1 - 2δ
rs

) (27)
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in a wide range of droplet sizes (up to 2000 molecules in system
1) possible, which is limited from below by the superspinodal.
To extend the isotherm to smaller droplets, the size of the
simulation cell must be reduced. A prominent example of the
efficient use of cells of different size is presented elsewhere.56

Since the droplet stabilized in the closed system by using the
gauge cell method corresponds to the critical nucleus in an open
system at the same chemical potential, the constructed excess
isotherm represents the isotherm of critical nuclei.

The excess isotherm of droplets can be employed to calculate
the nucleation barrier of vapor-liquid transition in accord with
the nucleation theorem, eq 7, provided the nucleation barrier
for a reference cluster is determined independently. We applied
the ghost field method11 to construct a continuous trajectory of
states connecting a reference cluster and a low-density vapor
state and to determine the cluster free energy by the thermo-
dynamic integration along this trajectory. Special attention was
paid to the implementation and technical details of the ghost
field method.

Within the ghost field method, a reference cluster is con-
structed in two series of simulations. First, a droplet of a given
density stabilized by a ghost filed potential is generated in a
continuous manner starting from a low-density vapor in a series
of gauge cell simulations. The ghost field potential represents
a potential well located in the cell center. As the vapor pressure
increases, vapor condenses in the well, forming a growing cluster
pinned to the well. We employed two ghost fields with different
depths of the potential wells to check the method consistency
and accuracy. Second, the ghost field is gradually removed in
a series of CEMC simulations, keeping the fluid density fixed
and decreasing the ghost field magnitudeú from 1 to 0. In the
terminology of adsorption science, the trajectory of equilibrium
states obtained at fixed temperature, volume, and density/loading
by varying the magnitude of the external field can be referred
to as an “isothermal isostere”. The reference cluster, undisturbed
by the ghost field, is stabilized by the gauge cell method to
determine its chemical potential. We analyzed the effect of
cluster depinning; as the ghost field is turned off the cluster
becomes free to move around the cell.

The work of formation of the reference cluster is calculated
as the difference between the work of cluster formation in the
ghost field applied and the work of the ghost field removal.
The former is calculated by direct integration of the isotherm
of cluster condensation in the ghost field. This isotherm is
continuous and has a sigmoidal van der Waals shape typical
for capillary condensation in small pores. To compute the work
of the ghost field removal, we introduced and examined two
different schemes. The first, which is recommended as the most
efficient, is based on direct thermodynamic integration of the
contributions of the ghost field into the Helnholtz free energy
along the isothermal isostere. The other exploits the umbrella
sampling method for calculating the free energy difference of
the states along the isostere. We showed that these methods
produce identical results; however due to the depinning effect,
the umbrella sampling requires more frequent simulation points
to provide comparable accuracy. We concluded that the best
accuracy of the free energy calculations is achieved by employ-
ing the smallest reference droplet stabilizable in the gauge cell
method and the weakest ghost field sufficient to grow this
droplet in a continuous manner.

We determined the nucleation barriers for droplets containing
from 260 to 2000 molecules of up to 7.5 molecular diameters.
The simulation results were found to be in qualitative agreement
with the CNT model of a JZG LJ fluid. However, quantitative

assessment is hindered due to an uncertainty in the planar surface
tension. We have also found that the size dependence of the
surface tension cannot be described by the Tolman equation
with sufficient accuracy. The difference between the radius of
tension and the equimolar radius defined from the MC simula-
tions depends on the cluster size. The data that we reported can
serve as a touchstone to verify theoretical conclusions.

Good agreement was found for the system studied earlier by
ten Wolde and Frenkel5 and Chen et al.38 (2.5σ cutoff, kT/ε )
0.741). However, it is difficult to make solid conclusions since
different cluster criteria were used in these works. It is worth
noting that our method does not involve any cluster criterion
and is based on the rigorous thermodynamic definition of the
cluster mass through the excess quantity. This makes the method
robust and versatile. It is applicable to other nucleation processes
more complex than the droplet nucleation in LJ fluid considered
here. The problem of bridging in nanochannels considered in
ref 11 gives an instructive example of the method’s applicability
to a system, which could hardly be studied by other methods.
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