
Authrule: A Generic Rule-Based Authorization
Module

Sönke Busch1, Björn Muschall2, Günther Pernul2, and Torsten Priebe3

1 Booz Allen Hamilton GmbH, Zollhof 8, D-40221 Düsseldorf, Germany
2 Department of Information Systems, University of Regensburg, D-93040

Regensburg, Germany
3 Capgemini Consulting Österreich AG, Lassallestrae 9b, A-1020 Vienna, Austria

Abstract. As part of the access control process an authorization deci-
sion needs to be taken based on a certain authorization model. Depending
on the environment different models are applicable (e.g., RBAC in orga-
nizations, MAC in the military field). An authorization model contains
all necessary elements needed for the decision (e.g., subjects, objects, and
roles) as well as their relations. As these elements are usually inherent in
the software architecture of an access control module, such modules limit
themselves to the use of a certain specific authorization model. A later
change of the model consequently results in a substantial effort for re-
vising the software architecture of the given module. Rule-based systems
are well suited to represent authorization models by mapping them to
facts and rules, which can be modified in a flexible manner. In this paper
we present a generic authorization module, which can take authorization
decisions on the basis of arbitrary models utilizing rule-based technology.
The implementation of the popular RBAC and ABAC (attribute-based
access control) models is demonstrated.

1 Introduction and Motivation

Depending on the environment of an IT system, there are varying requirements
for its access control mechanism. These requirements determine which autho-
rization model is adequate. For instance, for military purposes, the mandatory
access control model (MAC) is favourable as it supports information flow control.
This model is however inadequate for commercial purposes—in business IT sys-
tems, the mostly used authorization model is role-based access control (RBAC).
For information services on the Internet, an attribute-based access control model
(ABAC) might be the first choice due to the lack of stable role structures. It
is important to note that there is no authorization model that is suitable for
all different kinds of scenarios—the best suitable authorization model must be
chosen depending on the requirements.

The usual approach for implementing an access control system is to first
decide which authorization model matches the requirements and then develop
a software module to implement this authorization model. This approach has a
major drawback: The software is bound to a single authorization model. This

means, that if the requirements change and if it is necessary to switch to a new
authorization model, this would require substantial changes on the software.

This paper describes a generic approach that led to an authorization compo-
nent that supports multiple authorization models and can easily be extended to
support arbitrary authorization models. To accomplish this, a rule-based system
is used to map authorization models to rule sets; an inference engine processes
the authorization requests. Moving from one authorization model to another
only requires minor changes on the software—different authorization models are
represented as modules plus rule-base that can easily be replaced. To ensure that
authorization models can be easily exchanged, the access control logic is kept in
the separate authorization model and not interweaved with the business logic.

2 Fundamentals

2.1 Authorization Models

Authorization models are essential for access control. They represent all infor-
mation that is needed to perform an authorization decision. This information
consists of entities and their relation to each other. These entities and relations
vary from model to model, but they have some commonality, like the subject
(user) that requests the access, the object that is to be accessed and the oper-
ation that the subject requests to perform on the object. Operation and object
together represent a permission. This paper focuses on two very popular and
well elaborated authorization models, RBAC and ABAC.

The role based access control model (RBAC) is the de-facto standard for
access control. The standardization process was initiated by the NIST [3]. It
introduces an intermediation between user and permission, called role. Roles
are assigned to users and permissions are assigned to roles. The NIST also de-
fined two extensions of this basic Core RBAC model: Hierarchical RBAC and
Constrained RBAC.

The attribute based access control model (ABAC) relies on attributes of the
requesting subject as well as the object to perform the authorization decision.
There is no common or standard model like for RBAC, but it can be found
in many research works, e.g. DLAM [1, 4] or UCON [8] as well as the XML
access control language XACML [6]. An attempt to define a common ABAC
reference model was made in [9]4,[10]. Permissions are assigned by defining which
attributes a subject has to have in order to be able to access certain objects (with
certain attributes). The ABAC model can be extended to take environment
attributes into account or to directly compare the subject attributes with those
of the object.

In general, an authorization decision is a simple yes/no query that can be
described with a limited set of authorization rules. This characteristic allows
representing authorization models in rule bases and performing authorization
4 In this paper the authors refer to metadata-based access control (MBAC) instead of

ABAC. However, the terminilogy has changed in more recent work.

decisions with inference engines. Such authorization module can therefore im-
plement virtually any authorization model. In addition, the more complex an
authorization model is structured, the more effectively rule based systems can
perform their advantages over classical software architectures, that reflect the
authorization model in their structure.

2.2 Rule-based Systems

Rule-based systems are able to represent knowledge by storing structured in-
formation (called facts) and using rules to generate new facts from the already
existing ones. Facts are represented by predicates, which—similar to tuples in
relational databases—describe relations of some entities. A set of facts together
with a set of corresponding rules is called a knowledge base. Queries can be
run against this knowledge base by using an inference engine. When using a
rule-based system for authorization decisions, the entities of the authorization
model and their relations are represented by a set of facts. Additionally, rules
are defined to state, under which circumstances access will be granted and when
it will be denied. Authorization decisions are then performed by querying the
knowledge base with a query like granted(subject, object, operation).

Implementations of rule-based systems vary in their approach, flexibility and
maturity. For the purpose of using a rule-based system as kernel for a Java-based
authorization module, the Mandarax5 distribution was chosen. Mandarax was
found to fit best to our requirements. Mandarax is an open source Java library
implementing a very flexible and extensible rule-based system. One of the main
features of Mandarax is the possibility to load facts from any JDBC data source
on demand (i.e. when they are needed to answer a query). This way, Mandarax
can handle huge amounts of data as the data is not kept into main memory but
rather read from the data source as needed. As an interface for communicating
with the rule-based system, RuleML6 was chosen, as this is a XML-based format
capable of describing all important elements of a rule-based system.

3 Authrule Architecture And Design

3.1 Requirements

Authorization models represent the data and logic that are used to perform
authorization decisions. As stated above, there is a vast variety of authorization
models which differ quite significantly in the data and logic they use. The aim
of this work is to design an authorization module that is able to execute any
potential authorization model; this means that authorization models should be
exchangeable and that new authorization models should be addable with only
little effort. To make the implementation of a new authorization model as easy
as possible, an easy format should be used for describing the elements of the
5 http://www.mandarax.org
6 http://www.ruleml.org

model. Furthermore, the system should be platform-independent and it should
be able to support different data sources easily.

The choice of the authorization model of course in some way influences the
functional requirements that can be divided into two groups: functionality nec-
essary for performing authorization requests (called client functions) and func-
tionality necessary to manage the authorization data (called administration func-
tions). Additionally, the functional requirements can be devided into those that
are specific to a certain authorization model (model-specific) and those that are
not (model-unspecific). For the client functions for instance, the authorization
request itself can be easily abstracted to a generic authorization request that
has the same form regardless of the authorization model the software is cur-
rently applying. But there are also client functions that are model-specific and
cannot easily be abstracted, e.g., for RBAC there must be a client function to
create sessions and activate or deactivate roles. Some administration functions
are model-unspecific, for instance creating or deleting users, objects or opera-
tions. Most of the administration functions however use specific characteristics
of the authorization model and are therefore model-specific.

3.2 Realization of Authrule

Authrule / Knowledge -Bases

API (i.e . JDBC)

Data
source

Data
source

Data
source

RBAC
set of
rules

R
u

le
M

L
 /

X
M

L
A

P
I

static role structure ,
fields of activities

MAC
set of
rules

Application Application Application

control of
information flow ,

clearances

dynamic users ,
credentials

Administration :
ruleml

ABAC
set of
rules

API API API

Inference engine

External
Applications

Request &
Facts

Model

organisazations government Internet community

Fig. 1. Overall software architecture of Authrule

As shown in Fig.1, the authorization module Authrule processes authoriza-
tion requests from client business applications and additionally supplies a (sep-
arate) interface for administration. These services were implemented in an API

consisting of Java interfaces. The interfaces are supplied by a class called Knowl-
edgeBaseManager, which represents the software to the user.

According to the requirements, these services are made available in a way that
they are as generic as possible and at the same time offer all necessary function-
ality. Client functionality is provided by the Java interface ClientI (see Sec. 4)
which forms the API for the applications in Fig.1. 7 For model-specific func-
tionality, this interface was extended, e.g., the RBAC-specific functions (session
management, etc.) are provided by the interface RBACClientI. Accordingly, the
generic administration interface is AdminI, which is extended for model-specific
functionality. For RBAC-specific administration (role management, etc.), the in-
terface RBACAdminI was created. It is possible to use client functionality by
using the generic ClientI interface—this allows a client business application to
use Authrule for authorization requests without even knowing what authoriza-
tion model is used. In contrast to the client side, administration of the Authrule
can only be done properly, when using the model-specific administration inter-
face, as the administration requires knowledge of the authorization model (e.g.,
for RBAC, the administrator must know that roles have to be used to assign
permissions to users).

The API encapsulates the rule-based system, which actually processes the
requests. A class derived from the abstract class AuthorizationModel transforms
the method calls from the API to rule-based queries. This class also takes care
of calls that require writing/modifying data, which cannot be done by simply
querying the rule-based system. A helper class (called PredicateDatasource) was
developed to provide an easy and abstracted way of writing and deleting data.

The representation of the authorization model as a set of facts and rules
is described in a RuleML configuration file, which is loaded on startup. The
RuleML format is human-readable an easy to understand and edit. This data
format is mapped to the the internal, object-oriented and Mandarax-specific
runtime representation of the rule-based system, which is not human-readable.
The same format can also be used to directly query and/or as an intermediate
step mapping calls from the Java API to query the the rule-based system. The
core of Authrule is designed to be extensible in several aspects and therefore con-
forms to the above requirement. As mentioned above, the authorization model
can be exchanged seamlessly. One class (derived from the class Authorization-
Model) includes all program code that is specific for this authorization model;
by exchanging this class (and changing two configuration files), a new autho-
rization model can be applied. Facts that have to be included in the knowledge
base as they are necessary for the authorization decision (like user names, roles,
etc.) can be added in two ways: If the amount of data for these facts is small,
they can be manually added into the RuleML configuration file that is used to
define a certain authorization model. This file should only comprise the set of
rules (and some basic facts) that made up the model and are loaded into the
knowledge base on startup. For larger amounts of data, it is more appropriate

7 Business applications in Fig. 1 and the SecurityProxy in Fig. 3 are called clients
from the perspective of Authrule. Not to be confused with Client in Fig. 3.

to map these predicates to a JDBC data source, this way the data does not
reside in the knowledge base but is loaded into memory from the data source on
demand. The mapping of predicates to data sources is configured in a different
XML configuration file.

Administrative clients will use the administrative interfaces of Authrule. If
they add new facts, this will internally result in adding a tuple to the database.
If the access control model is modified, i.e. adding new authorization constraints,
this will result in extending the authorization model with new rules.

4 Implementing Authorization Models

To implement an authorization model, only a Java class, two Java interfaces and
two XML files have to be created, as described in Sec. 3.2. The elements of the
authorization model are described as facts and rules in a RuleML file. Another
XML file describes how the facts are mapped to data sources. Functionality for
client use and administration is declared by extending the interfaces ClientI and
AdminI (see Fig.2). An implementation of the abstract class AuthorizationModel
is created to map the interfaces to requests to the rule-based system.

+addUser ()
+deleteUser ()
+addResource ()
+deleteResource ()
+addOperation ()
+deleteOperation ()
+addPermission ()
+deletePermission ()

«Schnittstelle»
AdminI

+checkAccess ()

«Schnittstelle» ClientI

AuthorizationModel

ABACAuthorizationModel RBACAuthorizationModel

«Schnittstelle» ABACClientI

+createSession ()
+deleteSession ()
+addActiveRole ()
+dropActiveRole ()

«Schnittstelle» RBACClientI
+addRole ()
+deleteRole ()
+assignUser ()
+deassignUser ()
+grantPermission ()
+revokePermission ()
+getAssignedUser ()
+getAssignedRoles ()
+getRolePermissions ()
+getUserPermissions ()
+getSessionRoles ()
+getSessionPermissions ()

«Schnittstelle»
RBACAdminI

+addQualifier ()
+deleteQualifier ()
+addPermissionRule ()
+deletePermissionRule ()

«Schnittstelle»
ABACAdminI

«Interface »

«Interface »

«Interface »

«Interface » «Interface »

«Interface »

Fig. 2. Authrule application programming interface (with interfaces for RBAC and
ABAC)

Each authorization model has to be assigned a unique ID, called ModelId.
Each part of the authorization model implementation, i.e. the Java class derived
from the class AuthorizationModel as well as the XML files for defining the rules
and mappings, is tagged by this ModelId. Upon startup, Authrule loads the Java
class and XML-files that are specified in the configuration file and checks if they

all have the same ModelId. This ensures the integrity of the loaded authorization
module.

4.1 Role-Based Access Control

The first step for implementing an authorization model is to describe the model
itself, which is the static part of a RBAC policy, as a set of facts and rules. The
following listing shows an excerpt of the RuleML file that forms the Core-RBAC
model described in [3] translated to a rule-based representation.

...

<rulebase model_id="ifs.uni-regensburg.de/rbac-core/0.1">

<imp>

<_head>

<atom>

<_opr><rel>granted</rel></_opr>

<var>a User</var>

<var>an Object</var>

<var>an Operation</var>

</atom>

</_head>

<_body>

<and>

<atom>

<_opr><rel>hasRole</rel></_opr>

<var>a User</var>

<var>a Role</var>

</atom>

<atom>

<_opr><rel>hasPermission</rel></_opr>

<var>a Role</var>

<var>a Permission</var>

</atom>

<atom>

<_opr><rel>session</rel></_opr>

<var>a Session</var>

<var>a User</var>

</atom>

<atom>

<_opr><rel>activeRole</rel></_opr>

<var>a Session</var>

<var>a Role</var>

</atom>

... <!-- predicates to check existence of elements are omitted -->

</and>

</_body>

</imp>

</rulebase>

The RBAC model comprises just one rule for the predicate granted that
represents the authorization decision. It is not necessary to declare the used
predicates separately as they are declared implicitly when used in a rule defini-
tion. The use of predicates that represent the existence of elements (like user,
role, object, etc.) are omitted in this excerpt:

Since the facts according to the predicates tend to be numerous and change
frequently, they can be mapped to an arbitrary number of JDBC data source
and therefore separated from the definition of the model.

The Java interfaces RBACClientI and RBACAdminI were created to extend
the interfaces ClientI and AdminI with additional, RBAC-specific functionality
like handling sessions and defining roles. Fig.2 shows theses interfaces and their
methods as well as the class RBACAuthorizationModel, which implements them.
Requests can be passed to the rule based system in several ways, see Sec. 3.2.
The call checkAccess() of the interface ClientI results in a RuleML query similar
to that in Sec. 4.2 that is sent to the rule-based system to find out if a user is
allowed to perform an operation on an object. In other words, the implementa-
tion of interface methods like checkAccess() use the provided RuleML interface
to implement their functionality.

4.2 Attribute-Based Access Control

Implementing the ABAC model requires—similarly to the implementation of
RBAC-a Java class, two Java interfaces and two XML files. A major difference
compared to RBAC is that an ABAC policy cannot be so clearly distiguished into
a static model and its instances. The ABAC model itself is translated into some
static set of rules that can be separated from the dynamic authorizations of some
instance of the ABAC model, also translated into rules. These instances of the
model are formulated into a separated set of rules and facts that are temporarly
combined for an authorization decision. A second major difference is, that in this
ABAC implementation the requesting user and the user’s attributes (also called
credentials) are external to the rule base and handed over when checkAccess() is
called. The attributes can, for example, originate from a X.509 attribute client
certificate 8.This is in contrast to most RBAC implementations, where server-
side roles are derived from the identity without additional information from the
client. Therefore, the parameter user that is used with the API is an object that
has methods to get and set its attributes. Consequently, the RuleML query for
handing the authorization request to the rule-based system is extended to take
the attributes of the user into account when processing the query. This is shown
in the following listing:

<rulebase>

<!-- facts added temporarly to knowledgebase for executing the query -->

<atom>

<_opr><rel>user</rel></_opr>

8 X.509: Public Key and Attribute Certificate Frameworks. ITU-T Recommendation,
2000

<ind>Bob</ind>

</atom>

<atom>

<_opr><rel>hasAttribute</rel></_opr>

<ind>Bob</ind>

<ind>age</ind>

<ind>23</ind>

</atom>

<!-- the query, same for RBAC/ABAC -->

<query>

<_body>

<atom>

<_opr><rel>granted</rel></_opr>

<ind>Bob</ind>

<ind>DocumentA</ind>

<ind>write</ind>

</atom>

</_body>

</query>

</rulebase>

The rule base for the ABAC model is more complex. The following excerpt
of the corresponding RuleML file show how ABAC can be formulated in rules:

<rulebase model_id="ifs.uni-regensburg.de/abac/0.1">

<!-- this rule maps the granted predicate to the hasPermission

predicate and checks existence of the passed elements -->

<imp>

<_head>

<atom>

<_opr><rel>granted</rel></_opr>

<var>a User</var>

<var>an Object</var>

<var>an Operation</var>

</atom>

</_head>

<_body>

<and>

... <!-- predicates to check existence of elements are omitted -->

<atom>

<_opr><rel>hasPermission</rel></_opr>

<var>a User</var>

<var>an Object</var>

<var>an Operation</var>

</atom>

</and>

</_body>

</imp>

<!-- greater_equal (int) Operator -->

<imp>

<_head>

<atom>

<_opr><rel>matchesQualifier</rel></_opr>

<var>a User or Object</var>

<var>a Qualifier</var>

</atom>

</_head>

<_body>

<and>

<atom>

<_opr><rel>qualifier</rel></_opr>

<var>a Qualifier</var>

<ind>greater_equal</ind>

<var>an Attribute</var>

<var type="Integer">IntValue 2</var>

</atom>

<atom>

<_opr><rel>hasAttribute</rel></_opr>

<var>a User or Object</var>

<var>an Attribute</var>

<var type="Integer">IntValue 1</var>

</atom>

<atom>

<_opr><rel predefined="true">=></rel></_opr>

<var type="Integer">IntValue 1</var>

<var type="Integer">IntValue 2</var>

</atom>

</and>

</_body>

</imp>

...

The granted predicate checks for the existence of the passed elements and
then refers to the predicate hasPermission. The predicate hasPermission yields
true, if one of the permission rules match the authorization query.

Permission rules use qualifiers [9, 10] to describe what kind of attributes qual-
ify users and objects for this rule. As qualifiers use operators (like equal, greater
than, etc.), these operators must be first defined. The above excerpt shows the
definition of the operator greater equal9 . Permissions are assigned by adding
permission rules to the rule-based system. The following listing shows an exam-
ple of a permission rule and the qualifier this permission rule uses:

<fact>

<atom>

9 This is an example of a predefined predicate. It represents special functions that
the Mandarax distribution supplies—in this example, it checks if the first term is
greater than or equals the second term. To use predefined predicates with RuleML,
the RuleML format was extended with a marker attribute predefined, as can be seen
in the code example above.

<_opr><rel>qualifier</rel></_opr>

<var>adult</var>

<ind>greater_equal</ind>

<var>age</var>

<var type="Integer">18</var>

</atom>

</fact>

<fact>

<atom>

<_opr><rel>qualifier</rel></_opr>

<var>belongs_to_hemauer</var>

<ind>equal</ind>

<var>project_name</var>

<var type=" String">Hemauer Project </var>

</atom>

</fact>

<imp>

<_head>

<atom>

<_opr><rel>hasPermission</rel></_opr>

<var>a User</var>

<var>an Object</var>

<ind>read</ind>

</atom>

</_head>

<_body>

<and>

<atom>

<_opr><rel>matchesQualifier</rel></_opr>

<var>a User</var>

<ind>adult</ind>

</atom>

<atom>

<_opr><rel>matchesQualifier</rel></_opr>

<var>an Object</var>

<ind>belongs_to_hemauer</ind>

</atom>

</and>

</_body>

</imp>

Qualifiers are represented by a predicate called qualifier that defines the
qualifier’s name, an operation, an attribute type, and a value. In the above
example, the qualifier adult is defined to match all users whose attribute age is
grater or equals 18. The second qualifier belongs to hemauer matches all objects
that have an attribute project name indicating that they belong to the project
”Hemauer Project”. The permission rule that is listed afterwards uses these
two qualifiers to specify that adult users are allowed to read objects that are
associated to the project ”Hemauer Project”.

As shown in Fig.2 the Java interfaces for ABAC are quite straight forward.
The API remains the same, however, the prerequisite must be met that the
attributes are contained in the subject. Hence, only few additional functionality
is required on the client side. This can be accomplished in transparent way
using general APIs for authentication (like JAAS10 , PAM,.etc.). On the client
side, the interface remains the same, which means that this ABAC model can
be used by means of the generic interface ClientI. This is made possible as
the parameters for the generic interface ClientI are based on instances of the
interfaces UserI, OperationI and ObjectI. These interfaces supply functions to
get and set attributes. For this reason, these methods can be used regardless
of the authorization model that is actually used. On the administration side,
the generic AdminI is extended by the interface ABACAdminI with methods to
create and delete qualifiers and permission rules.

5 Usage Scenario

In order to evaluate our approach and the Authrule module, we deployed it for ac-
cess control in a component-based business application. Over the last years J2EE
(Java 2 Enterprise Edition) evolved as a major framework for enterprise applica-
tion development. This framework comprises the software component standard
EJB (Enterprise Java Beans) [5]. EJBs are well suited for constructing business
applications as they come with out-of-the-box solutions and mechanisms for a set
of non-functional requirements like security. EJBs can also be made externally
available as web services using JAX-RPC11. Unfortunately the EJB standard
has been designed to be tightly bound to RBAC. This fact inhibits principals
like application field neutrality, transparency and flexibility. EJB-based appli-
cations can be deployed in a variety of application domains that have different
requirements for authorization see Sec. 1. A further substantial inconvenience of
the EJB security approach is, that roles are derived from the users’ identity on
the server side see Sec. 4.2. Consequently, we consider the existent role based
access control in EJB systems as a form of basic security, which needs to be
supplemented by additional security measures. In Fig.3 an interceptor (called a
”security proxy”) is placed in the communication path between the client and
a component transparently to the application logic. Each software component
can be preceded with its own interceptor that can contain authorization logic in
which we integrate Authrule to protect several EJBs. Consequently each piece
of application logic in form of an EJB can be supplied with attribute-based ac-
cess control with arbitrary authorization rules. The non-functional requirements
transparency, flexibility, and interoperability have been taken into special con-
sideration. Transparency in this sense means, that security should not be part of
the application logic. In this way security unaware applications can be secured
10 Java Authentication and Authorization Service (JAAS).

http://java.sun.com/products/jaas/
11 Java API for XML-Based RPC (JAX-RPC)

http://java.sun.com/webservices/jaxrpc/index.jsp

without requiring to change their code and security mechanisms are interchange-
able.

EJB -Container

JAX-RPC
JAX-RPC

Client / JVM

Client

JAX-RPC
Handler

User

Authentication

EJB

JVM / JBoss (EJB Server)

ABAC
(Authent .)

Authentication / Authorization

Security
Manager

JAAS

JAX-RPC
Handler

JAAS

ABAC
(Authent .)

JAX-RPC
Stub

SOAP
SAML

Assertion

API

EJB

Authrule :
ABAC Knowledge

Base

Security
Proxy

Service
Endpoint
Interface

Fig. 3. Authrule for EJB access control

Fig.3 depicts our approach in detail. A user/principal uses a client, which is
linked to the authentication interfaces. On startup of the client application, the
authentication process is being triggered. It calls the attribute-based authentica-
tion module, which is deployed in conformance to the server-side authorization
module. The client is requested to provide the attributes, he wants to use and
a subject instance containing these attributes is created. By invoking the web
service methods the subject is transparently encapsulated. Server-side authen-
tication is processed and a security context is established. Before invoking an
EJB the interceptor forwards the attributes to Authrule in order to take the au-
thorization decision. Depending on this decision the authorization enforcement
within the interceptor/security proxy grants access to the bean or prevents the
further invocation.

6 Related Work

Since it has been demonstrated that RBAC can be configured to also enforce
DAC and MAC, RBAC has been considered to be a generic authorization model.
The flexibility of RBAC and its ability to enforce MAC policies and a number
of access constraints to realise the equivalent of Bell-LaPadula has been demon-
strated in [13]. With the appearance of attribute-based access control models
(XACML[6], UCON[8], DLAM[1]) authorization requirements have shown up,
which eventually cannot be solved by RBAC. As a result, RBAC cannot longer
be considered as ”ultima ratio”. A lot of RBAC implementations yet exist, one
of it is described in [12]. It was implemented in a classical straightforward man-
ner by mapping the static model to an equivalent software architecture. CSAP
[12] afterwards has been extended with ABAC resulting in the above mentioned

substantial changes on the software and runtime inefficiencies.
There have been other attempts to find a universal way of describing autho-
rization models as set of rules and predicates. One of the broadest approaches
is described by Bertino et al. [2]—however, the intention for describing autho-
rization models in that work was to create a framework to compare them in
respect to their expressiveness; it did not discuss how rule-based systems can be
used to build a generic authorization module. Additionally, assumptions about
the authorization models (e.g. that users are organized in groups) were made,
constraining the generality of their framework. Other research works that use
logics-based languages and reasoners for access control can be found in the area
of the Semantic Web. For example, the KAoS framework [11] provides a collec-
tion of services for distributed policy management and enforcement. It uses the
description-logics-based Web Ontology Language (OWL) to specify the policies.
Likewise, the policy engine in Rei [6] can handle policies specified in RDFS (a
subset of OWL).
In this work, we decided to use RuleML as basis for the input and output for-
mat when communicating with the application core. One might argue that the
XACML[6] could be used as it is also able to formulate authorization requests
and express the permission data for several different authorization models. In
fact, XACML is a very versatile standard that is capable of mapping many
different authorization models. However, XACML has drawbacks that make it
unsuitable when a very generic, but simple approach is desired. One reason is
that the versatility of XACML resulted in a very complex format, which is not
easy to handle and involves a lot of overhead. Another reason is that XACML,
though very versatile, is not generic enough to cover all possible authorization
requirements. For example, even though core RBAC requirements can be eas-
ily implemented using XACML, a full-featured constrained RBAC [3] is hard to
achieve as XACML rules are not as expressible as the logics used by a rule-based
system. Using a descriptive format like RuleML ensures that the approach is so
generic that it can capture all authorization models that can be formulated as
set of predicates and rules—and, as we argued in this paper, every authorization
model can be formulated as set of predicates and rules.

7 Conclusions

This paper presented an approach that led to a generic authorization module
that supports arbitrary authorization models and can be easily extended. To
accomplish this, a rule-based system was used to map authorization models to
rule sets and an inference engine processes the authorization requests. There
are different authorization models for different application fields with different
requirements. Usually, authorization modules limit themselves to the use of a
certain specific authorization model and a later change or modification of the
model consequently results in a substantial effort for revising the software ar-
chitecture. Rule-based systems are well suited to represent authorization models
by mapping their elements and relations to facts and rules, which can be modi-

fied in a flexible manner. The implementation of the popular RBAC and ABAC
(attribute-based access control) models with our approach was demonstrated,
giving the deployment in a J2EE/web service scenario as a usage scenario. This
scenario was chosen, because it also demonstrates how flexibility and trans-
parency can be reached in conjunction with other state-of-the-art mechanisms.

Future work will elaborate on more integrative tasks. We will investigate
different models, additional constraints, delegation, and trust, as well as the
environment as an attribute source. We will also examine the semantics of ex-
changed attributes in web service scenarios.

References

1. Adam, N.R., Atluri, V., Bertino, E., Ferrari, E.: A Content-based Authorization
Model for Digital Libraries. IEEE Transactions on Knowledge and Data Engineer-
ing, Volume 14, Number 2, March/April 2002.

2. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A Logical Framework for Rea-
soning about Access Control Models. In: ACM Transactions on Information and
System Security, Volume 6, Number 1, pp. 71-127, Februar 2003.

3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D., and Chandramouli, R.: Proposed
NIST Standard for Role-based Access Control. In: ACM Transactions on Informa-
tion and Systems Security, Volume 4, Number 3, August 2001.

4. Ferrari, E., Adam, N.R., Atluri, V., Bertino, E., Capuozzo, U.: An Authorization
System for Digital Libraries. In: VLDB Journal, Volume 11, Number 1, 2002.

5. Enterprise JavaBeans 3.0. Java Specification Request 220 Proposed Final Draft,
http://jcp.org/aboutJava/communityprocess/pfd/jsr220/index.html

6. Kagal, L., Finin, T., Joshi, A.: A Policy Based Approach to Security for the Semantic
Web. In: Proc. 2nd International Semantic Web Conference (ISWC 2003), Sanibel
Island, FL, October 2003.

7. OASIS eXtensible Access Control Markup Language v2.0 (XACML).
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf

8. Park, J., Sandhu, R.: The UCONABC Usage Control Model. In: ACM Transactions
on Information Systems Security, Volume 7, Number 1, pp. 128-174, February 2004.

9. Priebe, T., Fernandez, E.B., Mehlau, J.I., Pernul, G.: A Pattern System for Access
Control. In: Proc. 18th Annual IFIP WG 11.3 Working Conference on Data and
Application Security, Sitges, Spain, July 2004.

10. Priebe, T., Dobmeier, W., Muschall, B., Pernul, G.: ABAC - Ein Referenzmodell für
attributbasierte Zugriffskontrolle. In: Proc. 2. Jahrestagung Fachbereich Sicherheit
der Gesellschaft für Informatik (Sicherheit 2005), Regensburg, Germany, April 2005.

11. Uszok, A. et. al.: KAoS Policy and Domain Services: Toward a Description-Logic
Approach to Policy Representation, Deconfliction and Enforcement. In: Proc. 4th
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2003), Comersee, Italy, June 2003.

12. Dridi, F., Fischer, M., Pernul, G.: CSAP – An Adaptable Security Module for the E-
government System Webocrat. In: Proc. of the 18th IFIP International Information
Security Conference (SEC 2003), Athens, Greece, May 2003.

13. Osborn, S., Sandhu, R., Munawar, Q.: Configuring Role-based Access Control to
enforce Mandatory and Discretionary Access Control Policies In: ACM Transactions
on Information and System Security (TISSEC), volume 3, pages 85-106, 2000

