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ABSTRACT

This report details the dataset and the evaluation setup of the Sound
Event Localization & Detection (SELD) task for the DCASE 2020
Challenge. Training and testing SELD systems requires datasets of
diverse sound events occurring under realistic acoustic conditions.
A significantly more complex dataset is created for DCASE 2020
compared to the previous challenge. The two key differences are
a more diverse range of acoustical conditions, and dynamic con-
ditions, i.e. moving sources. The spatial sound scene recordings
for all conditions are generated using real room impulse responses,
while ambient noise recorded on location is added to the spatialized
sound events. Additionally, an improved version of the SELD base-
line used in the previous challenge is included, providing bench-
mark scores for the task.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

Sound event localization and detection (SELD) takes the currently
active research topic of temporal sound event detection (SED) [1]
and connects it with the spatial dimension of event location or
direction-of-arrival (DoA). Hence SELD aims to a more complete
spatiotemporal characterization of the acoustic sound scene, with
predictions on the type of sounds of interest in the scene, their
temporal activations, and their spatial trajectories when they are
active. This spatiotemporal scene description has a wide range of
applications in machine listening, ranging from acoustic monitoring
and robot navigation to intelligent human-machine interaction and
deployment of immersive services.

Until the DCASE2019 Challenge!, only a handful of ap-
proaches in literature were aiming some form of SELD [2-8]. Apart
from [7, 8] which are fully deep-neural network (DNN) based ap-
proaches, these earlier works employed more traditional source lo-
calization methods such as time-difference-of-arrival (TDoA) [2,6],
steered-response power [3], or acoustic intensity vector analysis [5],
and Gaussian mixture models [2], hidden Markov models [3], sup-
port vector machines [5], or a simple artificial neural network [6]
for classification. Additionally, most of them treated detection and
localization independently, with only [4, 6] joining beamforming
outputs after localization with the event classifiers.

Recently, DNNs have dominated SED approaches [1], and they
have been applied successfully to pure source localization [9, 10],
showing potential for joint modeling of the SELD task. The first
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works we are aware of this approach are [7, 8]. Hirvonen in [7]
used a convolutional neural network (CNN) with localization targets
at discrete DoAs, setting the SELD task as a multilabel-multiclass
classification problem. In [8] we proposed the SELDnet, a convolu-
tional recurrent neural network (CRNN) with two output branches,
a classification one for SED and a regression one for DoA estima-
tion. Both proposals were using simple generic features, such as
multichannel power [7], or phase and magnitude [8], spectrograms.

Due to its relevance in all the aforementioned applications,
SELD was introduced as a new task in DCASE2019 Challenge, and
as such, it required a new dataset for training and evaluation of the
submitted methods. This dataset, the TAU Spatial Sound Events
2019%, comprised scenes with events from 11 classes, spatialized
through captured room impulse responses (RIRs) as static sources
at 504 possible locations for each of 5 different spaces [11]. Along
with the dataset, a SELDnet implementation was provided by the
authors as a baseline for the challenge participants®. The challenge
attracted more than 20 original methods, with most methods sur-
passing significantly the baseline*. Many innovative solutions were
presented for the task, such as more refined SED and localization
features [12,13], a multi-stage modeling and training approach [12],
data augmentation [14, 15], exploitation of domain-specific knowl-
edge [13, 16], state-of-the-art network architectures [17], ensem-
bles, or combinations of model-based localization and DNN-based
event classification [18].

In this work we present the new dataset TAU-NIGENS Spa-
tial Sound Events 2020° aimed for the next iteration of the SELD
task in DCASE2020 challenge®. The dataset preserves all the re-
alistic properties of the previous one while surpassing its major
limitations: more sound examples per class, a greater number of
rooms, much more diverse acoustic conditions, and non-quantized
source positions in a predefined grid of directions. More impor-
tantly, the dataset introduces moving sources, which makes it sig-
nificantly more challenging and closer to real-life conditions.

Along with the dataset, we introduce improvements to the
SELDnet baseline of [8] that reflect some effective proposals by
DCASE2019 participants, to make it more competitive. Moreover,
instead of measuring performance independently for SED and lo-
calization, as in DCASE2019, we adopt recently proposed metrics
for joint SELD measurement [19] which can distinguish between
systems that localize the correct events at their correct position, and
systems that detect and/or localize well independently.
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2. REVERBERANT DYNAMIC DATASET

2.1. Sound events

Sound event samples were sourced from the recently published NI-
GENS General Sound Events Database’. This database provides
a higher number of samples and classes than the one used in the
previous challenge. 714 monophonic sound examples, recorded at
44.1 kHz, are distributed between 14 classes of alarm, crying baby,
crash, barking dog, running engine, burning fire, footsteps, knock-
ing on door, female & male speech, female & male scream, ringing
phone, piano. For more details on the recordings and the database
in general, the reader is referred to [20].

2.2. Recording of multichannel RIRs

The overall recording procedure was similar to the one used in the
previous dataset [11], with differences highlighted below. In both
datasets, instead of multiple RIR measurements at discrete source-
receiver points, a very large range of source positions is covered by
recording pseudo-random maximum-length sequences (MLS) emit-
ted by a slowly moving source along predefined tracks [21]. The
source is a Genelec G Three® loudspeaker mounted on a wheeled
platform. The recording is done with a 32-channel compact spheri-
cal microphone array (SMA), the em32 Eigenmike®. An SMA with
high channel count is chosen due to its uniform spatial resolution
up to high frequencies, and to its flexibility in allowing us to extract
a variety of smaller spatial formats from the same recording.

For DCASE2019, real recorded RIRs were captured from 5
rooms of similar type, with high direct-to-reverberant ratios. For
DCASE2020, to add more variability in acoustical conditions and
more challenging reverberation, we recorded 10 additional rooms
of diverse shapes and types, such as lecture halls, large classrooms,
small classrooms and meeting rooms, a modern sports hall, and a
sports hall in an underground nuclear shelter with rock walls. More-
over, the recording trajectories in the new rooms were different for
each one of them. In half of the rooms the trajectories were circu-
lar, but at differing distances and elevations, while in the rest linear
trajectories at various heights were used. The RIRs were extracted
from the moving source recordings through a simple linear regres-
sion on the filter coefficients between the clean MLS sequence and
the recorded output, similar to [22]. RIRs extracted along circu-
lar trajectories have a more or less constant elevation, distance, and
DRR, while ones extracted along linear trajectories have varying el-
evation, distance, and DRR, with respect to the recording position.

Finally, similarly to DCASE2019, apart from the MLS noise
sequences an additional 30 mins of spatial ambient noise were cap-
tured in each room with the recording setup unchanged. Contrary to
the 5 earlier rooms which were accessible by passing crowds at any
time, the new room recordings contained mostly ventilation noise.

2.3. Reference RIRs and positional labels

During the synthesis of the spatial mixtures, sound events are in-
tended to be spatialized at consistent DoAs across different environ-
ments, meaning that the direct path for the same DoA as encoded in
the array channels should be similar between rooms, and the meth-
ods can rely on it for localization while being robust to the dissim-
ilar reverberation patterns that follow. In the DCASE2019 dataset,

"https://zenodo.org/record/2535878
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the recorded circular trajectories were assumed to have the exact
same geometry with respect to the microphones, and the final grid
of reference positions was intended to be the same for all rooms.
The temporal locations at each trajectory for those predetermined
reference DoAs were located through a continuous DoA analysis of
the recorded MLS, followed by the reference RIR extraction.

For the new more challenging dataset, we decided to estimate
the reference DoAs acoustically, directly from the extracted RIRs,
as these would reflect consistently the ones encoded into the multi-
channel mixture during the synthesis stage using the same RIRs. To
that purpose, for each source trajectory we: a) extracted the multi-
channel RIRs at 200-millisecond intervals, b) estimated direct path
delays from geometry and measurements, c) windowed the RIRs
around their direct path, and d) applied a broadband version of the
MUSIC algorithm [23] for estimation of the DoA corresponding to
that early part of the RIR. From that list of RIR-DoA pairs, the fi-
nal reference ones were determined by selecting the ones closest
to the geometric reference trajectory, at approximately 1° intervals.
Note that the same process was applied also to the 5 earlier rooms
recorded for the DCASE2019 dataset.

2.4. Dataset Synthesis

All extracted multichannel RIRs and sound event samples were re-
sampled to 24 kHz. From the 8 provided splits of the NIGENS
dataset, 6 were used for the creation of the development, and the
remaining 2 for the evaluation datasets. One or two rooms were
assigned to each split, and 100 one-minute-long recordings of spa-
tialized sound events were generated for each such combination
of event samples and rooms. The onsets of sound events in each
recording were randomly distributed but constrained by the allowed
level of polyphony (number of simultaneous events, either 1 or 2).

An event was randomly chosen to be either static or moving.
Static events were assigned randomly a DoA from the list of ref-
erence ones available for the specific room. Moving sound events
were assigned randomly one of the RIR recording trajectories, lim-
iting their motion along that path. The direction of movement was
randomized (forward or backward), while the speed of motion was
randomly chosen from three levels of slow (~10°/sec), medium
(~20°/sec), and fast (~40°/sec). Additionally, since each trajec-
tory was recorded at different heights, moving events reaching the
end of a path had the possibility to jump to a higher or lower eleva-
tion and continue their motion on the respective path of that height.

Static events were spatialized by convolution with the respec-
tive RIRs for their intended DoA, and added to the mixture. Moving
events were spatialized by a time-variant convolution scheme, per-
formed between the STFT of the event sample and the STFTs of
all the RIRs encountered along the path of motion [24]. Since the
reference DoAs were extracted at about 1° intervals along a tra-
jectory, the speed of motion was controlled by using 10 (slow), 20
(medium), or 40 (fast) consecutive RIRs per 1 second of output.
Very short events of up to 2 seconds were excluded from being dy-
namic, and were assigned static DoAs instead.

After the reverberant spatialized events were layered with the
intended polyphony, ambient noise from the same room was ad-
ditionally mixed. The original ambient noise recordings were split
into 1-minute segments and added to the mixtures at varying signal-
to-noise ratios (SNR) from 30 dB to 6 dB. Since the duration of the
recorded ambience was less than the total duration of the generated
mixtures, additional noise segments were artificially generated by
mixing two randomly chosen segments of the recording.



Detection and Classification of Acoustic Scenes and Events 2020

Input multichannel audio
Feature extractor
FOA: 64-band [mel energies (4 channels) + Intensity vector (3 channels)]

» WP

or
MIC: 64-band [mel energies (4 channels) + GCC-PHAT (6 channels)]

l FOA: 7xTx64 or MIC: 10xTx64

64, 3x3 filters, 2D CNN, ReLUs
5 x 4 max pool

64, 3x3 filters, 2D CNN, ReLUs
1 x 4 max pool

64, 3x3 filters, 2D CNN, ReLUs
1 x 2 max pool

| eaxTisx2

128, GRU, tanh, bi-directional

128, GRU, tanh, bi-directional

TEx128 ———
| 128, fully connected, linear | | 128, fully connected, linear |
[T155x 128 [ T55x128
| 14, fully connected, sigmoid | | 3*14, fully connected, tanh |
T/5x 14 lT/5x3*14

SED mask|(training only)
Direction of arrivaﬁ (DOA) trajectory
Multi-output regression task

Sound event detection (SED)
Multi-label classification task

frame t

frame t N | . _‘:_ ______
[ o—— SPEECH | 3 :
DOG BARK - :
( SPEECH > ¥ . CAR .
. — :
! > S - .
U PN

Figure 1: Baseline CRNN architecture for SELD.

2.5. Dataset Formats

As in the previous dataset for DCASE2019, we opted for delivering
the synthesized sound recordings in two different 4-channel spatial
sound formats, extracted from the 32-channel Eigenmike format.
The first one is a 4-channel microphone array corresponding to a
tetrahedral capsule arrangement (MIC), obtained directly by select-
ing channels 6,10,26, and 22 [11]. The second one is the widespread
first-order Ambisonics (FOA), extracted through a matrix of 4 x 32
conversion filters, as detailed in [25]. The rationale behind offer-
ing the dataset in both the MIC and FOA formats is that each one
encodes spatial information differently. Hence, different spatial fea-
tures are better suited to each format, and participants could exploit
one of the two or both. Analytical expressions of the spatial encod-
ing of each formats can be found on the previous dataset report [11].
Note that contrary to DCASE2019, the FOA format omits the /3
factors on channels 2—4, to be compliant with the SN3D normaliza-
tion scheme of Ambisonics.

3. BASELINE METHOD

As the benchmark method, we employ an updated version of SELD-
net [8]'°. Specifically, we adopt changes to SELDnet that helped to
improve its performance consistently across different submissions

Ohttps://github.com/sharathadavanne/
seld-dcase2020
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Table 1: Challenge setup

Splits
Dataset Training  Validation Testing
Development 3,4,5,6 2 1
Evaluation 2,3,4,5,6 1 7, 8 (unlabeled)

of the DCASE 2019 SELD task. Among those improvements, we
include array-dependent acoustic feature extraction, and train a sin-
gle model to jointly estimate SED and DOA as shown in Figure 1.
Additionally, during the training, the DOA estimation branch uses
the SED output as the mask, and the mean squared error loss is only
computed for the sound events that are active. This strategy was first
published by [12], with significant improvements on the results, and
adopted by other participants in the challenge. Cross-entropy loss
is used for the SED branch. Similar to the original SELDnet, we do
not perform any post-processing on its output.

The updated SELDnet receives multichannel audio at 24 kHz
sampling rate. For each of the MIC and FOA datasets two input
features are extracted. The first feature, the multichannel mel-band
power spectrogram, is common to both datasets, and, apart from be-
ing a widespread SED feature, it additionally captures inter-channel
level differences (ILDs). For each channel 64 log mel-band energies
are computed, with a 40 ms window and 20 ms hop length using a
1024-point FFT. The second, format-specific, spatial feature for the
FOA dataset is the acoustic intensity vector, which expresses net
acoustic energy flux, and is computed at each of the 64 mel-bands
similar to [12,17]. For the MIC dataset, we employ the generalized-
cross-correlation with phase-transform (GCC-PHAT) feature com-
puted in each of the 64 mel-bands similar to [12, 14, 15].

Based on the chosen dataset, the SELDnet is trained using the
corresponding features. For the FOA dataset, the inputis of 7 x T x
64 dimension, where 7' is the number of time frames in the input
sequence, and the number 7 arises from 4 channels of 64 dimension
log mel-band energies computed for each of the 4 audio-channels,
and 3 channels of FOA intensity vectors. Similarly for the MIC
dataset, the input is of 10 X 7" x 64, where 10 arises from 6 channels
of GCC-PHAT computed between all pairs of audio-channels of the
MIC dataset and 4 channels of log mel-band energies.

Details on the SELDnet architecture and training can be found
on its original publication [8] and on DCASE2019 task report [11].
Some further differences with the DCASE2019 SELDnet baseline
is temporal max-pooling at 7'/5, reducing the output temporal res-
olution to 100 ms, as specified by the challenge submission format.
The SED branch outputs 7'/5 x C' classification probabilities, and
the DOA branch outputs 7'/5 x 3C' Cartesian vector components,
which are converted to azimuth & elevation during inference.

4. EVALUATION

4.1. Evaluation Setup

The evaluation setup for the development dataset is shown in Ta-
ble 1. Among the six splits in the dataset, the first is used as the
unseen test split, the second as the validation split during training,
and the remaining ones are used for training. The best parameters
for a SELD method are chosen based on the validation split, with-
out using the testing split. The performance of the best validation
model on the unseen testing split is then reported as the develop-
ment dataset score for the SELD method.
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In order to have a fair comparison of the SELD performance
across different submitted systems during development, participants
are required to employ the proposed development dataset setup and
report the performance of their method on the unseen test split 1.
However, for the evaluation dataset, the participants are required to
produce outputs on the unlabeled testing splits 7,8, with no restric-
tions on how they use the 1-6 development splits. The evaluation
results presented here for the baseline are based on the evaluation
dataset setup shown in Table 1.

4.2. Metrics

The 2019 version of the SELD task employed individual metrics
for SED and DOA estimation. The SED performance was evalu-
ated using the F-score (F') and error rate (K R) calculated in non-
overlapping one-second segments [26]. The DOA estimation was
evaluated using frame-wise metrics [9] of DOA error (DFE) and
frame recall (F'R). The DOA error represents the average angu-
lar error in degrees between the predicted and reference DOAs. The
frame recall represents the percentage of frames in which the esti-
mated number of DOAs were identical to the reference.

Recently, in [19] we discussed the drawbacks of the above met-
rics for the SELD task and proposed metrics to evaluate the perfor-
mance of joint detection and localization. The first two metrics, on
location-aware detection, consider a prediction to be correct if the
sound class of the prediction and reference are the same, and the
distance between them is less than an application-specific threshold.
We propose a threshold of 20° for the challenge, as an acceptable
localization tolerance for a practical SELD system, and compute
the corresponding metrics, error rate (' R2oo) and F-score (Fxgo),
in one-second non-overlapping segments. An ideal SELD method
will have ERogo = 0 and Fbgo = 100%.

The next two metrics, on class-aware localization, do not use
any distance threshold, like above, but consider the error only be-
tween same-class predictions and references. The respective lo-
calization error (LEcp) and its corresponding localization recall
(LRcp) are computed in one-second non-overlapping segments,
where the subscript refers to classification-dependent. An ideal
SELD method will have LEcp = 0° and LR¢p of 100%.

Although information on joint localization/detection perfor-
mance is gained by either location-aware detection, or class-aware
localization, a thorough picture is given by all four. Hence, we
evaluate the submissions in the DCASE2020 task using all four
metrics. The submitted methods are ranked individually for each
one of them, and the final positions are obtained using the cumula-
tive minimum of the ranks.

5. RESULTS

The performance of the SELDnet method for the proposed eval-
uation setup of the DCASE 2020 SELD task is tabulated in Ta-
ble 2. The results for both the DCASE2019 metrics and the of-
ficial DCASE2020 metrics are reported. The 2020 metrics evalu-
ate jointly detection and localization performance and hence pro-
vide deeper insights on the SELD performance. For instance, the
2019 detection metrics of DE and F'R suggest that the SELDnet
estimated the correct number of DOAs in 66.6% of the frames for
the FOA test data with an average DOA error of 20.4°. But, this
localization metric does not use the knowledge of detection and
computes DOA error for all the detected sound classes, irrespec-
tive of them being correct or wrong. Although we have the corre-
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Table 2: SELD performance of the baseline method evaluated using
independent (2019) and joint (2020) localization/detection metrics.

\ FOA | MIC
2019 | DE FR ER F | DE FR ER F
Development results
Val 20.2° 62.9 0.54 62 21.9° 63.8 0.53 62.8
Test 20.4° 66.6 0.54 60.9 | 22.6° 66.8 0.56 59.2
2020 \ LEcp LRcp FERaoe  Fhoe \ LEcp LRcp FERae  Fhoe
Development results
Val 23.5° 62 0.72 37.7 27° 62.6 0.74 342
Test 22.8° 60.7 0.72 374 ‘ 27.3° 59 0.78 314
Detailed development dataset test-split results
Overlap 1 18.1° 69.7 0.63 492 | 20.8° 66.6 0.70 40.8
Overlap2 | 26.3° 55.4 0.77 304 | 32.0° 54.6 0.82 25.8
Evaluation results
Val 22.8° 60.7 0.7 39.6 | 24.5° 58.7 0.72 36,9
Test 23.2° 62.1 0.7 395 ‘ 23.1° 62.4 0.69 413
Detailed evaluation dataset test-split results
Overlap 1 18.3° 69.9 0.58 51.3 16.0° 69.4 0.75 337
Overlap2 | 26.7° 57.4 0.75 325 28.1° 583 0.75 337
Split 7 20.5° 65.0 0.66 433 21.8° 65.9 0.66 44.0
Split 8 26.2° 59.1 0.74 355 24.7° 589 0.72 38.6

sponding detection scores of R and F’ scores, there is no straight-
forward approach to assess a joint detection and localization per-
formance. In contrast, the 2020 metrics of class-aware localization
(LEcp and LRcp) and location-aware detection (E Rzgo) and F-
score (Fgo) can both independently provide insights on the joint
performance. For instance, on the FOA test data, 60.7% (LRcp) of
the sound class instances were recalled successfully by the SELD-
net with an average location error (L Ecp) of 22.8°. Similarly, if
we consider that the predicted sound class is correct if it is within
a margin of 20° from the reference sound class location, then we
obtain an F-score (F5g0) of 37.4% and error rate (E Rogo) of 0.72.

In Table 2, although both the FOA and MIC datasets are synthe-
sized from the same microphone array, the SELDnet is observed to
perform better for FOA than the MIC dataset. This suggests that the
spectral and spatial information in the two formats are not identical
and methods trained with both the datasets can potentially benefit
from mutual information. Finally, we observe that the performance
of SELDnet on recordings without polyphony (overlap 1) is signif-
icantly better than with polyphony (overlap2). Additionally we can
see, at the evaluation set results, that the model does not generalize
equally well for different unseen spaces, as it performs better for
one of the two rooms (split 7).

6. CONCLUSION

Herein, we outlined the sound event localization and detection task
for the DCASE 2020 challenge, and its new complex dataset with
dynamic sound scenes in reverberant rooms. This dataset is syn-
thesized using impulse response trajectories measured at 15 indoor
environments, with an elaborate measurement and RIR extraction
procedure able to cover a large range of source positions for both
static and moving events. Due to its larger scale and the dynamic
conditions, it is a definite step towards realistic testing and train-
ing of SELD systems, compared to the previous dataset. Based
on the same processing and synthesis framework, further realistic
conditions can be integrated effectively on future datasets, such as
moving receivers or out-of-class directional interferes. Absolute po-
sitional localization becomes also possible if recordings for more
than one array position in a room are synthesized and mixed. Such
advances are expected to be addressed in future work.
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