
SERIMI: Class-based Disambiguation for Effective
Instance Matching over Heterogeneous Web Data

Samur Araujo
Delft University of Technology

Delft, the Netherlands
s.f.cardosodearaujo@tudelft.nl

Duc Thanh Tran
Karlsruher Institute of

Technology
Germany

ducthanh.tran@kit.edu

Arjen P. de Vries
Delft University of Technology

Delft, the Netherlands
a.p.devries@itudelft.nl

Jan Hidders
Delft University of Technology

Delft, the Netherlands
a.j.h.hidders@tudelft.nl

Daniel Schwabe
Informatics Department

PUC-Rio
Rio de Janeiro, Brazil

dschwabe@inf.puc-rio.br

ABSTRACT
Instance matching has been studied with focus on the single-
domain setting, while less attention is given to the hetero-
geneous environment of the Web, where data comes from
different domains and are associated with different schemas.
For this heterogeneous setting, we propose an unsupervised
schema-agnostic approach that focuses on the refinement
(disambiguation) of candidate instances (resulting from block-
ing). Given instances of a source dataset that belong to a
class, it computes candidates in the target datasets and re-
fines them such that the remaining matches correspond to
the source instances at the class level. However, no schema
knowledge and explicit correspondences between classes in
the source and target datasets are required for this. Rather,
the disambiguation is performed based on an instance-based
representation of classes computed online. We evaluated our
work using experiments on large-scale real-world datasets
provided by a benchmark. The proposed solution outper-
formed two alternative approaches for instance matching in
70% of the cases, and in those cases we improved average
F-measure by 10%.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; H.2.5 [Database
Management]: Heterogeneous Databases

Keywords
data integration, instance matching, linked data

1. INTRODUCTION
Instance matching [3] (also known under other names such
as entity resolution or record linkage) refers to the prob-
lem of determining whether two descriptions are about the

Copyright is held by the author/owner. Fifteenth International Workshop
on the Web and Databases (WebDB 2012), May 20, 2012 - Scottsdale, AZ,
USA.

same real-world entity. Traditionally, research in this con-
text was focused on the single-domain setting, where data
come from the same or similar datasets. Basically, given
the descriptions of entities available as records in databases,
RDF descriptions on the Web, etc., the instance matching
task breaks down to the core problems of (1) finding a suit-
able representation (i.e., selecting attributes), (2) using this
for matching, and (3) finally selecting the most similar ones
(according to a threshold). There are data blocking tech-
niques that based on simple representations of entities, can
quickly identify candidate records [7, 4]. Then, for more so-
phisticated and effective matching, there are different types
of similarity measures [3, 6], and different techniques for
learning the right combination of attributes, similarity mea-
sures and threshold to be used for computing and selecting
the resulting matches [20].

While these single-domain solutions have shown high quality
results in enterprise data integration scenarios, their appli-
cability to the large-scale heterogeneous Web setting is less
clear. Assumptions implicitly embodied in these solutions
no longer apply. Firstly, in the larger scale Web setting that
involves multiple domains, it is more expensive to obtain
the necessary amount of training data. More importantly,
instances are assumed to have similar representations (i.e.
schemas) so that a subset of their common attributes can be
selected for matching. This similar representation assump-
tion however, holds only for instances that are from the same
dataset – or similar ones with largely overlapping schemas
that have been aligned upfront – but it does not apply to
instance data on the Web that come from heterogeneous
datasets. The following example illustrates the challenges
in this setting of heterogeneous Web data integration.

Example. There are two descriptions of the anemia disease
that were extracted from two different datasets (Diseasome
and DBpedia). While the description from Diseasome de-
scribes genetic aspects (Fig. 1, line 1), the one from DBpedia
captures general aspects (Fig. 1, line 7) of anemia. The only
token they have in common is“Anemia”, while their schemas
do not overlap at all. Using existing blocking techniques [15]
that compare instances simply by tokens, these instances can
be identified to be candidate matches. However, this token

Figure 1: Examples for “Anemia” in N3 notation
(prefixes are used for brevity).

match is not enough to guarantee these instances refer to
the same disease. In particular, blocking may yield other
candidates, such as anemia as a plant, as shown in Fig. 1,
line 12. Applying more sophisticated techniques to refine
these candidates is not directly possible in this setting be-
cause there are no common attributes that can be used, e.g.
attribute-specific learning and tuning of similarity measures
and thresholds [3] do not apply here.

We noted that the specific problem of instance matching in
the Web setting with possibly non-aligned and non-overlapping
schemas is largely unsolved. To the best of our knowl-
edge, only schema-agnostic blocking techniques are appli-
cable here, e.g. the one recently proposed for the same set-
ting of heterogeneous Web data integration, which simply
extracts all tokens from entity descriptions and used them
to compute candidate matches [15]. Complementary to this
line of work, we propose class-based disambiguation that
helps to refine these candidates.

Contributions. This paper introduces SERIMI, an ap-
proach that focuses on the effective matching of candidate
instances resulting from blocking. It specifically addresses
the mentioned challenges. It is completely unsupervised and
thus does not require training data. More importantly, it
supports the matching of instances that are from differ-
ent domains and schemas. The technical contribution be-
hind this work is the class-based disambiguation of instances.
Given instances of a particular class of interest (e.g. a RDF
class or a database relation) in the source dataset, SER-
IMI quickly finds candidate matches in the target dataset,
computes the class in the target dataset that corresponds
to the class in the source, and finally, uses it to filter out
candidates that do not belong to the class of interest. Be-
cause the target class is represented based on instances in the
target dataset and is computed on-the-fly, SERIMI neither
relies on knowledge about the schema nor explicit correspon-
dences between classes (i.e. does not require schemas to be
pre-aligned). We performed experiments on large-scale Web
datasets, and compared SERIMI with two recently proposed
solutions, RiMOM [10] and ObjectCoref [8]. SERIMI out-
performed these alternative approaches in 70% of the cases,
and in those cases it improved average F-measure by 10%.

Outline. This paper is organized as follows: After this
introduction, we discuss related work in Section 2. In Sec-
tion 3, we discuss the problem of disambiguation in instance
matching. In Section 4, we elaborate on our class-based dis-

ambiguation method. Section 5 presents the experimental
results, and Section 6 concludes this paper.

2. RELATED WORK
Instances are similar, thus, are considered candidate matches
if their features are similar [5]. Features used are derived
from flat attributes, structure information of instances (e.g.
relations between RDF resources) [13, 16] or semantic infor-
mation. While we focus on the use of flat attribute values in
the experiment, SERIMI is also applicable to other features.

Instance matching using flat features typically relies on string
comparison using different similarity metrics. Although there
are many metrics, there is no single one that applies in all
cases [2]. Learning the right metrics for the given features,
and combining different metrics [1] are the best strategies.
Which metrics to be used is also not the focus here, where
we simply employ a string-based metric for the experiment.

Orthogonal to features and metrics, different matching tech-
niques have been proposed to address both the efficiency and
effectiveness of instance matching. Data blocking techniques
[7] aims to make it more efficient by reducing the number
of unnecessary comparisons between records. Based on a
feature that is distinctive (also called Blocking Key Value,
BKV), instances are partitioned into blocks such that poten-
tially similar instances (i.e. candidate results to be further
refined) are placed in the same block [7, 12]. Recently, an un-
supervised blocking technique has been explicitly proposed
for the heterogeneous Web setting, where the BKV is simply
the set of all tokens that can be extracted from the instance
data [15]. Silks [9] is another solution for this setting, which
however, requires a manual identification of the BKV.

There are two major kinds of approaches that target the
effectiveness of matching. Usually, they are employed af-
ter blocking for the disambiguation of candidate matches.
There are learning-based approaches that can be further dis-
tinguished in terms of training data and degree of supervi-
sion, respectively (i.e. supervised, semi-supervised, unsu-
pervised [19, 17, 14]). ObjectCoref is a supervised approach
that self-learns the discriminativeness of RDF properties.
Then, matches are computed based on comparing values of
a few discriminative properties. RIMON is an unsupervised
approach that firstly applies blocking to produce a set of can-
didate resources and then, uses a document-based similarity
metric (cosine similarity) for disambiguating candidate re-
sources. Collective matching represents the other kind of
approach [16]. It exploits the intuition that two instances
are similar if their neighbours are similar. Similarity flooding
[13] is a generic graph-matching algorithm that implements
this intuition.

3. PROBLEM DEFINITION
We target the setting of heterogeneous Web data where only
little or no overlap between the schemas of the source and
target instances exist.

3.1 Preliminary
Web data, including relational data, XML and RDF (Re-
source Description Framework), can be conceived as graphs.
RDF data consist of triples, which collectively form a graph.

Closely resembling this RDF data model we conceive Web
data as graphs:

Definition 1. Data model - Data on the Web are modeled
as a set of graphs G, where every graph G ∈ G is a set of
triples, each of the form (s, p, o) where s ∈U (called subject),
p ∈ U (predicate) and o ∈ U ∪ L (object). Here, U denotes
the set of Uniform Resource Identifiers (URIs) and L the set
of literals, which together, form the vocabulary V = U ∪ L.

With respect to this model, instances are resources that ap-
pear at the subject position of triples, and the attribute-
value pairs of an instance s correspond to the predicate-
object pairs that appear in triples where s is the subject
(attribute and predicate are used interchangeably in the fol-
lowing). The representation of an (set of) instance is defined
as follows:

Definition 2. Instance Representation -The instance rep-
resentation IR : G × 2U → G is a function, which given
a graph G and a set of instances W, yields a set of triples
in which s ∈ W appears as the subject, i.e. IR(G,W) =
{(s, p, o)|(s, p, o) ∈ G, s ∈W}.

Notice that a representation of a single instance s is given
by IR(G, {s}). For simplicity, we use in this work the out-
going edges (s, p, o) of a resource s to form its representation
IR(G, {s}). Based on this representation, instance matching
can be posed as a direct matching problem as follows:

Definition 3. Instance Matches - Given two instances s
and t, from Gs and Gt respectively, and a similarity relation
over their representations, denoted as ∼I , they match if IR
(Gs, {s}) ∼I IR(Gt, {t}).

3.2 Solution Overview
Our solution goes beyond this direct matching (i.e. match-
ing an instance directly against one other) to perform an
additional step of class-based disambiguation. It is based
on the observation that for a collection of semantically re-
lated source instances, target matches are also semantically
related among themselves. In particular, we consider the
case where resources are semantically related in the sense
that together, they form a class. Notice, that, in this pa-
per, a class means a set of instances that share some similar
attributes. Then, the intuition behind our approach is as
follows: Given source instances that belong to a particular
class C, and a set of candidate matches, we consider candi-
dates as correct when (1) they belong to the same class. (2)
Further, because candidates should match source instances,
this class must be similar to C. In RDF, class information
may be explicitly given in the form of (s, rdf:type, o) triples,
or directly derived from the data by grouping together in-
stances that share some attributes [11].

We cast the instance-matching problem posed above as fol-
lows: Given a set of instances S in a graph Gs that belong
to a class C (e.g. Diseases), and for each instance s ∈ S,
let the set of instances T ∈ T in a target graph Gt be can-
didate matches. Only some of these candidates are correct

matches, and based on our observation, we infer that correct
matches must belong to a class similar to C. The problem
then breaks down to (1) finding a class representation in Gt

that correspond to C, and (2) refining T by filtering out the
instances t ∈ T ∈ T, which do not belong to this class.

We leverage existing work on blocking to deal with the first
sub-problem: For each instance s ∈ S, we obtain the candi-
date sets T ∈ T that we call pseudo-homonym sets:

Definition 4. Candidate Matches / Pseudo-homonym Set
- Given the source dataset Gs, the target dataset Gt and a
similarity relation over the vocabulary V , denoted as ∼V , a
pseudo-homonym set of an instance s is PH(s) = {s′|(s, p, o) ∈
Gs, (s

′, p′, o′) ∈ Gt, o ∼V o′}.

Note that PH(s) are in fact instance matches obtained via
direct matching as discussed before. We explicitly introduce
this notion to make clear that PH(s) are only candidate
matches obtained via a simple vocabulary-based matching
function ∼V . Further, because these matches are obtained
for instances s ∈ S of the same class C, we use the union set
PH(S) =

⋃
s∈S PH(s) as an instance-based representation

of the class in Gt that corresponds to C. That is, we assume
that if there exists such a class in Gt, it is captured by
instances in PH(S). Then, we filter out candidates that do
not belong to this “class” PH(S).

Definition 5. Refined Matches - Given the instances S
in Gs that belong to the class C, and PH(S) the candi-
date matches for S and the class in Gt corresponding to
C, respectively, then refined matches are PH ′(S) = {t|t ∈
PH(S), t ∼S PH(S)}.

The similarity relation ∼S used here is set-based, and is for
determining whether a candidate s belong to the class of in-
terest. This work is about implementing ∼S and performing
the disambiguation based on it.

4. CLASS-BASED DISAMBIGUATION FOR
INSTANCE MATCHING

In this section, we present the whole process of instance
matching performed by SERIMI, and then, focus on the
class-based disambiguation step.

4.1 The Instance Matching Process
The overall matching process is depicted in Fig.2. Starting
from a set of instances S of the class C in the source dataset,
we firstly perform candidate selection to obtain the pseudo-
homonym set PH(s) in the target dataset for each s ∈ S.
Existing blocking techniques [7, 12, 15] can be used for this.
We adopt an entropy-based approach to find blocking keys
and then use key values (i.e. tokens extracted from an at-
tribute such as name, title etc.) to determine all candidates
in the target dataset that match source instances. Table 1
shows example results obtained for the Diseasome diseases
85, 379 and 502 using Diseasome as source and DBpedia

as the target dataset. Then, more effective matching is
achieved through the second step of disambiguation, where
the candidates in PH(s) are refined.

Figure 2: The process of finding and disambiguating the pseudo-homonym sets given a set of source instances.

Table 1: Pseudo-homonym sets for Anemia, Ery-
throcytosis and Hemophilia.

diseasome:85 diseasome:379 diseasome:502
Token: Anemia Token: Erythrocytosis Token: Hemophilia

db:Anemia db:Erythrocytosis db:Hemophilia
db:Anemia_fern db:Familial_erythroc. db:Hemophilia_A
db:Aplastic_anemia db:Porphyric_Hemo.

4.2 Class-based Disambiguation
Similarity Measure. We firstly decompose the instance
representation into different parts, then we elaborate on the
similarity used for∼S , i.e. the measure used to disambiguate
instances based on the class of interest.

Definition 6. Features- Given a graph G and a set of in-
stances X in G, we employ the following sets of features:

• P (X) = {p|(s, p, o) ∈ IR(G,X) ∧ s ∈ X},
• D(X) = {o|(s, p, o) ∈ IR(G,X) ∧ s ∈ X ∧ o ∈ L},
• O(X) = {o|(s, p, o) ∈ IR(G,X) ∧ s ∈ X ∧ o ∈ U},
• T (X) = {(p, o)|(s, p, o) ∈ IR(G,X) ∧ s ∈ X}.

Intuitively, P (X) is the set of predicates that appear in the
representation of X, D(X) the set of literals, O(X) the set
of URIs, and T (X) is the set of predicate-object pairs. For
implementing ∼S , we need to capture the similarity between
sets of instances A and B, which is realized by the function
we call RDS as follows:

RDS(A,B) = SetSim(P (A), P (B))+SetSim(D(A), D(B))+

SetSim(O(A), O(B)) + SetSim(T (A), T (B)) (1)

We want SetSim to reflect the intuition that two sets A and
B that have n features in common should be more similar
than two sets with n− 1 features in common, no matter the
number of features both sets may have. We define SetSim1

as follows:

SetSim(A,B) = |A ∩B| −
(
|A−B|+ |B −A|

2|A ∪B|

)
(2)

Class-based Disambiguation. In the disambiguation pro-
cess, given a set of pseudo-homonyms sets PH(S), we re-
duce our problem to the one of finding instances t from each
pseudo-homonym set, i.e. t ∈ PH(s) ∈ PH(S), which is
more similar to all the other sets of pseudo-homonyms sets
PH(S)− = PH(S) \ PH(s). The RDS function is used to

91In our experiments, this SetSimmeasure beats the common Jac-
card and Dice index by a small but consistent margin.

Figure 3: A) Computing the similarity score for h11.
B) The similarity score for all resources.
compute this similarity, i.e. RDS({t}, PH(s′)), PH(s′) ∈
PH(S)−. This process is depicted in Fig. 3a for the instance
h11, where it is compared to the pseudo-homonyms sets H2
and H3. After the similarity is computed for all instances
t in this fashion, the instance in each pseudo-homonyms set
with highest score is selected (Fig. 3b). Instead of using the
top-1 in the Fig. 3b, SERIMI may return top-k matches.

The comparisons between t and the other pseudo-homonyms
sets PH(S)− is captured by Equation 3 where the individ-
ual score RDS({t}, PH(s′)) is weighted by the cardinality
of PH(s), such that a PH(s) with high cardinality has a
smaller impact on the final aggregated measure. We do this
to capture the intuition that small sets containing only a
few representative instances are better representation of the
class of interest.

URDS(t, PH(S)−) =
∑

PH(s′)∈PH(S)−

RDS({t}, PH(s′))

|PH(s′)|

(3)

We normalize the results of Equation 3 by the maximum
score among all instances as

CRDS(t, PH(s), PH(S)−) =
URDS(t, PH(S)−)

MaxScore(PH(s), PH(S)−)
(4)

where

MaxScore(PH(s), PH(S)−) =

MAX{URDS(t′, PH(S)−)|t′ ∈ PH(s) ∈ PH(S)} (5)

This yields a score in the range [0, 1]. Using this function, an
instance t is considered as a solution if CRDS(t, PH(s), PH(S)−)
is higher than a defined threshold δ or its rank is within the
top-k. We found that a value for δ that performs well is
the maximum of the means and medians of the scores ob-
tained for all instances in PH(S), which we will refer to as
δm. In the experiment, we tested using the different set-
tings δ = δm, δ = 1.0, δ = 0.95, δ = 0.9 and δ = 0.85. Also,
we evaluated different top-k settings, where only the top-1,
top-2, top-5 and top-10 matches were selected.

4.3 Optimization
Increasing Efficiency. When the source dataset is large,
the number of pseudo-homonyms sets to consider increases,
affecting the computation time of CRDS. Therefore, given
S, we execute the process described so far sequentially over
chunks of instances in S of size µ, where µ ≥ 2. Thus,
we execute the CRDS function |S|/µ times. We tested the
set of sizes {2, 5, 10, 20, 50, 100}. Although total time to
process n instances was smaller for small µ, the variation is
not significant; also, we found that the precision of matches
is not affected by this parameter.

Reinforcing Evidences. Another advantage of using chunks
instead of the entire set S is that at every iteration (after
processing each chunk), we can select the instance with the
highest score and add it as a singleton set (a set with one
element) to the set PH(S) of pseudo-homonym sets to be
used in subsequent iterations. This extra singleton set acts
as additional evidence for the class of interest.

5. EXPERIMENTAL EVALUATION
In this section, we describe our evaluation that is based
on the instance-matching track of the Ontology Alignment
Evaluation Initiative (OAEI). This track focuses on evalu-
ating the effectiveness of instance-matching approaches over
Web data, which is exactly the goal of the evaluation here.
SERIMI was the second best system in OAEI 2011. In this
paper, we do not include these 2011 results but focus on the
ones we obtained for the datasets used in 2010. This is due
to space limitation, and also because these 2010 datasets are
more diverse in terms of heterogeneity (differences in classes
of entities), which provide richer insights to the advantages
and limitations of the class-based disambiguation proposed.

5.1 Experiment Setting
Collections. We used the life science (LS) collection (which
includes DBPedia, Sider, Drugbank, LinkedCT,Dailymed
TCM, and Diseasome) and the Person-Restaurant (PR) col-
lection provided by this benchmark.

Evaluation metrics and alternative approaches. We
used precision, recall and F1 to measure the effectiveness
of the proposed approach. We considered as true positives
the provided reference mapping (the ground truth). False
positives are the mappings found by SERIMI that do not
exist in the ground truth. For comparison, we used the
results of the related approaches RiMOM and ObjectCoref
as reported for OAEI 2010.

5.2 Experiment Results
Fig. 4 and Fig. 5 show SERIMI’s performance as we changed
δ and k. We observed that the standard deviation of preci-
sion and recall is close to zero in the cases where the pseudo-
homonym sets are small. The parameters δ and k had no
effect in these cases because the same (number of) instances
were selected (e.g. only one) as results. Otherwise, perfor-
mances varied because differences in δ (and also differences
in k) leaded to a different selection of instances. The use of
the δm, an automatically computed threshold as discussed in
Section 4.3, performed relatively well on average. Therefore,
for all other experiments in this paper, we used δ = δm.

Figure 4: Top-k F-measure

Figure 5: δthreshold F-measure

As we can see in Table 4, SERIMI outperformed the alterna-
tive approaches in 70% of the cases, and in those cases it sub-
stantially improved F1 by 10% on average. Sider-Diseasome
and Sider-Drugbank were problematic cases for the alter-
native approaches, where SERIMI achieved a gain of 42%
and 47% in F1, respectively. It seems that SERIMI was
more successful in refining candidates. For example, there
were many candidate instances labeled “Magnesium” in DB-
Pedia (e.g., “Isotopes of magnesium”, “Magnesium”, “Cate-
gory:Magnesium”, “Book:Magnesium”). SERIMI used infor-
mation within the other pseudo-homonyms sets to resolve
this ambiguity. Because there were much more instances
of the type drugs in the other pseudo-homonyms sets (e.g.,
Morphine, Diazepam, Diclofenac) than instances of the type
book and category, SERIMI was able to select the correct
instance Magnesium that belongs to the class drugs.

The poor performance in the Person21-Person22 pair is due
to the nature of the data. We noticed that the CRDS func-
tion did not perform well here because the instances in these
datasets are exactly of the same class (i.e. person). SERIMI
is designed for the heterogeneous case where instances to be
matched belong to multiple domains. Matching instances
in this single domain (same class) setting is indeed “prob-
lematic” because the idea behind SERIMI is to use class
information for disambiguation. Because all candidates be-
long to the same class, there was not enough information for
SERIMI to distinguish and disambiguate instances. Clearly,
there exists a wide range of techniques for instance matching
in this single domain setting and they should be used instead
of SERIMI. We consider our method as a complementary
approach that specifically targets the heterogeneous setting.

As a final observation, we noticed that SERIMI had a bet-
ter performance that the alternative systems, specially in
the hard cases(e.g. Dailymed-DBPedia, Dailymed-Linkedct,
Dailymed-TCM and Drugbank-Sider).

Table 2: The precision and recall for all dataset pairs. ObjectCoref’s results are not available for all pairs.
Dataset Pair / Sider Sider Sider Sider Sider
Approaches DBPedia Dailymed Diseasome DrugBank TCM

P R F1 P R F1 P R F1 P R F1 P R F1

SERIMI 0.50 0.62 0.55 0.78 0.58 0.66 0.92 0.83 0.87 0.97 0.97 0.97 0.97 0.98 0.97
RiMOM 0.71 0.48 0.57 0.57 0.71 0.62 0.32 0.84 0.45 0.96 0.34 0.50 0.78 0.81 0.79

ObjectCoref - - - - - - - - - - - - - - -

Dataset Pair / Dailymed Dailymed Dailymed Dailymed Drugbank
Approaches DBpedia LinkedCT TCM Sider Sider

P R F1 P R F1 P R F1 P R F1 P R F1

SERIMI 0.61 0.33 0.43 0.23 0.05 0.08 0.23 0.91 0.37 0.54 0.87 0.67 0.33 0.92 0.48
RiMOM 0.25 0.29 0.26 0.07 0.24 0.11 0.16 0.54 0.23 0.57 0.71 0.62 - - -

ObjectCoref - - - - - - - - - 0.55 0.99 0.70 0.30 0.99 0.46

Dataset Pair / Diseasome Person11 Person21 Restaurant1
Approaches / Sider Person12 Person22 Restaurant2

P R F1 P R F1 P R F1 P R F1

SERIMI 0.83 0.90 0.87 1.00 1.00 1.00 0.56 0.39 0.46 0.77 0.77 0.77
RiMOM - - - 1.00 1.00 1.00 0.95 0.99 0.97 0.86 0.77 0.81

ObjectCoref 0.84 0.67 0.74 1.00 0.99 0.99 1.00 0.90 0.95 0.99 0.80 0.88

In conclusion, we observed a considerable improvement of
accuracy when we applied the proposed class-based disam-
biguation to results obtained from a simple blocking pro-
cedure. Our approach is specially recommended for cases
where there is little overlap between the schemas of the in-
stances being matched. SERIMI is available at GitHub 2.

6. CONCLUSIONS
We investigated the instance matching problem in the large
and heterogeneous environment of the Web. We proposed
SERIMI as a completely unsupervised schema-agnostic ap-
proach that focuses on the effective matching of candidate
instances (resulting from blocking). Our approach was able
to refine the ambiguous matches provided by existing block-
ing techniques. We outperformed two alternative approaches
approaches in 70% of the cases, and in those cases we im-
proved F1 by 10% on average. Our approach is especially
recommended in situations where there are few overlaps be-
tween the source and target schemas (i.e. where traditional
single domain approaches are not applicable).

7. REFERENCES
[1] K. Branting. A comparative evaluation of

name-matching algorithms. In ICAIL, pages 224–232,
2003.

[2] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string metrics for matching names and
records. Aug. 2003.

[3] C. F. Dorneles, R. Gonçalves, and R. dos
Santos Mello. Approximate data instance matching: a
survey. Knowl. Inf. Syst., 27(1):1–21, 2011.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1):1–16, 2007.

[5] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):pp. 1183–1210, 1969.

[6] M. Hadjieleftheriou and D. Srivastava. Approximate
string processing. Foundations and Trends in
Databases, 2(4):267–402, 2011.

[7] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. pages 127–138, 1995.

92https://github.com/samuraraujo/SERIMI-RDF-Interlinking

[8] W. Hu, Y. Qu, and X. Sun. Bootstrapping object
coreferencing on the semantic web. J. Comput. Sci.
Technol., 26(4):663–675, 2011.

[9] R. Isele, A. Jentzsch, and C. Bizer. Efficient
multidimensional blocking for link discovery without
losing recall. In WebDB, 2011.

[10] J. Li, J. Tang, Y. Li, and Q. Luo. Rimom: A dynamic
multistrategy ontology alignment framework. IEEE
Trans. Knowl. Data Eng., 21(8):1218–1232, 2009.

[11] Y. Ma and T. Tran. Unsupervised learning of blocking
keys for web data integration. Technical report, AIFB,
Karlsruhe Instistute of Technology, 2011.

[12] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD, pages
169–178, 2000.

[13] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE, pages
117–128, 2002.

[14] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and Y. Yu.
Zhishi.me: weaving chinese linking open data. In
Proceedings of the 10th international conference on
The semantic web - Volume Part II, ISWC’11, pages
205–220, Berlin, Heidelberg, 2011. Springer-Verlag.

[15] G. Papadakis and W. Nejdl. Efficient entity resolution
methods for heterogeneous information spaces. In
ICDE Workshops, pages 304–307, 2011.

[16] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. In J. Data Semantics IV, pages
146–171. 2005.

[17] D. Song and J. Heflin. Automatically generating data
linkages using a domain-independent candidate
selection approach. In International Semantic Web
Conference (1), pages 649–664, 2011.

[18] A. Tversky. Features of similarity. Psychological
Review, 84:327–352, 1977.

[19] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov.
Discovering and maintaining links on the web of data.
In International Semantic Web Conference, pages
650–665, 2009.

[20] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In ICDE, pages 916–927, 2009.

