Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Development

DNA methylation in Drosophila melanogaster

Abstract

Certain cytosine residues of eukaryotic DNA are methylated in inactive regions of the genome. For a long time the fruitfly Drosophila was thought to be an exception1,2,3,4, but now the evidence points to the existence of a functional DNA-methylation system in Drosophila as well5,6,7,9. Here we show that DNA is methylated, but that Drosophila genomic methylation is restricted to the early stages of embryonic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methylation analysis of Drosophila genomic DNA from wild-type (Oregon R) flies.

Similar content being viewed by others

References

  1. Rae, P. M. & Steele, R. E. Nucleic Acids Res. 6, 2987–2995 (1979).

    Article  CAS  Google Scholar 

  2. Bird, A. P. & Taggart, M. H. Nucleic Acids Res. 8, 1485–1497 (1980).

    Article  CAS  Google Scholar 

  3. Urieli-Shoval, S., Gruenbaum, Y., Sedat, J. & Razin, A. FEBS Lett. 146, 148–152 (1982).

    Article  CAS  Google Scholar 

  4. Patel, C. V. & Gopinathan, K. P. Anal. Biochem. 164, 164–169 (1987).

    Article  CAS  Google Scholar 

  5. Hung, M. S. et al. Proc. Natl Acad. Sci. USA 96, 11940 –11945 (1999).

    Article  CAS  Google Scholar 

  6. Tweedie, S. et al. Nature Genet. 23, 389– 390 (1999).

    Article  CAS  Google Scholar 

  7. Wade, P. A. et al. Nature Genet. 23, 62– 66 (1999).

    Article  CAS  Google Scholar 

  8. Lyko, F. et al. Nature Genet. 23, 363–366 (1999).

    Article  CAS  Google Scholar 

  9. Lyko, F., Whittaker, A. J., Orr-Weaver, T. L. & Jaenisch, R. Mech. Dev. 95, 215–217 ( 2000).

    Article  CAS  Google Scholar 

  10. Adams, M. D. et al. Science 287, 2185– 2195 (2000).

    Article  Google Scholar 

  11. Achwal, C. W., Ganguly, P. & Chandra, H. S. EMBO J. 3, 263– 266 (1984).

    Article  CAS  Google Scholar 

  12. Ramsahoye, B. H. et al. Proc. Natl Acad. Sci. USA 97, 5237– 5242 (2000).

    Article  CAS  Google Scholar 

  13. Yoder, J. A. & Bestor, T. H. Hum. Mol. Genet. 7 , 279–284 (1998).

    Article  CAS  Google Scholar 

  14. Okano, M., Xie, S. & Li, E. Nucleic Acids Res. 26, 2536–2540 (1998).

    Article  CAS  Google Scholar 

  15. Ramsahoye, B. H., Burnett, A. K. & Taylor, C. Blood 87, 2065– 2070 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Jaenisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyko, F., Ramsahoye, B. & Jaenisch, R. DNA methylation in Drosophila melanogaster . Nature 408, 538–540 (2000). https://doi.org/10.1038/35046205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy