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ABSTRACT

Situated in the domain of urban sound scene classification by humans
and machines, this research is the first step towards mapping urban
noise pollution experienced indoors and finding ways to reduce
its negative impact in peoples’ homes. We have recorded a sound
dataset, called Open-Window, which contains recordings from three
different locations and four different window states; two stationary
states (open and close) and two transitional states (open to close and
close to open). We have then built our machine recognition baselines
for different scenarios (open set versus closed set) using a deep
learning framework. The human listening test is also performed to be
able to compare the human and machine performance for detecting
the window state just using the acoustic cues. Our experimental
results reveal that when using a simple machine baseline system,
humans and machines are achieving similar average performance for
closed set experiments.

Index Terms— dataset, sound event, deep neural network

1. INTRODUCTION

The acoustic distinction between outdoor and indoor scenes is an
active research field and can be automated with some success [1, 2].
A much subtler difference is the change in the indoor soundscape
induced by an open window. Being able to determine this, however,
would allow applications in warning systems and be a prerequisite
for an app-based urban sound mapping research.

Acoustic detection requires neither line of sight nor sensors at
the window frame or knowledge of the number of windows or their
size. The task, however, varies substantially in difficulty with the
amount of sound inside and outside. From the point of machine
classification, the lack of specificity is the most problematic aspect:
very few sounds if any can be assumed to originate exclusively from
outside and be present at all times to aid automatic detection. The
required generalisation ability, however, can be assumed for humans,
who might also use very subtle cues in the change of reverberations
[2]. Since by changing the status of the window the acoustic char-
acteristics of the room is changing, different features can be used
as an input for machine learning methods to build accurate models,
e.g. RT60, clarity, and reverberance. These features have been previ-
ously used by authors to automatically predict the perceived level
of reverberation when there is no prior information about the room
characteristics and results in promising outcome [3, 4].

∗This work was partially supported by the “Audio-Visual Media Research
Platform” with grant reference number EP/P022529/1.

To facilitate the study in this area, we have created a dataset
which could be used to determine the degree of reliability with
which an open window can be recognised by humans and machines
under varying circumstances based only on acoustic cues. Since
noise pollution is an increasing threat to the well-being and public
health of city inhabitants [5], the recorded dataset can be used to
investigate whether the findings for humans and machines can inform
each other and can be used for further application-related research,
e.g., active noise control applications to a larger region of control,
such as in open windows and openings of noise sources [6].

2. THE DATASET

2.1. Overview

Audio data contained in this dataset is stored in WAV format and it
is accessible from the Zenodo repository via this DOI:
10.5281/zenodo.3620748.

2.2. Recording locations

The recordings have been made at three different locations.
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Figure 1: An overall schematic of the recorded dataset at three
locations.

• Farm: A farm in Brook, Surrey, United Kingdom. The record-
ings were made in an open-plan studio flat area in the centre
of the farm. The recordings in this location have the lowest
levels of background noise, due mainly to a quiet environmental
surrounding.

• Office 1: An office at the University of Surrey, Guildford,
United Kingdom. The recordings were made in an open-plan
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office located on the first floor, at the Centre for Vision, Speech
and Signal Processing (CVSSP). Since this office accommo-
dates 16 researchers, recordings in this location have the highest
level of background noise.

• Office 2: An office at the University of Surrey, Guildford,
United Kingdom. The recordings were made in a small size
open-plan office at the CVSSP. This office accommodates 8
researchers and the recordings made in this office considered to
have a medium level of background noise.

Figure 2.2 shows the schematic of the number of recordings made at
each location. A plan view of the Office 2 is provided in Figure 2.

Figure 2: Plan view of the recording setup at Office 2.

2.3. Recording equipment

The recordings made at the two offices and a studio flat in a farm
used a dedicated laptop, Focusrite Clarett 4pre USB external sound
card (44,100 Hz sample rate at 16 bits per sample) 1, and a Behringer
ECM 8000 microphone 2.

2.4. Recording setup

The Behringer ECM 8000 microphone is connected to the External
Line Return (XLR) input of the Focusrite Clarett external sound
card via an XLR cable. The external sound card is connected to the
dedicated laptop and controlled using Ableton Live 10 3 software for
setting configurations and exporting the recorded audio files.

The microphone is located approximately 10 cm away from the
window and fixed using a microphone holder. Figure 2.4 shows the
photo of an actual setup in Office 1.

At each location 90 audio sessions are recorded; 60 one minute
recordings for static state setup and 30 fifteen seconds recordings for
transitional state setup.

2.5. File naming conventions

The naming convention for audio recording is as follows:
[Location] [State] [Time] [IDX]

[State] will be one of the following: “O stands for open, C stands

1https://focusrite.com/usb-c-audio-interface/
clarett-usb/clarett-4pre-usb

2https://thomann.de/gb/behringer_ecm_8000.htm
3https://ableton.com/en/live/
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Figure 3: Image is taken from the recording setup at Office 1.

Table 1: Architecture of the baseline. ‘Conv’ stands for convolution,
‘BN’ stands for batch normalisation, ‘Pool’ stands for max pooling,
and ‘FC’ stands for fully-connected.

Layer Output shape

640× 64× 1
Conv+BN+ReLU+Pool 320× 32× 32
Conv+BN+ReLU+Pool 160× 16× 64
Conv+BN+ReLU+Pool 80× 8× 128
Conv+BN+ReLU+Pool 40× 4× 256
Conv+BN+ReLU+Pool 20× 2× 512
Global Average Pool 512
FC+Softmax 4

for Close, OC means a transition from Open to Close and CO stands
for a transition from Close to Open.” [Time] stamp will be one of
the following: “AM stands for morning between 9:00 to 12:00, N
stands for noon which is between 13:00 to 15:00 and PM which
stands for an afternoon which is between 17:00 to 20:00.” [IDX] is
representing the file ID number.

For example, “Farm C PM 01.wav”, means this file is recorded
at the farm and in the afternoon when the window is closed and the
file ID is 01.

3. MACHINE RECOGNITION BASELINE

In this section, we present the baseline system that we developed
for the Open-Window dataset. The source code for this baseline
is freely available4. Our aim was to develop a simple system that
is of relatively low complexity, yet powerful enough to achieve
good results. To this end, our baseline is a six-layer convolutional
neural network (CNN) and the features used are logarithmic mel-
spectrograms (log-mels). We first describe the feature extraction
stage that produces the log-mels. Following this, we describe CNN
in more detail, including the architecture and the training procedure.
Finally, we describe how we split the data for training and evaluation.

4https://github.com/saeidsafavi/OpenWindow
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3.1. Feature Extraction

The Open-Window dataset provides recordings as 16-bit PCM wave-
forms sampled at 44.1 kHz. Instead of using the waveforms directly,
our baseline system extracts log-mel spectrograms and then uses
these spectrograms as inputs for the CNN. The log-mels were ex-
tracted by taking the short-time Fourier transform, squaring the
result, scaling the frequency axis using mel filter banks, and finally
scaling the magnitude using a logarithmic function. We used a win-
dow length of 2048 samples (46ms), a hop length of 1032 samples
(23ms), and 64 mel bins.

In the Open-Window dataset, the audio clips vary in length.
The fixed-state classes are approximately 60 s in length, while the
transition classes are approximately 15 s. To ensure the inputs of the
neural network are fixed in length, our system partitions the log-mels
into blocks with shape 640× 64, which corresponds to 15 s of audio.
Audio clips that are less than 15 s are padded with zeros, while clips
that are longer but not evenly divisible are padded with zeros if the
remainder is greater than 10 s and truncated otherwise.

3.2. Convolutional Neural Network

The CNN that we use is comprised of 5 convolutional layers and a
single fully-connected layer. Each convolutional layer is followed
by batch normalisation [7], a ReLU activation function [8], and
2 × 2 max-pooling in that order. The number of output features
for each convolutional layer is detailed in Table 1. After the final
convolutional layer, the spatial dimensions are reduced to a scalar
by taking the average. The resulting 512 features are then mapped
to K = 4 class probabilities using a fully-connected layer and a
softmax non-linearity. The total number of parameters is slightly
over 3.5 M. As a result of this, the computational demands and
memory requirements are relatively low.

The models are trained using the categorical cross-entropy loss
function, which is defined as

L(yi, ŷi) = −
K∑
i

yi log(ŷi), (1)

where y is a one-hot vector representing the ground truth and ŷ is
the output of the CNN. For optimisation, our baseline uses the Adam
algorithm [9] with a learning rate of 0.0005. The learning rate is
decayed by 10% after every two epochs to help with convergence.
Training is carried out for 50 epochs with a batch size of 64. After
each epoch, the model state is saved and the validation set accuracy is
recorded. The final model used for inference is the one that achieved
the highest validation set accuracy.

3.3. Training set split

To train and evaluate the baseline, the Open-Window dataset was
split into three subsets: a training set, a validation set, and a test set.
As a means to do this, the dataset was first split into six folds, which
were generated in a way that balances the number of instances from
each class and location across folds. Initially splitting the dataset
into folds allows more flexibility in how they can be used for the
training/validation/test split. In our case, we used fold 1 for the test
set, fold 2 for the validation set, and folds 3-6 for the training set.
This means the training set contains two thirds of the recordings, or
approximately 2.25 hours of audio. The exact mapping of instances
to folds is available as part of the dataset release. This is so that fair
comparisons can be made with the baseline in future work.

Table 2: Experimental results for the baseline system. The accuracy
and the mean average precision (mAP) are reported along with 95%
confidence intervals.

System Accuracy mAP

ClosedSet 79.2%±1.83% 87.7%±1.18%

ClosedSet-50% 60.2%±3.87% 65.1%±3.07%

OpenSet-O1/O2/F 35.4%±3.02% 44.4%±3.15%

OpenSet-O1/F/O2 82.9%±2.39% 88.2%±1.52%

OpenSet-F/O1/O2 41.3%±1.74% 42.8%±0.96%

4. BASELINE RESULTS

To evaluate the baseline, we looked at two different scenarios:

• Closed-set scenario: The training set, validation set, and test set
are sampled from the same distribution. More specifically, they
all contain audio clips from all three of the recording locations.

• Open-set scenario: The training set, validation set, and test set
contain audio clips from different recording locations.

For the closed-set scenario, we used the training/validation/test set
split described in Section 3.3; fold 1 is used for the test set, fold 2
is used for the validation set, while the remaining folds are used for
the training set. For the open-set scenario, we look at three different
configurations for the training/validation/test splits:

• Office 1/Office 2/Farm (OpenSet-O1/O2/F)
• Office 1/Farm/Office 2 (OpenSet-O1/F/O2)
• Farm/Office 1/Office 2 (OpenSet-F/O1/O2)

These configurations result in approximately 90 training clips. Using
the folds as in the closed-set scenario, there are approximately 180
clips in the training set. To be able to make a fair comparison
between the two scenarios, we also present results for the baseline
when trained on fold 5 and fold 6 only, and refer to the system as
ClosedSet-50% in the tabulated results.

To score the systems, we used two metrics: accuracy and mean
average precision (mAP). The accuracy is the percentage of correctly
classified instances. The mAP is defined as

mAP =

∑K
k=1 APk

K
,

where APk is the average precision for class k. The average precision
is roughly the area under the precision-recall curve for class k. To
account for random variation, we ran ten trials for each system and
averaged the scores. 95% confidence intervals are also provided.

The results are presented in Table 2. Comparing the results from
the closed-set experiments, it can be seen that halving the number of
training clips from 180 to 90 reduces the accuracy by almost 20% in
absolute terms and the mAP by more than 20%. This demonstrates
the importance of training data and that a subpar amount of data can
lead to poor performance. Observing the open-set results, it can be
seen that leaving out clips from the Farm location during training and
testing can improve the performance greatly; the accuracy increases
from 60.2% to 82.9%. Moreover, only testing clips from the Farm
location or training exclusively with clips from the Farm location
drastically decreases the performance; the accuracy decreases by
more than 20%. It should be noted, however, that the accuracy is
still notably higher than 25%, which is the expected accuracy for
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Figure 4: Class-wise performance of the ClosedSet system.
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Figure 5: Location-wise performance of the ClosedSet system.

random guessing. This low performance may be attributed to the
Farm location specifically or to the fact that it is a very different
location in general, which demonstrates how difficult it can be to
recognise sounds from unseen environments. As we will show next,
this latter reason for low performance is more likely.

To analyse the ClosedSet system in more detail, Figure 4
presents the class-wise performance of the system. It can be seen that
the transition classes are the easiest to classify, followed by the Open
state class. The system did poorly on the Closed state class, which is
understandable considering there is a less acoustic activity during
this state. In Figure 4, we present the location-wise performance of
the system. It can be seen that recordings in Office 1 are easiest to
classify, followed by Farm and Office 2 in that order. These results
show that the Farm location is not an inherently difficult location for
the baseline despite the lack of acoustic activity in this location.

5. HUMAN LISTENING TEST

Human window state classification performance for fixed and transi-
tional states are also measured, using the same test utterances from
the automatic classification experiments. Eight listeners, mainly
research fellows at the CVSSP, participated in the evaluations. Each
participant initially trained for two separate tests; using static states
(by listening to nine randomly selected files, three audio files per
location and per state) and transitional states (by listening to nine

Table 3: Performance of human listeners in identifying the window
status. *Trans stands for transitional state experiment.

Setup Accuracy Location

Static state 68.33% Average
Trans* state 88.75% Average
Static state 61.25% Farm
Static state 78.75% Office 1
Static state 65.00% Office 2
Trans* state 75.00% Farm
Trans* state 96.25% Office 1
Trans* state 95.00% Office 2

randomly selected files, three audio files per location and per state).
Then each participant listened to 120 audio files for each of two
separate experiments, for static state experiment each of duration ap-
proximately 60 seconds, and for transitional state experiment each of
duration approximately 15 seconds, in a quiet room using the same
computer and headphones. Since the human listener was trained
using audio files from all locations then their obtained performances
are comparable with the closed set results from the machine baseline.

5.1. Results

Table 3 shows window state classification performance achieved by
human listeners for both static state and transitional state tests. The
results are presented as an average per each setup and then for further
analysis divided further per each location.

Table 3 shows that humans are very accurate in classifying
transitional window states in a noisy environment (Office 1) by
achieving an accuracy of 96.25%. Evidently, humans have difficulty
classifying static window state in a quiet places (e.g. Farm), the
average accuracy is 61.25%.

A comparison of average performances for two different setups,
static and transitional states, reveals that humans can benefit from
sequential information in the transitional state setup and classify
more accurately for transitional states than static state events.

6. CONCLUSIONS

In this paper, Open-Window, which is a manually recorded audio
dataset, is presented. Full description of this audio dataset is de-
scribed and the data is released on Zenodo so it can be used for
research purposes by others. The recorded dataset contains around
3.5 hours of audio data recorded at three locations and from two dif-
ferent recording setups; static and transitional state. Open-Window
is the first audio dataset recorded that reflects the differences in the
acoustic cues of indoor and outdoor environments.

This dataset is available for research and development in a va-
riety of fields like security, and living enhancement. To validate
the consistency of Open-Window, two baseline systems have been
tested and compared; machine and human baseline. The obtained
results show that humans outperform machine learning methods in
classification of window state. The results suggest that including
sequential features could improve the machine performance further
for the transitional state setup. In this research, we have used log-mel
spectrograms as an input for the CNN baseline. Other features can
also be used as an input to build more accurate models, e.g. RT60,
clarity, and reverberance.
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