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ABSTRACT

In this paper, we propose a multi-resolution analysis for feature
extraction in Sound Event Detection. Because of the specific tempo-
ral and spectral characteristics of the different acoustic events, we
hypothesize that different time-frequency resolutions can be more
appropriate to locate each sound category. We carry out our ex-
periments using the DESED dataset in the context of the DCASE
2020 Task 4 challenge, where the combination of up to five different
time-frequency resolutions via model fusion is able to outperform
the baseline results. In addition, we propose class-specific thresh-
olds for the F1-score metric, further improving the results over the
Validation and Public Evaluation sets.

Index Terms— DCASE 2020 Task 4, CRNN, Mean Teacher,
Multi-resolution, Model fusion, Threshold tuning, PSDS

1. INTRODUCTION

Sound Event Detection (SED) systems aim to determine the tem-
poral locations of several categories of acoustic events in a given
audio clip. In contrast with the usual single-resolution approach
used to train these systems, we propose a multi-resolution analysis
of the audio features (mel-spectrograms) in order to take advantage
of the diverse temporal and spectral characteristics found in differ-
ent sound events.

Our experiments are based on the DCASE 2020 Task 4 base-
line, which consists of a convolutional recurrent neural network
(CRNN) trained using the Mean Teacher algorithm [1]. Addition-
ally, class-specific thresholds for the F1-score metric [2] are pro-
posed, replacing the default global value of 0.5.

2. DATASET

The dataset used for Sound Event Detection in DCASE 2020 Task 4
is DESED (Domestic Environment Sound Event Detection) [3, 4],
which is composed of real and synthetic recordings. Real record-
ings include the Weakly-labeled training set (1578 clips), the Un-
labeled training set (14412 clips), the Validation set (1168 clips)
and the Public Evaluation set (692 clips). Synthetic recordings have
been generated using the Scaper library [5] and the provided JAMS
file, obtaining a Synthetic training set with 2536 strongly-labeled
clips.

Work developed under project DSForSec (RTI2018-098091-B-I00),
funded by the Ministry of Science, Innovation and Universities of Spain
and FEDER

Event N. Mean Std.
Alarm bell / ringing 587 1.10 1.43
Blender 370 2.36 2.04
Cat 731 1.11 0.81
Dishes 1123 0.61 0.49
Dog 824 0.92 0.93
Electric shaver / toothbrush 345 4.61 2.69
Frying 229 5.06 3.07
Running water 270 3.81 2.53
Speech 2760 1.13 0.82
Vacuum cleaner 343 5.87 3.28

Table 1: Number of examples and mean and standard deviation of
their durations (in seconds) for each sound category in the Synthetic
training set.

The Weakly-labeled, Unlabeled and Synthetic training sets are
used to train the neural networks. 20% of the Synthetic training
set is reserved for validation. The DESED Validation set is used
to tune hyper-parameters and perform model selection. In addition,
we provide results over the Public Evaluation set.

3. PROPOSED SOLUTIONS

3.1. Multi-resolution analysis

The DCASE 2020 Task 4 challenge consists in the detection and
classification of 10 different sound events that differ in duration and
spectral characteristics. Based on these differences we hypothe-
size that a multi-resolution feature extraction approach could pro-
vide improvements in the detection of at least some of these sound
events. One of the goals of our participation in the DCASE 2020
Task 4 challenge is to empirically validate this hypothesis.

The baseline system provided by the organizers of this chal-
lenge, as well as most systems developed by participants in previous
similar evaluations, rely on a mel-spectrogram which transforms the
audio recording to process into a 2-D image that is taken as the input
of a deep neural network. The mel-spectrogram computation can be
adjusted based on a few parameters: the audio sampling frequency,
the size of the FFT, the analysis window type and length and the
number of Mel filters used. A particular set of these parameters de-
fine a single time-frequency resolution working point in the spectral
analysis.

A time-frequency resolution working point can be better or
worse suited to detect a specific type of sound event depending on
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the characteristics of that sound, more specifically depending on its
temporal and spectral characteristics. It is easy to show that the
different sounds have different lengths. Table 1 shows the mean
and standard deviation of the duration of the 10 different types of
sounds in the Synthetic training set, and notable differences are ev-
ident. Our hypothesis is that differences similar to the ample dif-
ference in lengths may also exist in terms of temporal and spectral
characteristics of the different types of events.

Since the types of sound events in the challenge are so different,
it seems likely that the use of several time-frequency resolutions at
feature extraction could improve sound detection and classification
results. Our group applied a similar multi-resolution approach [6]
to a different problem (automatic speech recognition) where the dif-
ferences in the types of sounds (human phones) were much smaller,
achieving modest but consistent improvements.

To test our hypothesis we have computed up to five mel-
spectrogram features using different spectral analysis parameters,
so that we have up to five different time-frequency resolution work-
ing points. Our system is based on the baseline provided by the or-
ganizers of the challenge. Essentially, we have replicated the base-
line system several times, but modifying each instance to work with
a different time-frequency resolution working point. All these in-
stances are finally fused at the frame-level, by combining the frame-
level estimation of the class posteriors provided as output by each
subsystem.

We have defined the five time-frequency resolution working
points taking as reference the point defined by the baseline system.
We have defined other four points by increasing and decreasing the
time and frequency resolution. The five time-frequency resolution
working points used share in common with the baseline the use of a
sampling frequency of fs = 16000 Hz. and the use of a Hamming
window. The rest of the parameters (FFT size, window length, win-
dow hop and number of Mel filters) are modified to increase time or
frequency resolution as described below and in Table 2 for each of
the time-frequency resolution working points used.

1. BS (Baseline). The baseline uses an analysis window of
length L = 128 ms and a window hop of R = 15.94 ms (255
samples). Both parameters are related to the temporal resolu-
tion of the analysis. On the other hand, the frequency resolu-
tion is limited by the width of the main lobe of the Hamming
window, 8π/(L − 1) = 8π/2047 rad/sample, which corre-
sponds to a frequency resolution of 4/2047 × 16000 ≈ 31
Hz. However, this frequency resolution is later more limited
in a non-linear way by the use of the Mel filterbank with 128
filters.

2. T++ (Twice better time resolution). We halve the analysis
window to a length of L = 64 ms and the window hop to
R = 8 ms, which essentially doubles the time resolution.
We also halve the number of Mel filters, which along with the
previous changes roughly halves the frequency resolution.

3. F++ (Twice better frequency resolution). We double the
analysis window length to L = 256 ms and the window hop
to R = 32 ms, which essentially halves the time resolution.
We also double the number of Mel filters, which along with
the previous changes roughly doubles the frequency resolu-
tion.

4. T+ (Intermediate point between BS and T++). Analysis win-
dow of length L = 96 ms, window hop R = 12 ms. An
intermediate number of Mel filters is used (nmel = 96). In
this case and in the next one, we have taken the FFT length

N L R nmel

T++ 1024 1024 128 64
T+ 2048 1536 192 96
BS 2048 2048 255 128
F+ 4096 3072 384 192
F++ 4096 4096 512 256

Table 2: FFT length (N ), window length (L), window hop (R) and
number of Mel filters of the five proposed time-frequency resolution
working points. N , L and R are reported in samples, using a sample
rate fs = 16000Hz.

(N ) as the smallest power of 2 greater that L, but we do not
expect differences if N is set to L as in the previous cases.

5. F+ (Intermediate point between BS and F++). Analysis win-
dow of length L = 192 ms, window hop R = 24 ms. An
intermediate number of Mel filters is used (nmel = 192).

3.2. Model fusion

Fusion has been performed considering that, for each event, a two-
class classification task is performed independently of the other
events. Thus, for a given event i, classification between classes
{θi,0; θi,1} is performed, where θi,0 means “event i not detected”
and θi,1 means “event i detected”. Alternatively, we will call this
two-class classification task a detection task.

For each detection task i, with classes {θi,0, θi,1}, a different
score is generated by each of the CRNN detectors involved, as a
time series with a given time resolution. Thus, a final score si must
be computed for each event in this unit of time, in order to make de-
cisions, by means of the fusion of all the individual scores from all
the individual detectors, namely (s

(1)
i , ..., s

(K)
i ). We perform this

fusion as a late integration, before score binarization and median
filtering. By convention, the lower a score, the stronger the support
to θi,0, and the higher a score, the stronger the support to θi,1. If we
have K different detectors, the final score is obtained as the average
of the scores in this way:

si =
1

K

K∑
j=1

s
(j)
i (1)

The interpretation of the scores of each of the detectors is as
follows. Each of the scores is taken from the output of one of the de-
tectors, a CRNN trained with a cross-entropy criterion. Therefore,
the output of the jth CRNN can be interpreted as two probabilities,
namely P (j)(θi,1|x) and P (j)(θi,0|x) = 1 − P (j)(θi,1|x), where
x is the audio observation at this particular moment in time. In the
case that the detectors have different output frame rates, each out-
put is interpolated along the time dimension to fit the highest frame
rate. Then, we compute each of the scores of the detectors in the
following way:

s
(j)
i = logit(P (θi,1|x)) ≡ log

P (j)(θi,1|x)
1− P (j)(θi,1|x)

(2)

The inverse of the logit operator is the well-known sigmoid
function.

Moreover, logit(P (j)(θi,1|x)) is decomposed as follows:

logit(P (θi,1|x)) = logit(P (θi,1)) + log
P (j)(x|θi,1)
P (j)(x|θi,0)

(3)
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T++ T+ BS F+ F++

Alarm bell / ringing 42.1 ± 1.5 43.8 ± 2.1 42.0 ± 1.4 42.2 ± 3.1 41.0 ± 2.0
Blender 32.9 ± 3.2 32.3 ± 1.4 27.4 ± 1.6 30.0 ± 2.6 30.9 ± 3.9
Cat 38.4 ± 1.8 40.0 ± 1.8 41.0 ± 2.1 39.3 ± 3.9 34.7 ± 2.3
Dishes 20.8 ± 1.5 21.9 ± 1.1 20.8 ± 2.1 22.6 ± 1.7 21.0 ± 1.2
Dog 15.1 ± 0.7 17.1 ± 2.6 16.5 ± 1.0 12.3 ± 1.1 12.8 ± 2.7
Electric shaver / toothbrush 32.8 ± 4.2 35.5 ± 4.7 37.2 ± 2.9 36.2 ± 5.4 41.1 ± 2.9
Frying 23.5 ± 2.2 23.9 ± 2.3 20.9 ± 4.8 23.9 ± 2.2 22.2 ± 2.6
Running water 31.7 ± 3.3 29.8 ± 2.2 30.4 ± 2.6 27.6 ± 1.8 27.2 ± 1.6
Speech 42.7 ± 3.1 47.1 ± 2.9 45.2 ± 1.5 46.2 ± 2.6 46.3 ± 1.8
Vacuum cleaner 40.1 ± 1.7 39.9 ± 2.3 38.9 ± 3.3 44.5 ± 4.1 40.1 ± 5.0
Total macro 32.0 ± 1.3 33.1 ± 0.9 32.0 ± 1.1 32.5 ± 1.5 31.7 ± 1.0

Table 3: Event-based F1-score (%) over the Validation set for each event category obtained with different time-frequency resolution working
points. Mean ± standard deviation computed across 5 trainings with random initializations.

where P (θi,1) is the prior probability of detection; and the likeli-

hood ratio P (j)(x|θi,1)
P (j)(x|θi,0)

is the actual information about detection of
an event as extracted by the jth detector CRNN. Therefore, an av-
erage fusion has the following interpretation in probabilistic terms:

si = P (θi,1) +
1

K

K∑
j=1

log
P (j)(x|θi,1)
P (j)(x|θi,0)

(4)

Thus, the average fusion is equivalent to averaging the infor-
mation extracted by all the K detectors for each event, by keeping
unaltered the prior probabilities.

3.3. F1-score threshold tuning

If the posterior class probabilities P (θi,1|x) are properly computed
(i.e., calibrated), the decisions to be made in order to optimize the
expected cost in a Bayesian scenario are trivial to obtain, according
to Bayes decision rule. However, given that in the evaluation the
prior probabilities of the evaluation test set are not given, and are
not possible to compute reliably, the task of making a decision is
pointless, since the prior information is not known, hence a decision
threshold cannot be set in any sound way. For the same reasons,
setting a prior of 0.5 in this scenario is also pointless and unsound,
since we do not know how to optimize the threshold to achieve a
minimum expected cost, as the prior probabilities are not known.

Moreover, it is well known that the F1-score and the minimum
of the Bayes decision rule have different operating points. There-
fore, optimizing the threshold for each of the event detection tasks
to achieve minimum expected cost is pointless, since the criterion
to be optimized is the F1-score.

In order to overcome these problems, we have tuned different
thresholds to the different events for each fused score si in order
to optimize the F1-score of each event. We have done this empiri-
cally, by experimenting in the Validation set. However, even tuning
thresholds for the Validation set does not guarantee good decisions,
since the prior probabilities of the evaluation test set can vary, and
there is no way to predict in which way.

4. EXPERIMENTS AND RESULTS

Our experiments are based upon the baseline system1 released by
the DCASE Team. While we keep the structure of the CRNN and

1https://github.com/turpaultn/dcase20 task4

Threshold
Alarm bell / ringing 0.31
Blender 0.49
Cat 0.65
Dishes 0.31
Dog 0.69
Electric shaver / toothbrush 0.61
Frying 0.29
Running water 0.45
Speech 0.83
Vacuum cleaner 0.65

Table 4: Binarization thresholds used in the 5res-thr system.

the training parameters, the feature extraction process is adapted to
the working points described in 3.1.

The reported F1-scores are event-based, considering a 200 ms
collar on onsets and a 200 ms or 20% of the events length on off-
sets. Additionally, we provide Polyphonic Sound Detection Score
(PSDS) [7] results, which are evaluated in DCASE 2020 Task 4 as
a contrastive measure. The baseline system achieves 34.8% event-
based F1-score and 0.610 PSDS over the DESED Validation set.

4.1. Single-resolution results

Table 3 shows the F1 results obtained with each of the feature res-
olution points over the DESED Validation set. Five systems have
been trained for each resolution point, using different random ini-
tializations of the network. The mean and the standard deviation of
the obtained F1-scores are reported. We have tried to get insights
into the reasons for the differences found in Table 3, but have not
arrived to solid conclusions yet. In any case, the results described in
Table 3 support our hypothesis that different types of sound events
are detected better with different time-frequency resolution analy-
ses.

4.2. Multi-resolution results

Aiming to aggregate the information of multiple resolutions in the
sound event detection system, we have combined networks trained
with different time-frequency resolution working points, following
the procedure described in 3.2. A combination of five networks
trained using the BS resolution with different initializations is stud-
ied as well.
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Base 5×BS 3res 5res 5res-thr
A. bell/ringing 39.0 45.0 46.1 47.2 48.2
Blender 31.6 38.3 46.4 49.5 50.0
Cat 45.0 42.0 42.2 45.2 47.3
Dishes 25.0 23.2 22.1 23.9 25.2
Dog 21.7 19.6 17.7 18.6 22.3
E. shaver/toothb. 36.0 41.6 41.8 46.8 49.0
Frying 24.4 26.7 30.0 29.7 34.3
Running water 31.7 36.9 38.2 39.6 41.6
Speech 49.0 47.6 48.0 49.9 55.6
Vacuum cleaner 44.4 47.7 54.8 58.7 61.0
Total macro 34.8 36.9 38.7 40.9 43.4

Table 5: Event-based F1-score (%) results of combined models over
the Validation set. The Base column references the Baseline System
results as reported by the organizers.

Base 5×BS 3res 5res 5res-thr
A. bell/ringing 42.3 45.8 44.9 46.5 47.8
Blender 32.6 43.7 46.2 44.2 43.7
Cat 70.4 69.4 60.8 66.2 68.4
Dishes 28.4 28.1 24.4 25.4 23.5
Dog 30.9 22.0 18.2 18.7 23.9
E. shaver/toothb. 27.0 44.1 51.2 53.2 56.0
Frying 29.0 28.3 42.1 40.6 36.0
Running water 28.4 33.7 28.1 31.8 31.9
Speech 50.8 51.9 50.3 51.3 59.3
Vacuum cleaner 41.5 44.6 52.2 52.8 57.6
Total macro 38.1 41.2 41.8 43.0 44.8

Table 6: Event-based F1-score (%) results of combined models over
the Public Evaluation set (eval 2019). The Base column references
the Baseline System (2020) weights provided by the organizers.

Table 5 shows event-based F1 results for several model combi-
nations. A larger improvement is observed when combining models
trained with different feature resolutions, suggesting that the infor-
mation extracted with different time-frequency resolutions is com-
plementary. The 3res system, which combines resolutions T++,
BS and F++, obtains 38.7% macro-F1 over the Validation set. The
combination of the five proposed resolution points (5res) reaches a
macro-F1 of 40.9%. On the other hand, the 5×BS system, which
uses a single resolution point, provides a smaller improvement upon
the baseline (36.9% macro-F1).

F1-scores can be further improved by adjusting the binarization
thresholds to their optimal values as described in 3.3. This way,
5res-thr reaches 43.4% macro-F1, which is our best result over the
Validation set. Table 4 lists the thresholds used by 5res-thr.

Improvements in macro-F1 are observed as well over the
DESED Public Evaluation set when applying multi-resolution and
threshold tuning, as shown in Table 6. The 5res-thr system achieves
44.8% macro-F1, our best result over the Public Evaluation set. The
results show that the thresholds adjusted over the Validation set pro-
vide higher F1 over the Public Evaluation set in 7 out of 10 event
categories.

In addition to F1-scores, the challenge proposes the PSDS met-
ric as an alternative measure, although it is not used to rank the sub-
mitted systems. The PSDS performances of the described model
combinations over the Validation set are presented in Table 7. The
5res system obtains our best PSDS result, 0.666. It should be noted

αct αst Base 5×BS 3res 5res
PSDS 0 0 0.610 0.635 0.657 0.666
PSDS cr-tr. 1 0 0.524 0.564 0.595 0.609
PSDS macro 0 1 0.433 0.451 0.467 0.479

Table 7: PSDS, PSDS cross-trigger and PSDS macro results of
combined models over the Validation set. αct is the weight related
to the cost of cross-trigger. αst is the weight related to the cost of
instability across classes. The Base column references the Baseline
System results as reported by the organizers.

αct αst Base 5×BS 3res 5res
PSDS 0 0 0.718 0.650 0.671 0.685
PSDS cr-tr. 1 0 0.625 0.581 0.612 0.627
PSDS macro 0 1 0.586 0.504 0.512 0.534

Table 8: PSDS, PSDS cross-trigger and PSDS macro results of
combined models over the Public Evaluation set. αct is the weight
related to the cost of cross-trigger. αst is the weight related to the
cost of instability across classes. The Base column references the
Baseline System (2020) weights provided by the organizers.

that varying the F1-score thresholds does not affect the PSDS com-
putation, as PSDS already considers different thresholds. There-
fore, the PSDS results of the 5res-thr model are identical to those
of the 5res model.

Table 8 show the PSDS performances over the Public Evalu-
ation set. Higher PSDS are obtained by those systems with more
different resolutions, although our results in this dataset are slightly
inferior to those obtained by the pre-trained baseline system.

The 5res and 5res-thr systems have been submitted to DCASE
2020 Task 4, both outperforming the baseline in the Evaluation set.
While the baseline achieves 34.9% macro-F1, 5res reaches 37.9%
and 5res-thr 38.2%. PSDS improves as well, obtaining 0.575, above
the baseline result of 0.496.

5. CONCLUSIONS

In this paper we proposed a multi-resolution Sound Event Detec-
tion approach in the context of DCASE 2020 Task 4. Our system
builds on the baseline provided by the organization, implementing
three main contributions: multi-resolution analysis, model fusion
and threshold tuning.

The baseline system achieved 34.8% event-based F1-score and
0.610 PSDS over the DESED Validation set. The improvement
obtained using model fusion was larger when combining models
trained with different time-frequency resolutions, reaching 40.9%
event-based F1 and 0.666 PSDS when combining five resolution
points. Additionally, we explored the possibility of choosing a dif-
ferent binarization threshold for each event category, obtaining an
additional improvement in F1 of 2.5 points (43.4%). Moreover, im-
provements in macro-F1 held over the Public Evaluation set and the
2020 Evaluation set.
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