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ABSTRACT

This paper presents a Conformer-based sound event detection
(SED) method, which uses semi-supervised learning and data
augmentation. The proposed method employs Conformer, a
convolution-augmented Transformer that is able to exploit local fea-
tures of audio data more effectively using CNNs, while global fea-
tures are captured with Transformer. For SED, both global infor-
mation on background sound and local information on foreground
sound events are essential for modeling and identifying various
types of sounds. Since Conformer can capture both global and lo-
cal features using a single architecture, our proposed method is able
to model various characteristics of sound events effectively. In ad-
dition to this novel architecture, we further improve performance
by utilizing a semi-supervised learning technique, data augmenta-
tion, and post-processing optimized for each sound event class. We
demonstrate the performance of our proposed method through ex-
perimental evaluation using the DCASE2020 Task4 dataset. Our
experimental results show that the proposed method can achieve an
event-based macro F1 score of 50.6% when using the validation
set, significantly outperforming the baseline method score (34.8%).
Our system achieved a score of 51.1% when using the DCASE2020
challenge’s evaluation set, the best results among the 72 submis-
sions.

Index Terms— Sound event detection, Conformer, Trans-
former, semi-supervised learning, data augmentation

1. INTRODUCTION

Sound event detection (SED) is a useful technique for helping us
what is happening in an environment by identifying sounds. The
recent development of neural network-based approaches such as
convolutional neural network (CNN) [1], recurrent neural network
(RNN) [2], [3], and convolutional RNN (CRNN) [4], [5] has yielded
notable improvements in the performance of SED. However, a large
amount of annotated data is required when training these neural
network-based approaches. Among the annotated data, the data
with a timestamp is known as strongly labeled data, while data with
only tag information is known as weakly labeled data. Most SED
systems assume that sufficient amounts of strongly labeled data
available, but in reality, the annotation cost of applying strong labels
to audio data is huge, and data collection is difficult. Therefore, the
development of model training methods which are effective even
when using a limited amount of strongly labeled data is important.

Researchers have proposed various SED models using a lim-
ited amount of strongly labeled data, employing weakly-supervised
and semi-supervised learning techniques [6]–[8], which use weakly
labeled and unlabeled data, respectively. Many approaches have

been developed using these frameworks, and they have been re-
ported to improve detection performance, even when using lim-
ited amounts of strongly labeled data. Data augmentation is an-
other powerful technique, which is used to artificially generates new
data through data manipulation, resulting in improved generaliza-
tion performance [1], [9].

In our previous work for weakly-spuervised SED [7], in order to
more efficiently capture global and local context information within
audio feature sequences, we proposed using a self-attention mecha-
nism, a technique originally proposed in the field of machine trans-
lation [10], which has been successfully applied to various audio
and speech applications [11], [12] for SED. We also introduced a
special token which allowed the use of weakly labeled data. Gulati
et al. have recently proposed Conformer [13], a method of model-
ing the global and local dependencies of audio sequences, which has
been reported to achieve state-of-the-art performance in automatic
speech recognition (ASR). Conformer achieves high performance
and efficient parameter reduction by combining self-attention with
the use of a CNN. This is because self-attention is better at model-
ing long-range, global context information, while CNNs are better
at extracting local features.

In this paper, we propose a Conformer-based SED model,
which enables us to efficiently capture both local and global context
information in audio feature sequences through Conformer blocks.
To further improve performance, we also introduce semi-supervised
learning based on mean teacher [14], data augmentation techniques
such as time-shifting [8] and mixup [15], event-dependent post-
processing refinement, and posterior-level score fusion. We con-
ducted experimental evaluations using the DCASE2020 Task4 val-
idation set and the DESED public evaluation set to investigate the
effectiveness of our proposed network architecture and each of the
proposed performance enhancement techniques.

2. PROPOSED METHOD

2.1. Network architecture

An overview of our proposed method is shown in Figure 1. It con-
sists of three modules; a CNN-based feature extractor, Conformer
blocks, and a position-wise classifier [7]. The architecture of the
CNN-based feature extractor follows that of the baseline CRNN
system used in the DCASE2020 Task4 [16], which consists of seven
convolution layers. To match feature shape and network input size,
we slightly modified the kernel size of the third and seventh average
pooling layers from (2,2) to (1,2) and from (1,2) to (1,1), respec-
tively. Our Conformer-based model uses the same architecture as
our conventional Transformer-based model, except that the Trans-
former encoder is replaced with the Conformer block. The final
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Figure 1: Overview of our proposed method. For weak label pre-
diction, an embedded token is concatenated at the beginning of the
feature sequence obtained using a CNN. The first frame of the out-
put corresponds to weak label prediction, and the other frames cor-
respond to strong label prediction.

position-wise classifier is a simple linear layer to calculate the pos-
teriors corresponding to the sound event classes. Additionally, we
introduce a special tagging token dedicated to weak label predic-
tion [7], making it possible to explicitly summarize sequence-level
information through the self-attention layers, similar to the special
classification token used in BERT [17]. We attach the tagging token
to the first frame of the feature sequence obtained with the CNN-
based feature extractor. Then, network output corresponding to the
first frame is used for weak label prediction, while the output of the
other frames is used for strong label prediction. The tagging token
is initialized to a 1-D zero vector, and the embedding layer expands
the token’s dimension.

2.2. Conformer block

The Conformer block is illustrated in Figure 2. It consists of three
modules; a feed-forward module, a multi-head self-attention mod-
ule, and a convolution module. The feed-forward module consists
of a layer-normalization layer and a linear layer with a Swish ac-
tivation function [18], followed by another linear layer. The first
linear layer expands the dimensions of the input four times, while
the second linear layer projects it back to the original input dimen-
sions. After passing through both linear layers, we multiply the
output by 0.5, using the original Conformer setting [13]. The multi-
head self-attention module consists of a layer-normalization and
multi-head self-attention with relative positional embedding used in
Transformer-XL [19]. The convolution module consists of a layer-
normalization layer, a point-wise convolution layer with a gated lin-
ear unit (GLU) activation function [20], and a 1-D depth-wise con-
volution layer. The depth-wise convolution layer is followed by a
batch normalization layer, a Swish activation, and a point-wise con-
volution layer. Therefore, the correspondence between the input X
and output Y of the Conformer block can be formulated as follows:

X̃ = X +
1

2
FFN(X), (1)

X ′ = X̃ + MHSA(X̃), (2)

X ′′ = X ′ + Conv(X ′), (3)

Y = LayerNorm(X ′′ +
1

2
FFN(X ′′)), (4)
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Figure 2: Overview of Conformer block (on the left), with details of
its components.

where FFN(·), MHSA(·), Conv(·), and LayerNorm(·) refer to the
feed-forward module, multi-head self-attention module, convolu-
tion module, and layer-normalization layer, respectively.

2.3. Semi-supervised learning

To further improve performance, we employed the mean teacher
technique [14] as a semi-supervised learning method capable of us-
ing unlabeled data for training. We used a mean square error func-
tion as the consistency criterion and set the exponential ramp-up
steps [21] and consistency cost to 10,000 and 2.0, respectively.

2.4. Data augmentation

For data augmentation, we employed Gaussian noise, fre-
quency masking from SpecAugment [22], time-shifting [8], and
mixup [15]. We added Gaussian noise to the input sequence at a
30 dB signal-to-noise ratio. Frequency masking replaces values in
the frequency domain with zero. Time-shifting shifts a feature se-
quence along the time axis, and the overrun frames are then concate-
nated with the opposite end of the sequence. We randomly chose
the frame-shift size by sampling from a Gaussian distribution, with
a zero mean and a standard deviation of 90. The use of time-shifting
helps prevent the model from learning bias in time event localiza-
tion. Mixup smooths out the decision boundary by adding pseudo
data generated by mixing different data points (x1,x2) and the cor-
responding labels (y1,y2). The mixup is formulated as follows:

x̄ = λx1 + (1− λ)x2, (5)
ȳ = λy1 + (1− λ)y2, (6)

where λ ∈ [0, 1] is the mixing ratio. In this study, we randomly
chose this value by sampling from a beta distribution with α = 0.2.

2.5. Posterior-level score fusion

To improve generalization performance, we performed score fusion
as a model ensemble technique. We first performed averaging over
the raw posterior outputs p(X) for inputs X of the multiple models,
with different training settings, as follows:

pfusion(X) =
1

N

N∑
n=1

pn(X), (7)
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where N represents the total number of models for our fusion. We
then performed thresholding and applied post-processing, which
will be explained in more detail in Section 2.6.

2.6. Event-dependent post-processing

To transform posterior to binary-valued sound event activation, we
perform thresholding for the network output posterior. We then per-
formed median filtering as post-processing to smooth the binary ac-
tivation sequence. Since each sound event has different characteris-
tics, such as its temporal structures, the optimal post-processing pa-
rameters depend on the individual sound event classes. Hence, we
determine the optimal post-processing parameters for each sound
event using the validation set by searching for the optimal threshold
(from 0.1 to 0.9 in increments of 0.1) and optimal median filter size
(from 1 to 31 in increments of 2).

3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

We conducted experimental evaluations using the DCASE2020
Task4 dataset [23] and DESED public evaluation set. The training
set of the DCASE2020 Task4 dataset included 2,584 synthesized
audio clips with strong labels, 1,578 real audio clips with weak la-
bels, and 14,412 real audio clips without labels. Since the audio
clips were collected from YouTube, the dataset included various
types of audio file formats with different recording settings (e.g., 16
kHz sampling rate vs. 44.1 kHz sampling rate). To address this is-
sue, we first converted all of the audio clips into a 1-channel, 16-bit
format, at a 16 kHz sampling rate using SoX [24]. We then nor-
malized each audio clip to -3 dBFS and removed the direct current
component by applying a 10 Hz high-pass filter.

As an input to the proposed system, we extracted 64-
dimensional log-Mel filterbanks from the audio clips. The window
and hop sizes were 1,024 and 323 points, respectively, at 16 kHz
sampling, to extract 496 frames (a multiple of 8) from 10 second au-
dio signals. We performed zero-padding for shorter sequences and
truncation for longer sequences from their last frames to equalize
the length of the feature sequences. We then performed normaliza-
tion for each bin so that the feature sequences had zero mean and
unit variances over the training data. The normalization procedure
can be expressed as follows:

X̄[t] = (X[t]− µ) /σ, (8)

where µ and σ represent the mean and variance calculated from the
training dataset, respectively.

To evaluate the performance of our proposed method, we com-
pared the following models:

Baseline: The DCASE2020 Task4 official baseline SED sys-
tem [16]. Its architecture consisted of a convolutional recur-
rent neural network (CRNN), trained using the mean teacher
semi-supervised learning technique [14].

Transformer-based (Ours): Our proposed Transformer-based
model. The number of attention units and attention heads
were 512 and 16, respectively. The Transformer encoder was
stacked 3 times and the dropout rate was set to 0.1.

Conformer-based (Ours): Our proposed Conformer-based
model. The number of attention units and attention heads
were 144 and 4, respectively. The Conformer block was
stacked 4 times, the kernel size of the depth-wise convolu-
tion was 7, and the dropout rate was set to 0.1.

Table 1: Event-wise performance using DCASE2020 Task4 valida-
tion set. using event-based macro F1 scores [%].

Event class Baseline Transformer Conformer

Alarm bell ringing 36.9 44.8 45.5
Blender 31.4 36.0 38.7
Cat 43.6 36.4 38.0
Dishes 25.5 28.1 28.2
Dog 20.3 24.0 23.1
Electric shaver 37.8 50.8 52.1
Frying 24.2 44.8 36.4
Running water 31.9 30.1 33.3
Speech 48.0 52.9 57.3
Vacuum cleaner 47.7 62.2 64.6

Average 34.8 41.0 41.7

We used RAdam [25] optimizer with a batch size of 128 and a learn-
ing rate of 0.001. Each batch contained strong, weak, and unlabeled
data at a ratio of 1:1:2. We multiplied the learning rate by 0.1 ev-
ery 10,000 mini-batch iterations and trained for 30,000 mini-batch
iterations. Note that we chose different hyper-parameters for the at-
tention units and heads for Transformer and Conformer-based mod-
els. Since we found that the optimal hyper-parameters are different
between them.

The evaluation metrics were the event-based macro F1 score
(EB-F1), the segment-based macro F1 score (SB-F1), and the poly-
phonic sound event detection score (PSDS) [26]. These metrics
were calculated using sed eval toolkit [27]. The segment length
for segment-based evaluation was set to 1 second. The event-based
metrics were calculated using both the onset and offset of detection.
The allowable length of detection errors was set to 200 ms for the
onsets and 200 ms / 20 % of the offsets’ event length. We computed
PSDS using 50 thresholds from 0.01 to 0.99.

3.2. Experimental Results

3.2.1. Effects of model architecture

First, we investigated the effects of the model architecture. When
performing this comparison, we used post-processing and semi-
supervised learning but did not use data augmentation. From the
results shown in Table 1, we can observe that both of the proposed
models outperformed the baseline model even without data aug-
mentation. When we compare the event-wise performance of the
Conformer-based and the Transformer-based models, as shown in
Table 1, these results show that the Conformer-based model outper-
formed the Transformer-based model for most of the sound events.
This result suggests that local features are essential for SED and that
Conformer’s ability to handle local features effectively contributed
to its improved performance.

Next, we investigated the effects of the kernel size of depth-
wise convolution in the Conformer blocks. The results in Table 2
show that the kernel size used for depth-wise convolution affects
performance and that 7 was optimum kernel size. In this study, the
resolution of one frame of feature sequence input to the Conformer
blocks corresponds to 0.16 seconds. Therefore, a kernel size of 7
corresponds to a receptive field of 1.12 seconds.

3.2.2. Effects of post-processing

Next, we investigated the effects of post-processing. We fixed the
threshold to 0.5 for all sound event classes for the model without
post-processing and did not apply the median filter. Table 3 shows
the results with and without post-processing. From these results, we
can confirm that post-processing improves detection performance,
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Table 2: Effects of kernel size used for depth-wise convolution on
event-based and segment-based macro F1 scores using Conformer-
based method.

Kernel size EB-F1[%] SB-F1 [%]

3 40.8 66.4
7 41.7 67.2
15 41.6 64.6
31 39.8 64.0

Table 3: Effects of post-processing (p.p.) on event-based and
segment-based macro F1 scores.

Method EB-F1[%] SB-F1 [%]

Transformer w/o p.p. 28.6 64.4
Transformer w/ p.p. 41.0 69.3
Conformer w/o p.p. 34.4 64.5
Conformer w/ p.p. 41.7 67.2

Table 4: Effects of data augmentation on event-based and segment-
based macro F1 scores using Conformer-based method. 95% con-
fidence interval was calculated by 5 experimental results

Data augmentation EB-F1 [%] PSDS

Nothing 41.8 ± 1.03 0.592 ± 0.017

Gaussian noise 41.4 ± 1.12 0.574 ± 0.011
Frequency masking 41.4 ± 1.15 0.586 ± 0.017
Time-shifting 42.9 ± 1.36 0.616 ± 0.022
Mixup 42.4 ± 1.93 0.620 ± 0.016
Time-shifting & mixup 46.0 ± 0.98 0.641 ± 0.010
All 45.4 ± 1.25 0.633 ± 0.014

especially in relation to the event-based macro F1 score. This is
because the event-based metric is more sensitive to deletion or in-
sertion errors than the segment-based metric.

3.2.3. Effects of data augmentation

Next, we investigated the effects of data augmentation. Table 4
shows the results for the Conformer-based model without data aug-
mentation, and various methods of data augmentation. These results
show that Gaussian noise and frequency masking did not improve
the performance, while time-shifting and mixup could improve the
performance, although they are not statistically significant. How-
ever, a combination of time-shifting and mixup yielded a statisti-
cally significant improvement from the original method and indi-
vidual data augmentation techniques.

3.2.4. Effects of score fusion

Finally, we investigated the effects of posterior-level score fusion.
To compare the effectiveness of various model selection strategies,
we selected the following three sets of models:

Conformer fusion: Score fusion using the top 8 Conformer-based
models, when each model was trained with different hyper-
parameter settings.

Transformer fusion: Score fusion using the top 7 Transformer-
based models, when each model was trained with different
hyper-parameter settings.

Conformer & Transformer fusion: Score fusion using the top 8
Conformer-based models and top 7 Transformer-based mod-
els.

Table 5: Effects of score fusion. Note that the “public eval” results
represent results using the DESED public evaluation dataset. This
is not the official challenge evaluation set.

Validation Public eval
Method EB-F1 [%] PSDS EB-F1 [%] PSDS

Baseline 34.8 0.610 - -
Transformer fusion 47.3 0.643 51.1 0.691
Conformer fusion 50.6 0.700 55.8 0.747
Conf. & Trans. fusion 49.8 0.626 55.0 0.737
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Figure 3: Visualization of various attention weights. The top row
shows attention weights examples of the Conformer-based model,
while the bottom row shows attention weights examples of the
Transformer-based model. Only vertical patterns appear in the
Transformer-based model, but vertical and diagonal patterns ap-
pear in the Conformer-based model.

Score fusion results are shown in Table 5. The post-processing
hyper-parameter for the DESED public eval set was tuned by us-
ing the validation set. From these results, we can see that score
fusion yields further performance improvement, significantly out-
performing the baseline. The best model achieved the event-based
F1 score of 50.6% a the PSDS of 0.700. This particular model is the
one evaluated using the DCASE2020 challenge’s evaluation set. It
achieved that of 51.1%, winning first place among 72 DCASE2020
Task4 submissions.

3.3. Visualization of attention weights

In order to further investigate the use of self-attention, we created
a visualization of attention weights, which are shown in Figure 3.
We observed that there are diagonal and vertical patterns that ap-
pear in the attention weight visualizations for the Conformer-based
method, which implies that the proposed method is capable of cap-
turing both global and local context information from the feature
sequence.

4. CONCLUSION

In this paper, we have presented a Conformer-based SED method,
which was developed using a self-attention architecture embedded
inside Conformer blocks. We also employed the data augmentation
techniques, the event-dependent post-processing, and the score fu-
sion. Our experimental results, when using the DCASE2020 Task4
validation set, demonstrated that these techniques improved SED
performance and that our proposed system significantly outperform
the baseline system, achieving an event-based macro F1 score of
50.6%. In future work, we will investigate our system’s event-wise
performance more carefully in order to develop a more effective
model ensemble technique. We would also like to explore the fur-
ther integration of source separation techniques into SED and pub-
lish our proposed method as reproducible, open-source code.
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