
Excel Solvers for the Traveling Salesman Problem

Mangesh Gharote, Dilys Thomas, Sachin Lodha
mangesh.g@tcs.com dilys@cs.stanford.edu sachin.lodha@tcs.com

Tata Consultancy Services, Pune, India

ABSTRACT
Ordering queries within a workload and ordering joins in a query
are important problems in databases [1]. We give algorithms for the
query sequencing problem that scale (small space) and are efficient
(low runtime) as compared to earlier work [4]. The errors are small
in practice and we are able to further reduce them using geometric
repair. We provide a computational comparison of TSP solvers and
show extensive testing on benchmark datasets [25] observing its
connection to these ordering problems.

1. PROBLEM STATEMENT
Database systems are facing an ever increasing demand for high

performance. Either as standalone Oracle, SQLServer or DB2 in-
stallations or as a backend to Peoplesoft, SAP or Siebel workloads
they are required to execute a batch of queries that contain sev-
eral common subexpressions. Traditionally, query optimizers like
[37], [36] optimize queries one at a time and do not identify any
commonalities in queries, resulting in repeated computations. As
observed in [3, 39] exploiting common results, multi-query opti-
mization (MQO), can lead to significant performance gains – this
requires the queries to be ordered in the workload for memory reuse
and reduced disk need. Motivated by the importance for ordering
problems, we study the combinatorial ordering problem of the trav-
elling salesman problem (TSP) and provide extensive testing on
benchmark datasets [25].

1.1 Applications
The traveling salesman problem has wide applicability in many

different industrial and scientific scenarios. Some notable ones are:
vehicle routing, bus scheduling, development of flight schedules,
crew scheduling, order-picking problem in warehouses, printing
press scheduling problem, network cabling in a country, computer
wiring, query workload ordering for optimization, VLSI chip de-
sign connectivity layout, drilling of printed circuit boards, genome
sequencing, hot rolling scheduling problem in iron & steel industry,
overhauling gas turbine engines , X-Ray crystallography (order-
ing positions for measurement), global navigation satellite system,
ordering test cases in regression suite to re-use components etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th­16th Dec, 2012 at Pune, India.
Copyright c⃝2012 Computer Society of India (CSI).

See [6] for a description of some applications of TSP. Intractabil-
ity [12] [11] and restricted tractability results [9] [10] for TSP have
won top awards. We develop our own algorithms on top of reason-
able in-practice TSP algorithms. We obtain near optimal tours in
practice. Our aim is to reduce run time and be scalable in mem-
ory for medium to large instances of TSP. Ease of using the tool,
ability to handle different distance metrics including longitude and
latitude, and ease of visualizing the tours produced are the aims of
our project of improving state of the art TSP solvers available in
Excel [4].

2. NEAREST NEIGHBOR AND GREEDY AL­
GORITHMS

2.1 Nearest Neighbor
Algorithm 1 implemented in our Excel solver is the Nearest Neigh-

bor(NN) algorithm. Since it grows a single segment, it is similar to
left deep plans used in query optimizers. Different start points can
give different tours, see Figure 1.

Algorithm 1 Nearest Neighbor
Select an arbitrary vertex as current vertex.
while not all the vertices in domain are visited do

Find shortest edge connecting current vertex and an unvisited
vertex V.
Set current vertex to V. Mark V visited.

end while

2.2 Greedy
Instead of starting from one vertex in NN, Algorithm 2 the greedy

algorithm grows multiple segments and stitches them together to
get a tour, similar to bushy optimizer plans.

Algorithm 2 Greedy
Sort all edges.
while less than n edges in tour do

Select the shortest edge and add it to tour if
[1] not yet on tour and not creating a degree-3 vertex.
[2] not creating a cycle of size less than n.

end while

3. TOUR REPAIR
NN cannot approximate TSP to better than a factor of log(n) [40]

and may produce the worst possible tour [13]. In practice NN and

Figure 1: Different start points in 16 NN(32% from opt),(5%
from opt), 51 NN, Greedy(intersection removal, section 3.1)(8%
from opt),(11% from opt)

Figure 2: Intersection Unrolling

greedy gives within 25% away from optimal for moderately large
sized instances. See Figures 6, 7, 8. The solutions obtained can
be further repaired with our intersection removal, hinge-crest opti-
mization, and tested techniques like geometric constructions, k-opt,
etc.

3.1 Intersection Unrolling
From Figure 2 (i) Triangle Inequality ao + co > ac. (ii) Again

do+ ob > db. (iii) Adding (i) & (ii) ao+ co+ do+ bo > ac+ db.
(iv) Rearranging terms ao+ ob+ co+ do > ac+ db. (v) Intersec-
tion Unrolling ab + cd > ac + db. We solve for the intersection
point using Cramers Rule. Intersection unrolling is applied when
intersection point lies on both segments, as shown in Algorithm 3.
For every i, j intersection, the tour between vertices Tour[i+1] and
Tour[j] has been reversed by the inner while. See Figure 3 for

Algorithm 3 Unroll Intersection
while (Tour[i],Tour[i+1]) (Tour[j],Tour[j+1]) intersect do

L = i + 1. R = j.
while L < R do

Swap = Tour[L]. Tour[L] = Tour[R]. Tour[R] = Swap.
L = L + 1. R = R - 1.

end while
end while

examples.

3.2 Hinge and Crest Optimization
The hinge and crest optimization (transfer tour repair) from Fig-

ure 4 is given in Algorithm 4 and applied in Figure 5.

4. RELATED WORK AND EXPERIMENTS
Being the most important geometric combinatorial problem, the

TSP has multiple popular algorithms.

4.1 Lin­Kernighan
Lin-Kernighan heuristic tries removing k edges and adding k

other edges aiming to retain a tour but to reduce the cost taking at
most O(nk) time.

4.2 Linear Programming Formulation, Cut­
ting Plane

Figure 3: Intersection Removal on 16 NN(5% from opt),(3%
from opt) and 16 Greedy(17% from opt),(1% from opt)

Figure 4: Hinge and Crest Transfer

Figure 5: Hinge and Crest Transfer, 51 points

Figure 6: 48 US mainland capitals(our 7%),6 continents 535
airports(10%)

Figure 7: India 67 cities(our 1%), Africa and Islands(our 12%)

Figure 8: 2103 points PCB drilling(6%), Converting Pictures
to Tours using Voronoi diagrams [33](2)

Algorithm 4 Transfer tour repair
while there exists nearby points on different segments do

if hinge distance > crest distance i.e. h1 + h2 + g1 − g2 −
c1 − c2 > 0 then

Transfer points to nearer segment and decrease cost.
end if

end while

Algorithm 5 Computing Dij from longitude and latitude [25]
PI = 3.141592. R=6378.388. /* Radius of earth*/
degree = (int) X[i]. minute = X[i] - degree.
radian = PI * (degree + 5 *minute/3)/180.
v1 = cos(lng[i] -lng[j]).
v2 = cos(lat[i] - lat[j]). v3 = cos(lat[i] + lat[j]).
Dij = (int) (R * acos(1/2 *((1 + v1)*v2 - (1 - v1)*v3))+1).

Miller-Tucker-Zemlin were among the first to provide formula-
tions for TSP [14].
min

∑
i∈V

∑
j∈V,j>i cijyij (minimize tour cost), Subject to,∑

j∈V,j>i yij +
∑

j∈V,j<i yji = 2 ∀i ∈ V (vertex degree two),∑
i∈S

∑
j∈S,j>i yij ≤ |S| − 1 ∀ϕ ̸= S ⊂ V (no subtours),

0 ≤ yij ≤ 1, ∀i, j ∈ V, j > i, yij integer ∀i, j ∈ V, j > i.
We use the bounds obtained from the Held Karp lower bound [17,

18, 28], an LP relaxation, in Table 1 (see [25]). [4] uses in its
backend linear programming solvers like CPLEX, Gurobi, Xpress
solvers for solving the TSP problem.

Concorde solver developed by Robert Bixby, Vasek Chvatal, William
Cook and David Applegate [7, 8], uses the cutting plane technique.

4.3 Held Karp Dynamic Programming
Algorithm 6, Held-Karp [15] dynamic programming is a (n22n)

time complexity algorithm for TSP. This memoizes the solutions to
2n subsets of locations. Take some starting vertex s for the tour.
For set of vertices R, s ∈ R, vertex w ∈ R, let B(R,w) = min-
imum length of a path, starting in s visiting only all vertices in R
and ending in w. Remembering the optimal subsolution (dynamic

Algorithm 6 Held Karp
B({s}, s) = 0.
for all S and w and |S| > 1 do

B(S,w) = minv∈S−{w}B(S − {w}, v) + weight(v, w).
end for

programming) for subsets reduces exponential term of the running
time from n! ((n/e)n) to 2n. It is a 50 year open problem if there
is an exact algorithm for TSP with time (cn) for c < 2 [27] (some
recent progress has been made for cubic graphs [21, 20] and hamil-
tonian paths [19]). Memoization is popular in modern query
optimizers including map reduce contexts [38].

4.4 Christofides
Algorithm 7, Christofides’s algorithm [16] is a 1.5 approxima-

tion to metric TSP. The MST (minimum spanning tree) is atmost
the cost of 1× TSP as a TSP tour without a single edge is a span-
ning tree. A min weight matching is atmost 0.5 × TSP as odd /
even edges in a TSP tour give a matching. In practice 10-20% away
from optimal solutions have been obtained [26]. It is a 35 year open
problem if there is an approximation algorithm with factor < 1.5
(some recent progress has been made at Stanford for shortest path
graph metrics [22, 23]). For the asymmetric case a similar algo-
rithm recently developed by our colleagues at Stanford University

Algorithm 7 Christofides
Get a MST T using Prim’s or Kruskal’s algorithm.
Set O = {v | v has odd degree in tree T}.
Compute a minimum weight matching M in the graph G[O].
Compute Euler tour C in graph T union M.
Add shortcuts to C to get a TSP-tour.

size nn nn-int greedy greedy-int
14 15.6 13.6 17 16.6
16 5.4 2.8 17.6 1.0
48 13 7.1 19.7 11.7
51 19.2 8.5 13 11
52 8.5 3.5 32.0 24.1
67 7.2 1.2 18.2 1
96 18.4 12.1 20.6 16.5
101 17 11.1 26.3 24.2
280 21.4 12.5 14.8 8.1
535 20.7 19.3 15.4 10.1
783 25 16.4 19.6 12.6
1002 21.4 13.6 19.2 14.4
2103 9.4 6.5
14051 21.3 13.8
33180 19.1 12.6
85900 15.2 10.1

Table 1: Performance of Excel Solver- %age away from opti-
mal

achieves O(log n / loglog n) approximation [5].

4.5 Tours and Rectifications
Starting from size 33 instance in 1950s, the largest instance solved

optimally till date is 85,900 locations taking 136 CPU years. Our
results from Table 1 (for datasets from [25] except 67 in Figure 7)
gives the percentage difference from optimal (obtained from Held
Karp lower bound and [25]) of the solutions obtained from NN
and greedy algorithms and with the intersection removal algorithm
applied to the solutions. Greedy performs better on larger datasets
but is more time expensive.

4.6 Metaheuristics
We also experimentally implemented heuristics like Simulated

Annealing (SA)[31], Ant Colony Optimization (ACO)[30] and Elec-
troMagnetism(EM) like algorithm [32] for the TSP Problem whose
results are shown in Table 2. Their complicated expensive noncom-
binatorial iteration rules lead to poor performance in CPU, RAM
and approximation ratio especially as instance sizes increase.

size EM SA ACO
14 15.0 18.4 15.0
52 8.5 17.2 6.5
96 18.2 35.9 14.2

159 15.4 29.5 14.3
226 15.9 17.6 13.1
299 20.2 27.9 20.8
654 24.2 28.3 24.0

Table 2: Performance of Metaheuristics- %age away from op-
timal

4.7 SQL Workload
In the first experiment, we generated 5 workloads with 100 queries

each, each query a join of a random subset of 20 tables. Distance
between two queries (with sets of tables ℜ1 and ℜ2) is the car-
dinality of the symmetric difference of the sets of tables in each
queries join (|ℜ1∆ℜ2|). This allows shared pipelined table scans
and LRU RAM reuse. On an average across workloads, we ob-
served the schedule developed by NN to be 3.7%, and greedy to
be 2.9% away from optimal. In the second experiment we gen-
erated 5 workloads with 1000 queries each, each query selecting
each table from totally 100 tables with probability 0.2 to be in the
query’s join (each approximately a 20 table join). On average 9.7
tables were shared between adjacent queries in the optimal order-
ing. The schedule developed by NN was 3.6% and greedy 2.3%
away from optimal on average with 8.8 tables shared between adja-
cent queries compared to a random ordering that could achieve only
four tables shared between adjacent queries. Considering columnar
storages and cache policies, in a third experiment we considered a
real world SAP workload containing 924 queries which reference
on average 7.4 columns per query. The reordering increased the
number of columns shared between adjacent queries from 0.42 to
4.9 on average. In a fourth experiment, a real world SAP workload
of 16000 queries with on average 13.8 columns per query had orig-
inally 1.8 columns shared between adjacent queries already show-
ing affinity, and after reordering shared 13.1 columns between ad-
jacent queries, most being with same prepared statement template
groupings. Template groupings make, batch execution techniques
like JDBC rewrite [2], and cache reuse techniques [34, 35] that use
LRU algorithm and time based aging across foreign keys, possible.

4.8 Critique of work
The most recent excel TSP solver [4] could solve upto 180 cities

without running out of memory or time. We present a solver that
can solve instances of upto 85,900 cities the largest instance solved
optimally to date, approximately. With no extra software installa-
tion and a click of a button we are able to solve multiple different
large sized TSP problems and provide tour rectifications for order-
ing problems. We provide an understanding of TSP solvers and
show extensive testing on benchmark ordering problem datasets [25].
NEOS solver requires expensive dedicated servers [29].

Acknowledgements: Metaheuristics were developed with help
from Prem Nathan, Prashant Kumar and Sani Kumbhar. Dr. Maitreya
Natu provided the SAP workload. Dr. Rajiv Raman provided a few
recent references.

5. REFERENCES
[1] S. Sudarshan, A. A. Diwan, Dilys Thomas, Scheduling and

caching in multiquery optimization, COMAD 2006,
150–153.

[2] M. Chavan, R. Guravannavar, K. Ramachandra, S.
Sudarshan, DBridge: A program rewrite tool for set-oriented
query execution, ICDE 2011.

[3] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobhe. Efficient
and extensible algorithms for multi-query optimization,
SIGMOD 2000, 249–260.

[4] Rasmus Rasmussen, TSP in spreadsheets: A fast and flexible
tool, Elsevier, Omega 39, 1, 51–63, January 2011.

[5] Arash Asadpour, Michel Goemans, Aleksander Madry,
Shayan Oveis Gharan, Amin Saberi, An O(log n / log log
n)-approximation algorithm for the asymmetric travelling
salesman problem, SODA 2010.

[6] Donald Davendra, Traveling Salesman Problem, Theory and

Applications, URL: http://www.intechopen.com, December
2010.

[7] Vasek Chvatal, Robert Bixby, William Cook, David
Applegate, Traveling salesman problem: A computational
study, PUP, 2006.

[8] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, Concorde,
TSP Solver, URL: http://www.tsp.gatech.edu/concorde/,
2006.

[9] Sanjeev Arora, Polynomial time approximation schemes for
euclidean traveling salesman and other geometric problems,
JACM, 1998, 45, 5.

[10] Mitchell, J. S. B., Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-MST, and
related problems, SIAM Journal on Computing, 1999.

[11] Stephen Cook, The complexity of theorem proving
procedures, STOC 1971, 151-158.

[12] Richard Karp, Reducibility among combinatorial problems,
Complexity of Computer Computations, 1972, 85-103.

[13] J. Bang-Jensen, G. Gutin, A.Yeo, When the greedy algorithm
fails, Discrete Optimization 1, 2004, 121-127.

[14] C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer
programming formulations and traveling salesman problems,
JACM, 7, 1960, 326–329.

[15] M. Held, R. Karp. A dynamic programming approach to
sequencing problems, Journal of SIAM, 1962, 10, 196-210.

[16] Nicos Christofides, Worst-case analysis of a new heuristic
for the traveling salesman problem, Report 388, GSIA,
CMU, 1976.

[17] M. Held, R. M. Karp, The traveling-salesman problem and
minimum spanning trees, Operations Res. 18, 1970,
1138-1162.

[18] M. Held, R. M. Karp, The traveling-salesman problem and
minimum spanning trees: Part II, Math. Programming 1,
1971, 6-25.

[19] Andreas Björklund, Determinant Sums for Undirected
Hamiltonicity, FOCS 2010.

[20] Kazuo Iwama, Takuya Nakashima, An Improved Exact
Algorithm for Cubic Graph TSP, COCOON 2007.

[21] David Eppstein, The Traveling Salesman Problem for Cubic
Graphs, Journal of Graph Algorithms and Applications,
2007, 11(1) 61-81 .

[22] Shayan Oveis Gharan, Amin Saberi, Mohit Singh, A
Randomized Rounding Approach to the Traveling Salesman
Problem, FOCS 2011.

[23] Tobias Mömke, Ola Svensson, Approximating Graphic TSP
by Matchings, FOCS 2011.

[24] S. Lin, B. Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research, 1973,
21(2), 498-516.

[25] G. Reinelt. TSPLIB. Universität Heidelberg, Institüt für
Informatik, Im Neuenheimer Feld 368,D-69120 Heidelberg,
Germany, 2004. URL http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

[26] M. Jünger, G. Reinelt, G. Rinaldi, The travelling salesman
problem, Handbooks in Operations Res. & Management Sc.,
Elsevier, 1995.

[27] Gerhard Woeginger, Exact algorithms for NP-Hard
problems, A survey, Combinatorial Optimization 2001,
185-208.

[28] D. S. Johnson, L. A. McGeoch, E. E. Rothberg, Asymptotic
experimental analysis for the Held-Karp traveling salesman

bound, SODA, 1996.
[29] NEOS Server for Optimization, http://neos-server.org/neos/
[30] Marco Dorigo, Luca Maria Gambardella, Ant colonies for

the traveling salesman problem, BioSystems 1997.
[31] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization

by simulated annealing, Science, May 1983.
[32] S. Ilker Birbil, Shu-Cherng Fang, Electromagnetism-like

mechanism for global optimization, Journal of Global
Optimization, 2003, 25, 263-282.

[33] Robert Bosch, Opt Art, Math Horizons, February 2006,
14(3), 6–9.

[34] Times-Ten Team: Mid-tier caching: the TimesTen approach,
(Now Oracle cache and in memory database), SIGMOD
2002, 588–593.

[35] SAP HANA, Realtime in memory technology,
http://www.sap.com/hana/demos/index.epx

[36] G. Graefe and W. J. McKenna, Extensibility and search
efficiency in the Volcano optimizer generator, ICDE, 1993,
209–218.

[37] P. G. Selinger, M.M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. Price, Access path selection in relational
database management system, In ACM SIGMOD Intl. Conf.
Management of Data, 1979, 23–34.

[38] Foto N. Afrati, Jeffrey D. Ullman, Optimizing Multiway
Joins in a Map-Reduce Environment, IEEE TKDE 2011,
23(9): 1282-1298

[39] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A.
Demers, Rule-Based Multi-Query Optimization, EDBT,
120–131, 2009

[40] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, An
analysis of several heuristics for the traveling salesman
problem, SICOMP 563–581, 1977.

