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Elliptic Partial Differential Equations

Stephan Dahlke∗ & Winfried Sickel†
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Abstract

In this paper, we study the regularity of the solutions to nonlinear ellip-

tic equations. In particular, we are interested in smoothness estimates in the

specific scale Bα
τ (Lτ ), τ = (α/d+ 1/2)−1, of Besov spaces which determines

the approximation order of adaptive and other nonlinear numerical approxi-

mation schemes. We show that the Besov regularity is high enough to justify

the use of adaptive schemes.

AMS Subject Classification: 41A25, 41A46, 41A65, 42C40, 65C99

Key Words: (Nonlinear) elliptic equation, regularity of solutions, Besov spaces,

linear and nonlinear approximation methods.

1 Introduction

In this paper, we study the regularity of the solutions to nonlinear elliptic partial

differential equations of the form

−4u(x) + g(x, u(x)) = f(x) in Ω(1)

u(x) = 0 on ∂Ω

∗The work of this author has been supported by Deutsche Forschungsgemeinschaft (DFG),

grants Da360/11–1, Da360/12–1, Da360/13–1.
†The work of this author has been supported by Deutsche Forschungsgemeinschaft (DFG), grant

Si 487/14-1
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on a bounded Lipschitz domain Ω contained in Rd, d ≥ 3. We are mainly interested

in estimates of the regularity of solutions u in the specific scale Bα
τ (Lτ ), τ =

(α/d + 1/2)−1, of Besov spaces. Here our aim is to obtain estimates with α as

large as possible, accepting that τ becomes less than 1 (a few remarks concerning

the used function spaces will be given below). This is partly motivated by some

concrete applications which we will explain now in a somewhat simplified situation.

For this purpose we turn for a moment to the Poisson equation

−4u(x) = f(x) in Ω(2)

u(x) = 0 on ∂Ω .

Here we would like to recall the famous H3/2 Theorem of Jerison and Kenig [17].

Theorem 1. (i) Let Ω ⊂ Rd be a bounded Lipschitz domain, d ≥ 3. For every

f ∈ L2(Ω) there exists a unique solution u of (2) s.t. u ∈ H3/2(Ω). (Thm. B in [17]).

(ii) There exists a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 3, and an infinitely

differentiable function f on Ω s.t. u 6∈ Hs(Ω), s > 3/2. (Thm. 1.2 (a) in [17]).

Now we comment on some of the consequences concerning approximability of u.

Recall, for two quasi-Banach spaces X, Y and a linear continuous operator T : X →
Y the n-th approximation number of T is defined as

(3) an(T ) := an(T,X, Y ) := inf
{
‖T−L |X → Y ‖ : L ∈ L(X, Y ), rankL < n

}
,

n ∈ N, where, as usual, L(X, Y ) denotes the collection of all linear and continuous

operators mapping X into Y . Let id : Hs(Ω) → L2(Ω), s > 0, be the identity

operator. For the situation we are interested in it is known since a long time that

an(id) � n−s/d , n ∈ N .

The H3/2 Theorem implies that the optimal rate of convergence by using linear

methods of approximation is just 3/(2d) as long as we do not impose further prop-

erties of Ω.

On the other hand, it is well–known that the approximation order of best n-term

wavelet approximation, which is a nonlinear approximation method, is determined

by the smoothness of the object one wants to approximate in the specific scale

Bα
τ (Lτ ) of Besov spaces. More precisely, let B∗ = {ψλ}λ∈J be a suitable wavelet

basis and let Mn denote the nonlinear manifold of all functions

(4) S =
∑
λ∈Λ

cλψλ, |Λ| ≤ n ,
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where |Λ| denotes the cardinality of the set Λ. Moreover, let

(5) σn(u)L2 := inf
S∈Mn

‖u− S‖L2

then

(6)
∞∑
n=1

[nα/dσn(u)L2 ]τ
1

n
<∞ ⇐⇒ u ∈ Bα

τ (Lτ ), τ = (α/d+ 1/2)−1.

For details, the reader is referred to [12, 13] and the references therein. Similar

results hold for nonlinear approximation in Lp and also for approximation schemes

with respect to Sobolev norms, see, e.g., [10]. Therefore, to determine the approx-

imation power of adaptive schemes and to justify their use, the Besov regularity

of the unknown solution of the operator equation under consideration in the scale

τ = (α/d + 1/2)−1 has to be determined. In recent years, many results in this di-

rection have been established, see, e.g., [6, 8, 11]. Concerning the Poisson equation

(2) the following is proved in [8], see also [10] and Corollary 1 below. For f ∈ L2(Ω)

the unique solution u belongs to Bβ
1 (L1(Ω)) for any β < 2. Observe that Bα

1 (L1(Ω))

does not belong to the specific scale of Besov spaces. But combining this regularity

result with the H3/2 Theorem an interpolation argument yields that

u ∈ Bα
τ (Lτ (Ω)) , τ < 2 ,

1

τ
<

2 + d

2(d− 1)
, τ = (α/d+ 1/2)−1 .

Applying (6) we obtain

σn(u)L2
<∼ n−α/d , n ∈ N , α <

3

2

d

d− 1
.

Because of 3/(2d) < 3d/(2d− 2) (see (3)) it makes clear that nonlinear methods of

approximation can be much better than linear methods of approximation.

It will be our aim to investigate this phenomenon for the nonlinear equation (1)

instead of the Poisson equation (2). We would like to emphasize that the essential

novelty of this paper is twofold: in contrast to previous studies, we are concerned

with regularity spaces corresponding to τ < 1, i.e., we deal with quasi-Banach spaces.

Moreover, we study nonlinear elliptic problems in general Lipschitz domains, whereas

usually at least some smoothness of the boundary is required.

Let L0 denote the solution operator associated to (2). Then is well-known, that

an(L0, L2(Ω), L2(Ω)) � n−2/d , n ∈ N .
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But those linear operators of rank ≤ n, which are known to be optimal (up to a

general constant), require to much pre-calculations to be of practical importance.

E.g., in [9], we discussed some examples of those operators which have used the

exact solution of the Poisson problem of the first n elements of an appropriate

wavelet system for Ω.

The paper is organized as follows. In Section 2, we briefly recall the Besov and

Sobolev smoothness results for the solutions to (2) as far as they are needed for

our purposes. Then, in Section 3, we discuss the fixed point theorems we want to

exploit. In Sections 4 and 5, these fixed point theorems are used to derive the desired

regularity results in Sobolev and Besov spaces, respectively. Finally, in Section 6, we

discuss the consequences of our analysis for concrete numerical applications.

Remark 1. For reader’s convenience, in this paper we always confine the discussion

to problems in space dimensions d ≥ 3. The case d = 2 can be studied analogously,

but under a bit different restrictions. We refer again to [17] for details.

A few words to the function spaces

We will be very brief here. In this paper, we understand Lipschitz domain in the

sense of Stein’ s notion of domains with minimal smooth boundary, cf. Stein [25,

VI.3]. For Besov spaces Bs
q(Lq(Ω)) and Bessel potential spaces Hs

p(Ω) we refer to

the monographs [29, 30]. There one can find the definitions and several equivalent

characterizations (e.g., characterizations by differences). A lot of material can be

found also in the papers [28] and [9].

As usual, Hs(Ω) := Hs
2(Ω) in the sense of equivalent norms.

2 Sobolev and Besov Regularity of the Solution

to the Poisson Equation

First we investigate additional regularity properties of the solution of the Poisson

equation (2). The smoothness of the right-hand side is always measured in a Bessel

potential space H t−1
p (Ω). Besov regularity in this context means, that we are looking

for membership of the solution u in Besov spaces Bs
τ (Lτ (Ω)) with τ < p.
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2.1 Sobolev Regularity

Here we recall the fundamental result of Jerison and Kenig [17]. First we need to

introduce some notation. To each Ω we associate a real number µ := µ(Ω) ∈ (0, 1]

and an open hexagon Hµ, see Fig. 1 below, given by
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the following collection of points ABCDEF :

A := (0, 0), B := (1/p0, 1/p0), C := (1, 2− µ),

D := (1, 2), E := (1/p′0, 1 + 1/p′0), F := (0, µ) .

The value of p0 := p0(Ω) is fixed by

(7)
1

p0

:=
1

2
+
µ

2
.

Alternatively Hµ can be defined by the following set of inequalities: (1/p, t+1) ∈ Hµ

if one of the following holds:

(a) p0 < p < p′0 and 1
p
< t+ 1 < 1 + 1/p;
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(b) 1 < p ≤ p0 and 3
p
− 1− µ < t+ 1 < 1 + 1

p
;

(c) p′0 ≤ p <∞ and 1
p
< t+ 1 < 3

p
+ µ.

Jerison and Kenig discussed the regularity of the solution of the Poisson problem for

the region I = Hµ. They concentrated on investigations of the Sobolev regularity of

the solution, i.e., if f ∈ H t−1
p (Ω), then they asked for u ∈ Hs

p(Ω) with s as large as

possible. By tr we denote the trace operator with respect to the boundary of Ω. In

such a generality the definition of the trace needs some care. Here we follow [18] and

[27], see also [17]. First we associate to u ∈ H t+1
p (Ω) an extension Eu ∈ H t+1

p (Rd)

and afterwards we take the restriction of Eu to the boundary ∂Ω. The technical

details of this procedure, even in a more general context, are explained, e.g., in

[18, pp. 205-209], [27, 9.1] or [30, 5.1.1]. Observe in this context that for Lipschitz

domains Ω the boundary ∂Ω is a so-called d∗-set with d∗ = d − 1. Then Thm. 1.1

from [17] reads as follows.

Proposition 1. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 3. There exists

µ, 0 < µ ≤ 1, depending only on the Lipschitz character of Ω such that for every

f ∈ H t−1
p (Ω) there is a unique solution

(8) u ∈ Ht+1
p (Ω) :=

{
v ∈ H t+1

p (Ω) : tr v = 0
}
,

to the Poisson problem (2) provided the pair (t+ 1, 1/p) belongs to the open hexagon

Hµ. Moreover, the estimate

‖u |H t+1
p (Ω)‖ ≤ c ‖ f |H t−1

p (Ω)‖

holds with c independent of f .

Remark 2. (i) If Ω is a C1 domain, then p0 may be chosen to be 1, see [17, Thm. 1.1].

We refer also to [17] for a discussion of the optimality of the restrictions in Prop. 1.

(ii) It is easily seen that the hexagon Hµ is a subset of the strip

{(1/p, s) : 1 < p <∞, 1/p < s < 1 + 1/p} .

Under these restrictions the set Ht+1
p (Ω) is nothing but the closure of the test func-

tions in the norm of the space H t+1
p (Ω), see, e.g., [17, Prop. 3.3] or [27, Prop. 19.5].

For smooth domains we refer to [15] and [30, Thm. 5.21].

(iii) Detailed regularity investigations for solutions of elliptic equations in polyhe-

dral domains have been undertaken in the recent monograph [19] by Maz’ya and
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Rossmann. However, in general they measure the regularity in weighted Sobolev

spaces. A first attempt to understand the consequences of such a type of regular-

ity for nonlinear approximation has been undertaken in [11]. There we have delat

with the situation on cones. An extension to polyhedral domains would be strongly

desirable.

2.2 Besov Regularity

In [8] the authors investigated the Besov regularity of the solutions of the Poisson

equation (2) motivated by the connection of this type of regularity to the power of

nonlinear approximation schemes. We recall these results in a form used previously

in [10]. We shall only consider the region II, i.e., (1/p, t + 1) ∈ II, see Figure 1.

This situation has been investigated in [8, Thm. 4.1].

Lemma 1. Let Ω be a bounded Lipschitz domain in Rd. Let Hµ denote the associated

hexagon and p0 the specific number occurring in the definition of Hµ. Let ε > 0. Let

1 < p < p′0 and let t ≥ 1/p. Then the solution u of the Poisson problem (2) with

right-hand side f ∈ H t−1
p (Ω) belongs to all spaces Bα−ε

τ (Lτ (Ω)), where

(1/τ, α) ∈
({

(1/q, β) : β ≤ min(t+ 1, 1 + 1/q) ,
d− 1

d+ 1
< q ≤ p

}
∪

{
(1/q, β) : β ≤ min

(
t+ 1,

2d

d− 1

)
, 0 < q ≤ d− 1

d+ 1

})
.

We shall try to make this more transparent by using two further figures. Let T0 :=

(1/p, t+ 1), where 1 < p < p′0 and t > (d+ 1)/(d− 1). Then our solution u belongs

to all spaces Bα
τ (Lτ (Ω)) such that (1/τ, α) is contained in the intersection of the

(infinite open) rectangle with corners in (1/p, 0) and (1/p, (2d)/(d − 1)) with the

area α < 1 + 1/q.

If the point T0 would be shifted along the line (1/p, t+ 1) to higher values of t, the

regularity assertions for u would not change. Also a shift to the left, i.e., an increasing

of p, does not help. Most important for us will be the fact that f ∈ H t−1
p (Ω) implies

(9) u ∈ Bα
τ (Lτ (Ω)) , τ :=

d− 1

d+ 1
, α < 1 + 1/τ =

2d

d− 1
,

see the point P0 in our Fig. 2.
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Now we turn to a second situation. Let T1 := (1/p, t + 1), where 1 < p < p′0 and

1/p < t < (d + 1)/(d − 1). Then our solution u belongs to all spaces Bα
τ (Lτ (Ω))

such that (1/τ, α) belongs to the intersection of the (infinite open) rectangle with

corners in (1/p, 0) and (1/p, t+ 1) with the area α < 1 + 1/q. If the point T1 would

be shifted along the line (1/p, t + 1) to larger values of p, the regularity assertions

for u would not change. But this time a shift parallel to the t-axis helps, of course.

Most important for us will be the fact that f ∈ H t−1
p (Ω) implies

(10) u ∈ Bα
τ (Lτ (Ω)) , τ :=

1

t
, α < 1 + 1/τ = 1 + t ,

see the point P1 in our Fig. 3.

We summarize our findings by concentrating on the limiting situation (which

corresponds to the points P0 and P1, respectively). We put

(11) Bατ (Lτ (Ω)) :=
{
u ∈ Bα

τ (Lτ (Ω)) : tru = 0
}
,

compare with (8).

Corollary 1. Let 1 < p < ∞ and ε > 0. Let L0 be the solution operator of the

Poisson problem, i.e., L0f = u.

(i) Let t = 1. Then we have

L0 ∈ L
(
Lp(Ω),B2−ε

1 (L1(Ω)
)
.

(ii) Let 1 < t < (d+ 1)/(d− 1). Then we have

L0 ∈ L
(
H t−1
p (Ω),B1+t−ε

1/t (L1/t(Ω))
)
.

(iii) Let t ≥ (d+ 1)/(d− 1). Then we have

L0 ∈ L
(
H t−1
p (Ω),B

2d
d−1
−ε

τ (Lτ (Ω))
)
, τ =

d− 1

d+ 1
.

3 Nonlinear Equations in Quasi-Banach Spaces

3.1 Fixed Points of Nonlinear Operators and Quasi-Banach

Spaces

As announced we want to work with quasi-Banach spaces. Those spaces are not

locally convex in general. Hence, many methods, well-known in the framework of

9



Banach spaces, can not be applied. Here we recall an abstract result, valid in the

framework of admissible quasi-Banach spaces, see [20, Thm. 6.3.1].

Definition 1. A quasi-normed space A is said to be admissible, if for every compact

subset K ⊂ A and for every ε > 0 there exists a continuous map T : K → A such

that T (K) is contained in a finite-dimensional subset of A and x ∈ K implies

‖Tx− x|A ‖ ≤ ε.

Concerning the function spaces under consideration here we have the following.

Proposition 2. Let Ω be a bounded Lipschitz domain.

(i) Let 1 < p <∞ and t ∈ R. Then the spaces H t
p(Ω) are admissible.

(ii) Let 1 < p, q ≤ ∞ and t ∈ R. Then the spaces Bt
q(Lp(Ω)) are admissible.

(iii) Let 1 < p < ∞, 1 ≤ q ≤ ∞ and t > 1/p. Then the spaces Btq(Lp(Ω)) are

admissible.

(iv) Let 1 < p <∞ and t > 1/p. Then the spaces Ht
p(Ω) are admissible.

Proof. Step 1. The proof of (i) and (ii), given in [20, Thm. 6.2.3./4] for smooth

domains, carries over to the present situation by taking into account the existence

of a linear and continuous extension operator E such that

E ∈ L
(
H t
p(Ω), H t

p(Rd)
)
∩ L
(
Bt
q(Lp(Ω)), Bt

q(Lp(Rd))
)
.

For this we refer to [26] and [21].

Step 2. We shall use the results of [18, Thm. 8.1.2]. It follows that the trace is a

well-defined bounded linear operator s.t.

tr : Bt
q(Lp(Ω))→ Bt−1/p

q (Lp(∂Ω))

and there exists a linear and bounded extension operator

E∂Ω : Bt−1/p
q (Lp(∂Ω))→ Bt

q(Lp(Ω))

satisfying tr ◦ E∂Ω = id. Now we make use of Step 1. For a given compact set

K ⊂ Btq(Lp(Ω)) ⊂ Bt
q(Lp(Ω)) and a given ε > 0 let T denote the continuous map

from Def. 1. We define

T := T − E∂Ω ◦ tr ◦ T − E∂Ω ◦ tr ◦ id

10



Then, for f ∈ Btq(Lp(Ω)), we find

T f = Tf − E∂Ω ◦ tr (Tf)− E∂Ω ◦ tr f

and

tr T f = tr (Tf)− tr (Tf)− tr f = 0 ,

i.e., T maps Btq(Lp(Ω)) into Btq(Lp(Ω)). In addition we obtain

‖ T f − f ‖Btq(Lp(Ω)) ≤ ‖Tf − f ‖Btq(Lp(Ω)) + ‖ E∂Ω ◦ tr (Tf − f) ‖

≤ ε (1 + ‖E∂Ω‖ ‖tr ‖) .

This proves the admissibility of Btq(Lp(Ω)).

Step 3. By using [18, Thm. 7.1]. the arguments are the same as in Step 2.

Remark 3. For t not a natural number part (iii) of Prop. 2 extends to p = 1. This

time we have to use Thm. 6.1, Thm. 6.1.2, Thm. 6.2.3 in [18].

Let X and Y are admissible quasi-Banach spaces. Furthermore we assume that

L : Y → X is a linear and continuous operator, and N : X → Y is (in general) a

nonlinear map. We are looking for a fix point of the problem

(12) u = (L ◦ N)u.

Proposition 3. Let X, Y , L, and N be as above. Suppose, that there exist η ≥ 0,

ϑ ≥ 0 and δ ≥ 0 such that

(13) ‖Nu|Y ‖ ≤ η + ϑ ‖u|X ‖δ

holds for all u ∈ X. Furthermore we assume that the mapping L ◦ N : X → X is

completely continuous. Then there exists at least one solution u ∈ X of (12) provided

one of the following conditions is satisfied:

(a) δ ∈ [0, 1),

(b) δ = 1, ϑ < ‖L ‖−1,(14)

(c) δ > 1 and η ‖L ‖ <
[ 1

ϑ ‖L ‖

] 1
δ−1

[
(
1

δ
)

1
δ−1 − (

1

δ
)

δ
δ−1

]
.

Remark 4. (i) A proof of this proposition, based on the topological degree of a

mapping (Leray–Schauder principle), is given in [20, Thm. 6.3.1]. It generalizes an

earlier result of Fuč́ık [16, Theorem 7.3], who used Schauder’s fixed point theorem

(which is enough for Banach spaces).

(ii) As already stated in the introduction, in this paper we confine the discussion to

the case δ ≤ 1. The case δ > 1 will be studied in a forthcoming paper.
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3.2 Estimates of Compositions of Functions - I

Concerning g we suppose that it satisfies the usual Caratheodory condition with

respect Ω:

(i) For all ξ ∈ R the function x 7→ g(x, ξ) is Lebesgue measurable on Ω.

(ii) For almost all x ∈ Ω the function ξ 7→ g(x, ξ) is continuous on R.

Very often this set of conditions is abbreviated as g ∈ Car (Ω× R).

For given f the nonlinear mapping N is defined to be

(15) Nu(x) := f(x)− g(x, u(x)), x ∈ Ω .

The investigation of composition operators and associated estimates in the frame-

work of Bessel potential and Besov spaces is an active field of research. We refer

to the monograph [20, Chapt. 5] and the recent survey [2] for the state of the art.

The more specific problem X := Bα
τ (Lτ (Ω)) and Y := Wm

p (Ω) with 0 < τ, p < ∞,

m ∈ N0 and α > 0, has been investigated in [22, 23, 24], but for the more simple

operator Nu(x) := f(x)−g(u(x)), x ∈ Ω. Hence, we have to adapt some arguments.

The letter I will be reserved for identity operators (embedding operators). With

‖ I |L(U, V )‖ we denote the operator norm if I is considered as a mapping of the

quasi-Banach space U into the quasi-Banach space V . Let g ∈ Car(Ω × R) satisfy

the growth condition

(16) |g(x, ξ)| ≤ a+ b |ξ|δ , a, b, δ ≥ 0, x ∈ Ω, ξ ∈ R .

Then

‖Nu ‖p ≤ ‖ f ‖p + a |Ω|1/p + b
(∫

Ω

|u(x)|δp dx
)1/p

≤ η + b ‖u ‖δδp
≤ η + b ‖ I |L(X,Lδp(Ω))‖δ ‖u ‖δX ,(17)

as long as we have the continuous embedding

X = Bα
τ (Lτ (Ω)) ↪→ Lδp(Ω) .

To guarantee this embedding our parameters have to satisfy the inequality

(18) α > d max
(

0,
1

τ
− 1

max(1, δ p)

)
,

see, e.g., [29, 1.11.1].
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Lemma 2. Let 0 < τ ≤ ∞, 1 < p <∞ and f ∈ Lp(Ω). Let g ∈ Car (Ω×R) satisfy

the growth condition (16) for some a, b ≥ 0 and some 0 < δ ≤ 1. If (18) is satisfied,

then N , as defined in (15), is a continuous and bounded mapping s.t.

(19) ‖Nu ‖Lp(Ω) ≤ η + ϑ ‖u ‖δBατ (Lτ (Ω))

where

η := ‖ f ‖p + a |Ω|1/p(20)

and

ϑ := b ‖ I |L(Bα
τ (Lτ (Ω)), Lδp(Ω))‖δ .(21)

Proof. Boundedness of N under the given restrictions in (18) has been shown above.

It suffices to comment on the continuity. The operator u 7→ g( · , u( · )) is continuous

considered as mapping of Lδp(Ω) into Lp(Ω) in case δp ≥ 1, see [1, 3.4, 3.7]. By the

same reference, in case δp < 1 this operator is continuous considered as mapping of

L1(Ω) into L1/δ(Ω). Since L1/δ(Ω) ↪→ Lp(Ω) we have continuity also as a mapping

of L1(Ω) into Lp(Ω). The restriction (18) implies the continuity of the embedding

Bα
τ (Lτ (Ω)) into L1(Ω). The proof is complete.

3.3 Estimates of Compositions of Functions - II

Now we consider estimates of compositions with respect to norms in Bessel potential

spaces H t
p(Ω), 1 < p <∞ and 0 < t < 1. We consider uniformly continuous functions

g : Ω× R→ R such that

|g(x, ξ)| ≤ a+ b|ξ|δ(22)

|g(x, ξ)− g(x, η)| ≤ c1 |ξ − η|δ(23)

|g(x, ξ)− g(y, ξ)| ≤ c2 |x− y|δ(24)

with some 0 < δ ≤ 1. In the proof of the next lemma we shall use also Lizorkin-

Triebel spaces F s
p,q(Ω) on domains, we refer to [29] for a discussion of these spaces.

By ωd we denote the volume of the unit ball in R.

Lemma 3. Let g satisfy the conditions (22)-(24) for some a, b ≥ 0 and some 0 <

δ ≤ 1. Let

(25) d max
(

0,
1

p
− δ, 1

2
− δ
)
< t < δ
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and

(26) α >
t

δ
+ d max

(
0,

1

τ
− 1

p δ

)
.

Then, for any f ∈ H t
p(Ω), the operator N is a bounded and continuous mapping,

defined on Bα
τ (Lτ (Ω)) and with values in H t

p(Ω). In particular we have

(27) ‖Nu ‖Ht
p(Ω) ≤ η∗ + ϑ∗ ‖u ‖δBατ (Lτ (Ω)) ,

where

η∗ := η + c2 ωd |Ω|1/p
1√

2(δ − t)
(28)

and

ϑ∗ := ϑ+ c1 ω
1−δ
d ‖ I |L(Bα

τ (Lτ (Ω)), F
t/δ
pδ,q(Ω))‖δ .(29)

Proof. Step 1. Boundedness of N . We shall use the following characterization of

H t
p(Ω) by means of differences. Let x ∈ Ω and 0 < s <∞. We put

VΩ(x, s) :=
{
h ∈ Rd : |h| < s, x+ τh ∈ Ω for all 0 ≤ τ ≤ 1

}
and

‖u ‖Ht
p(Ω) := ‖u ‖Lp(Ω) +

(∫
Ω

(∫ 1

0

s−2t
[
s−d

∫
VΩ(x,s)

|∆1
hu(x)| dh

]2ds

s

)p/2
dx
)1/p

.

If 0 < t < 1, the finiteness of ‖u ‖Ht
p(Ω) characterizes H t

p(Ω), see [29, Thm. 4.10]. Of

course, ‖ g(x, u(x)) ‖Lp(Ω) can be estimated as in Lemma 2. To estimate the second

expression in ‖ · ‖Ht
p(Ω) we first observe

|g(x+ h, u(x+ h))− g(x, u(x))|

≤ |g(x+ h, u(x+ h))− g(x+ h, u(x))|+ |g(x+ h, u(x))− g(x, u(x))|

≤ c1 |u(x+ h)− u(x)|δ + c2 |h|δ .

It is elementary to derive(∫
Ω

(∫ 1

0

s−2t
[
s−d

∫
VΩ(x,s)

|h|δ dh
]2ds

s

)p/2
dx
)1/p

≤ ωd |Ω|1/p
1√

2(δ − t)
,
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if δ > t. Let q := 2 δ. Furthermore, by means of Hölder’s inequality applied with

1 = δ + (1− δ), we have(∫
Ω

(∫ 1

0

s−2t
[
s−d

∫
VΩ(x,s)

|∆1
hu(x)|δ dh

]2ds

s

)p/2
dx
)1/p

≤ ω1−δ
d

(∫
Ω

(∫ 1

0

s−2t
[
s−d

∫
VΩ(x,s)

|∆1
hu(x)| dh

]2δ ds

s

)p/2
dx
)1/p

= ω1−δ
d

(∫
Ω

(∫ 1

0

s−tq/δ
[
s−d

∫
VΩ(x,s)

|∆1
hu(x)| dh

]q ds
s

)(p δ)/q

dx
)δ/(p δ)

≤ ω1−δ
d ‖u ‖

δ

F
t/δ
pδ,q(Ω)

,

where F
t/δ
pδ,q(Ω) denotes a Lizorkin-Triebel space, at least under some additional re-

strictions, see [29, Thm. 4.10]. These restrictions are summarized in (25). Observe

further, that (25) and (26) imply the inequality α > d( 1
τ
−1). Finally, the continuous

embedding

Bα
τ (Lτ (Ω)) ↪→ F

t/δ
pδ,q(Ω)

is guaranteed by (26). Hence, with η and ϑ as in (19), we obtain

‖ g(x, u(x)) ‖Ht
p(Ω) ≤ η + c2 ωd |Ω|1/p

1√
2(δ − t)

+ ϑ ‖u ‖δBατ (Lτ (Ω)) + c1 ω
1−δ
d ‖u ‖

δ

F
t/δ
pδ,q(Ω)

≤ η∗ + ϑ∗ ‖u ‖δBατ (Lτ (Ω)) ,(30)

where η∗ and ϑ∗ are as in (28) and (29).

Step 2. Continuity ofN . Since (25) and (26) imply (18) our mappingN : Bα
τ (Lτ (Ω))→

Lp(Ω) is continuous, see Lemma 2. Let 0 < θ < 1. Then

[H t
p(Ω), Lp(Ω)]θ = H t(1−θ)

p (Ω)

see [29, 1.11.8], where [ · , · ]θ denotes the complex method of interpolation. We are

going to employ the associated interpolation inequality

‖u |H t(1−θ)
p (Ω)‖ ≤ ‖u |H t

p(Ω)‖1−θ ‖u |Lp(Ω)‖θ , u ∈ H t
p(Ω) .

Replacing u by Nu1 −Nu2 and using (30), we find

‖Nu1 − Nu2 ‖Ht(1−θ)
p (Ω)

≤ ‖Nu1 −Nu2 |H t
p(Ω)‖1−θ ‖Nu1 −Nu2 |Lp(Ω)‖θ

≤
(

2 η∗ + ϑ∗(‖u1 ‖δBατ (Lτ (Ω)) + ‖u2 ‖δBατ (Lτ (Ω)))
)1−θ

‖Nu1 −Nu2 |Lp(Ω)‖θ .
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If u1 is approaching u2, then the second factor on the right-hand side tends to zero

whereas the first one remains bounded.

This proves the continuity of N : Bα
τ (Lτ (Ω))→ H

t(1−θ)
p (Ω). Since we may choose

θ close to 0 we have derived continuity of N : Bα
τ (Lτ (Ω))→ H t−ε

p (Ω), where ε > 0.

Finally we notice that, for given α, the inequalities (25) and (26) are strict with

respect to t. Hence, we may replace t− ε by t.

4 Sobolev Regularity of the Solution of (1)

For later use we need an extension of the regularity results of Jerison and Kenig to

the nonlinear situation. Of course, these investigations depend on the growth and

the regularity of g.

This paper represents a first approach to those regularity investigations in Besov

spaces with a small integrability parameter. It is expected that, by using more

sophisticated methods in combination with specific examples, see, e.g. [14], [16] and

[31], our estimates can be improved.

4.1 Problem (1) in Lebesgue Spaces

In this first subsection we study right-hand sides f belonging to Lp(Ω).

According to Prop. 3 we split our considerations into the cases 0 < δ < 1 and

δ = 1. For given p, t and ε > 0 we define q by

(31)
1

q
:= min

(
1,

1

p
+

1

pd
− t

d

)
− ε .

Theorem 2. Let Ω be a bounded Lipschitz domain in Rd with associated hexagon Hµ.

Let d ≥ 3 and 1 < p < p′0. Further we suppose (1/p, t+1) ∈ Hµ. Let g ∈ Car (Ω×R)

satisfy the growth condition (16) for some a, b ≥ 0 and some 0 < δ < 1. Then for

any f ∈ H t−1
p (Ω) the nonlinear problem (1) has at least one solution u ∈ Hβ

p (Ω),

β < t+ 1, if

(32) t+ 1 > d lim
ε↓0

(1

p
− 1

max(1, δq)

)
.

Proof. As above, L0 denotes the solution operator of the (linear) Poisson equation.

¿From Proposition 1 we know

L0 ∈ L
(
H t−1
p (Ω),Ht+1

p (Ω)
)
.
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Now we use the compactness of the embedding

I : Ht+1
p (Ω)→ Hβ

p (Ω) , β < t+ 1 ,

see Proposition 4.6 in [29]. Hence L := I◦L0 is a compact operator mapping H t−1
p (Ω)

into Hβ
p (Ω), β < t+ 1. Observe, that for the specific value of q defined above and ε

sufficiently small we know Lq(Ω) ↪→ H t−1
p (Ω). This implies

(33) ‖Nu ‖Ht−1
p (Ω) ≤ ‖ I |L(Lq(Ω), H t−1

p (Ω))‖ ‖Nu ‖Lq(Ω) ≤ η + ϑ ‖u ‖δ
Hβ
p (Ω)

if

β > d max
(

0,
1

p
− 1

max(1, δq)

)
,

see Lemma 2. Notice, that this condition guarantees(
Bβ
p (Lp(Ω)) ∪Hβ

p (Ω)
)
↪→ Lq(Ω) .

The operator N : Hβ
p (Ω)→ Lq(Ω) is also continuous, see Lemma 2. Hence,

L ◦N : Hβ
p (Ω)→ Hβ

p (Ω)

is completely continuous for all β. Since δ < 1 we can apply Proposition 3. Further-

more, the spaces Hβ
p (Ω) are admissible if β > 1/p. This yields the existence of a fix

point u ∈ Hβ
p (Ω) of the mapping L ◦N if β satisfies the inequalities

max
[(1

p
, d
(1

p
− 1

max(1, δq)

)]
< β < t+ 1 .

We already know, that t + 1 > 1/p, see the definition of Hµ. Now the existence of

some β, satisfying these inequalities, are guaranteed by (32). Now the claim follows

by the monotonicity of the scale Hβ
p (Ω) with respect to β.

Theorem 3. Let Ω be a bounded Lipschitz domain in Rd with associated hexagon Hµ.

Let d ≥ 3 and 1 < p < p′0. Further we suppose (1/p, t+1) ∈ Hµ. Let g ∈ Car (Ω×R)

satisfy the growth condition (16) for some a, b ≥ 0 and δ = 1. If b = b(Ω) is

sufficiently small, then for any f ∈ H t−1
p (Ω) the nonlinear problem (1) has at least

one solution u ∈ Hβ
p (Ω), β < t+ 1.

Proof. We argue as in the previous theorem. First, observe that the additional re-

striction (32) disappears in case δ = 1. Further, one has to notice that ϑ becomes

small if b becomes small, see (33) and the proof of Theorem 5.
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5 Besov Regularity of the Solution of (1)

We shall discuss two situations: (a) t = 1 and (b) 1 < t < 1 + δ.

5.1 The Problem (1) in Lebesgue Spaces

In this first subsection we study right-hand sides f belonging to Lp(Ω). According

to Prop. 3 we split our considerations into the cases 0 < δ < 1 and δ = 1.

Theorem 4. Let Ω be a bounded Lipschitz domain in Rd. Let d ≥ 3 and 1 < p <∞.

Let g ∈ Car (Ω × R) satisfy the growth condition (16) for some a, b ≥ 0 and some

0 < δ < 1. Then for any f ∈ Lp(Ω) the nonlinear problem (1) has at least one

solution u ∈ Bα1 (L1(Ω)), α < 2.

Proof. By L0 we denote the solution operator of the Poisson equation. ¿From Corol-

lary 1 we know

L0 ∈ L
(
Lp(Ω),Bα1 (L1(Ω))

)
, α < 2 .

Now we use the compactness of the embedding

I : Bα1 (L1(Ω))→ Bβ1 (L1(Ω)) , β < α ,

see Prop. 4.6 in [29]. Hence L := I ◦ L0 is a compact operator mapping Lp(Ω) into

Bβ1 (L1(Ω)), β < 2. The estimate (19) yields

‖Nu ‖p ≤ η + ϑ ‖u ‖δ
Bβ1 (L1(Ω))

.

and N : Bβ
1 (L1(Ω))→ Lp(Ω) is also continuous, see Lemma 2. Consequently

L ◦N : Bβ1 (L1(Ω))→ Bβ1 (L1(Ω))

is completely continuous for all β, 0 < β < 2. The spaces Bβ1 (L1(Ω)) are admissible

in case β ∈ (1, 2). Since δ < 1 we can apply Proposition 3. This yields the existence

of a fixed point u ∈ Bβ1 (L1(Ω)) of the mapping L ◦N .

Theorem 5. Let Ω be a bounded Lipschitz domain in Rd. Let d ≥ 3 and 1 < p <∞.

Let g ∈ Car (Ω× R) satisfy the growth condition (16) for some a, b ≥ 0 and δ = 1.

If b = b(Ω) is sufficiently small, then we have that for any f ∈ Lp(Ω) the nonlinear

problem (1) has at least one solution u ∈ Bα1 (L1(Ω)), α < 2.

Proof. We argue as in the previous theorem. It is sufficient to observe that

ϑ = b ‖ I |L(Bα
τ (Lτ (Ω)), Lδp(Ω))‖δ −−→

b→0
0 .
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5.2 The Problem (1) in Bessel-Potential Spaces

This is the more interesting situation.

Theorem 6. Let Ω be a bounded Lipschitz domain in Rd. Let d ≥ 3, 1 < p < ∞
and t > 1. Let g be as in Lemma 3 with some δ < 1. Further we assume

(34)
d

d+ 1
< δ .

Then for any f ∈ H t−1
p (Ω) the nonlinear problem (1) has at least one solution

u ∈ Bαv (Lv(Ω)), where

(35)


α < δ + 2 , v := 1/(δ + 1) if δ + 1 ≤ (d+ 1)/(d− 1) ;

α < 2d
d−1

, v := d−1
d+1

if δ + 1 > (d+ 1)/(d− 1) .

Proof. Thanks to Thm. 4 we know there is a solution u ∈ Bβ
1 (L1(Ω)), β < 2. Hence

we have the identity u = (L0 ◦N)u for this particular u. Using Lemma 3 we find in

case 1 < q <∞
‖Nu ‖Hγ

q (Ω) ≤ η∗ + ϑ∗ ‖u ‖δ
Bβ1 (L1(Ω))

,

if

d max
(

0,
1

q
− δ, 1

2
− δ
)
< γ < δ and d max

(
0, 1− 1

qδ

)
+
γ

δ
< β .

For q ↓ 1 these conditions reduce to d(1 − δ) < γ < δ and γ/δ < β. Since (34) is

equivalent to d(1− δ) < δ there exist always such γ. We choose γ sufficiently close

to δ and q sufficiently close to 1 (both is always possible by simple monotonicity

arguments). Hence N(u) ∈ Hγ
q (Ω), γ < δ. Now we apply Cor. 1 with respect to

the new right-hand side N(u). Then γ + 1 takes over the role of t in Cor. 1. If

δ + 1 > (d + 1)/(d − 1), then we may have γ + 1 > (d + 1/(d − 1)) and obtain

L0(N(u)) ∈ B
2d
d−1
−ε

τ (Lτ (Ω)), τ = (d− 1)/(d+ 1), using Cor. 1(iii).

If δ + 1 ≤ (d+ 1)/(d− 1), then, as a consequence of Cor. 1(ii), we find

L0(N(u)) ∈ Bγ+2
1/(γ+1)(L1/(γ+1)(Ω)) ↪→ Bα

v (Lv(Ω)) , α < δ + 2 , v := 1/(δ + 1) .

This proves the claim.

Remark 5. (i) Observe, that t > 1 implies that the point (1/p, t + 1) belongs to

the regions II ∪ III, see Fig. 1.
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(ii) Elementary calculations yield: if d = 3 then, because of δ ≤ 1, we are always in

case δ + 1 ≤ (d + 1)/(d − 1); if d ≥ 4, then (34) implies δ + 1 > (d + 1)/(d − 1).

We prefered the formulation given above since one can relax the restriction (34).

Therefore one has to choose the parameter q in the proof in dependence of δ. We

omit details.

(iii) Thm. 6 could be partly improved in case we could apply the fixed point argument

in spaces with p < 1. Therefore we would need an extension of Prop. 2(iii).

Theorem 7. Let Ω be a bounded Lipschitz domain in Rd. Let 1 < p <∞ and t > 1.

Let g be as in Lemma 3 with δ = 1. If c1, c2 and b are sufficiently small, see (22) -

(24), then for any f ∈ H t−1
p (Ω) the nonlinear problem (1) has at least one solution

u ∈ Bαv (Lv(Ω)), where

(36)


α < 3 , v := 1/2 if d = 3 ;

α < 2d
d−1

, v := d−1
d+1

if d ≥ 4 .

Proof. It is enough to give some comments. Employing Lemma 2 (with δ = 1)

and Lemma 3 we find that ϑ, see Proposition 3, becomes small, if b and c1, c2 are

small.

6 Numerical Applications

As we mentioned in the introduction our analysis was partially motivated by some

concrete practical applications. In recent years, the numerical treatment of elliptic

boundary value problems has become a field of increasing importance with many

applications in science and engineering. Usually, even in lower dimensions, the dis-

cretization of these equations leads to systems involving up to millions of unknowns.

Therefore, to increase efficiency, very often adaptive schemes are the method of

choice. Generally speaking, an adaptive numerical scheme is an updating strategy.

Based on a local a posteriori error estimator, the underlying grid or the underlying

function space is refined only in regions where the numerical approximation is still

far away from the exact solution. A lot of convincing numerical applications indicate

the usefulness of this approach. Nevertheless, still the following question concerning

the theoretical foundation of adaptive schemes arises: is it possible to determine the

order of convergence of adaptive numerical schemes, and do we gain efficiency when
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compared with nonadaptive schemes? To answer this question, in particular recent

results from the realm of adaptive wavelet methods have turned out to be useful.

Indeed, for linear elliptic problems, it has been possible to design adaptive wavelet

schemes that are guaranteed to converge with optimal order, in the sense that they

asymptotically realize the approximation order of best n-term wavelet approxima-

tion, see [3, 4]. It has turned out that the Besov smoothness of the unknown solution

u to (2) is definitely high enough to justify the use of adaptive schemes.

In recent studies, much effort has been spent to generalize the adaptive wavelet

algorithms also to certain nonlinear equations. In [5], again an adaptive wavelet

algorithms that is guaranteed to converge with optimal order has been derived. As

a particular case, the scope of the analysis in [5] covers specific semilinear equations

of the form (1). Then, to justify the use of adaptive schemes, one is again faced with

the task to determine the Besov smoothness of the solution u to (1). In this paper,

we provide a first answer.

It is important to note that in our setting the smoothness bounds are not only

caused by the nonlinear terms, but just by the non-regularity of the domain Ω.

We are particularly interested in adaptive algorithms based on wavelets. The

benchmark of adaptive wavelet schemes is the best n-term wavelet approximation.

Therefore, to estimate the power of adaptive wavelet algorithms and to justify their

use, the performance of best n-term approximation has to be studied.

Let B∗ = {ψλ}λ∈J be a wavelet system on Ω that characterizes Sobolev spaces

Hr(Ω) as well as Besov spaces Bβ
q (Lp(Ω)) at the same time and for a sufficiently

large range of parameters β, r, p. We refer to [9] for a detailed description of these

conditions and for references where appropriate wavelet systems are constructed.

Let σn(u,B∗)Hr(Ω) denote the best n-term approximation in Hr(Ω) with respect to

the wavelet system B∗. Then following basic characterization has been shown in [7]:

(37)
∞∑
n=1

[n(α−r)/dσn(g,B∗)Hr(Ω)]
τ 1

n
<∞ ⇐⇒ g ∈ Bα

τ (Lτ (Ω)),
1

τ
=
α− r
d

+
1

2
,

compare also with (6) for the specific case r = 0, i.e., best n-term approximation in

L2(Ω). Eq. (37) obviously implies

(38) g ∈ Bα
τ (Lτ (Ω)),

1

τ
=
α− r
d

+
1

2
=⇒ σn(g,B∗)Hr(Ω) = O(n−(α−r)/d).

Therefore, the approximation order of best n-term approximation depends on the

Besov regularity of the object one want to approximate. Nonlinear approximation
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schemes perform better when compared with linear approximation schemes if the

Besov smoothness of the object under consideration is higher than its Sobolev reg-

ularity. In Sections 4 and 5 we have discussed both, the Sobolev and the Besov

smoothness of the solutions to (1), and we have seen that, just as for the linear case,

the Besov smoothness is generically higher. Therefore, to numerically approximate

the solutions to (1), the use of nonlinear approximation methods, and in particular

the use of adaptive numerical schemes, is completely justified. To explain these rela-

tionships in more detail, we shall discuss two special cases. The first one is concerned

with right-hand sides f contained in L2(Ω) and best n-term approximation in L2(Ω),

whereas the second one deals with smoother right–hand sides and approximation in

H1(Ω).

Theorem 8. Let d = 3 and let g ∈ Car(Ω × R) satisfy the growth condition (16)

for some a, b and δ < 1. If f ∈ L2(Ω), then there is a solution u of problem (1) s.t.

σn(u,B∗)L2(Ω) <∼ n−(2/3−ε)

where ε may be chosen arbitrary small.

Proof. We have two different regularity results, namely Thm. 2 and Thm. 4. First

we deal with the consequences of Thm. 2. The point (1/p, 2) does not belong to Hµ.

A simple monotonicity argument yields that we can apply Thm. 2 with respect to

the point (1/2, 1 + α), α < 1/2. Hence u ∈ Hβ(Ω), β < 3/2. Here we have used

that (32) is satisfied for all 0 < δ < 1. Now we discuss the consequences of Thm. 4.

We obtain u ∈ Bα
1 (L1(Ω)), α < 2. We shall use Hs(Ω) = Bs

2(L2(Ω)) in the sense of

equivalent norms and real interpolation, see [28] or [29, Thm. 1.110]. It holds(
Hβ(Ω), Bα

1 (L1(Ω))
)

Θ,τ
= Bs

τ (Lτ (Ω)) ,

where

s = (1−Θ)β + Θα and
1

τ
=

1−Θ

2
+ Θ .

Now we look for the intersection of the straight lines

g(x) := 3(x− 1/2) and h(x) := x+ 1 , x ∈ R .

Here x has taken over the role of 1/τ . The function h describes the regularity of

u and the function g describes the specific scale Bs
τ (Lτ (Ω)), τ = (s/d + 1/2)−1 of

Besov spaces we are interested in (line of Sobolev embeddings into L2(Ω)).
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The intersection of g and h takes place in the point (5/4, 9/4). However, we do

not know that u belongs to the spaces on the line h for p < 1. But we can use the

elementary embedding

Bα
1 (L1(Ω)) ↪→ Bα

τ (Lτ (Ω)) , τ < 1 .

The line (x, 2) meets g in point (7/6, 2), see Fig. 4. This implies

u ∈ Bs
τ (Lτ (Ω)),

6

7
< τ < 2 , s := 3

(1

τ
− 1

2

)
.

An application of (38) proves our claim.

Remark 6. (i) By Theorem 8, we see that best n-term approximation provides

approximation order O(n−(2/3−ε)). In contrast to this, a linear approximation scheme

would only yield approximation order O(n−1/2), see (3) and Thm. 2. Therefore, best

n-term approximation is indeed superior when compared with linear methods.

(ii) A typical example where the conditions of Theorem 8 are satisfied would be

−4u(x) + |u|δ = f(x) in Ω, 0 < δ < 1 ,

u(x) = 0 on ∂Ω.
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As a second example, we study the case of smoother right–hand sides and δ = 1.

We shall in particular discuss the case of nonlinear approximation in H1. The reason

is that the adaptive wavelet algorithms usually work with the energy norm which is

equivalent to the H1-norm, see again [3] for details. For simplicity we concentrate on

a special case, namely d = 3 and p = 2, the other cases can be studied analogously.

Theorem 9. Let p = 2, d = 3, δ = 1, t > 1 and ε > 0. Let g be as in Lemma 3 and

suppose that the conditions (22), (23) and (24) are satisfied with sufficiently small

constants c1, c2 and b. Then, for any f in H t−1(Ω) there is a solution u of (1) s.t.

σn(u,B∗)H1(Ω) <∼ n−(1/4−ε) , n ∈ N .

Proof. We argue as in the previous proof. We have two different regularity results,

namely Thm. 3 and Thm. 7. First we deal with the consequences of Thm. 3. It

follows u ∈ Hβ(Ω), β < 3/2. From Thm. 7 we derive u ∈ Bα
1/2(L1/2(Ω)), α < 3.

Again we make use of the interpolation argument and obtain, that

u ∈ Bα
τ (Lτ (Ω)),

1

2
< τ < 2 , α <

1

τ
+ 1 .

Now we look for the intersection of the straight lines

g(x) := 3(x− 1/2) + 1 and h(x) := x+ 1 , x ∈ R .

Again x replaces 1/τ . As above the function h describes the regularity of u and the

function h describes the specific scale Bs
τ (Lτ (Ω)), τ = ((s− 1)/d+ 1/2)−1 of Besov

spaces which are embedded into H1(Ω). The intersection takes place in the point

(3/4, 7/4). This yields

u ∈ Bs
τ (Lτ (Ω)),

4

3
< τ < 2 , s := 1 + 3

(1

τ
− 1

2

)
.

Now an application of (38) yields the result.

Remark 7. Since the Sobolev regularity of u is limited by 3/2, for nonadaptive

discretization methods and d = 3 only the approximation order O(n−(1/6−ε)) in

H1 can be expected, see (3). Therefore, compared with nonadaptive schemes, the

approximation order that can be achieved by adaptive schemes is significantly higher,

and therefore the use of adaptivity is again completely justified.
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[15] J. Franke (1986): On the spaces F s
pq of Triebel-Lizorkin type: pointwise multi-

pliers and spaces on domains. Math. Nachr. 125, 29–68.
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Smooth Bivariate Functions by the Easy Path Wavelet Transform. Preprint 78,
DFG-SPP 1324, January 2011.

[79] A. Mugler and H.-J. Starkloff. On Elliptic Partial Differential Equations with
Random Coefficients. Preprint 79, DFG-SPP 1324, January 2011.



[80] T. Müller-Gronbach, K. Ritter, and L. Yaroslavtseva. A Derandomization of the
Euler Scheme for Scalar Stochastic Differential Equations. Preprint 80, DFG-SPP
1324, January 2011.

[81] W. Dahmen, C. Huang, C. Schwab, and G. Welper. Adaptive Petrov-Galerkin
methods for first order transport equations. Preprint 81, DFG-SPP 1324, January
2011.

[82] K. Grella and C. Schwab. Sparse Tensor Spherical Harmonics Approximation in
Radiative Transfer. Preprint 82, DFG-SPP 1324, January 2011.

[83] D.A. Lorenz, S. Schiffler, and D. Trede. Beyond Convergence Rates: Exact Inversion
With Tikhonov Regularization With Sparsity Constraints. Preprint 83, DFG-SPP
1324, January 2011.

[84] S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: Approx-
imation by empirical measures. Preprint 84, DFG-SPP 1324, January 2011.

[85] S. Dahlke and W. Sickel. On Besov Regularity of Solutions to Nonlinear Elliptic
Partial Differential Equations. Preprint 85, DFG-SPP 1324, January 2011.


