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A related problem is the traveling tourist problem. Given a graph G = (V;E) �nd theshortest walk visiting a subset of vertices, such that each vertex is either visited, or has atleast one of its neighbors visited. (The vertices of the graph correspond to monuments thetourist would like to see, and an edge between two vertices denotes visibility of one monumentfrom another.) The shortest such walk would guarantee that the tourist sees all monuments ofinterest.We show that a � approximation for the connected dominating set problem yields a 2�approximation for the traveling tourist problem. Consider a spanning tree of the connecteddominating set S and perform a tree traversal. This yields a walk in which exactly 2(jSj � 1)edges are traversed. Any set of vertices visited by the tourist, form a connected dominatingset. Thus S � � �OPT � � �OPTTT , where OPTTT denotes an optimal traveling tourist tour,and the result follows.We also study the connected dominating set problem when the vertices have weights, andwe wish to minimize the total weighted sum of the vertices that form the connected dominatingset. This also yields an approximation algorithm for the weighted traveling tourist problem,where the weights could potentially denote the tourist's cost of buying a ticket to visit themonument.We also consider Steiner generalizations, where only a speci�ed subset of vertices have tobe dominated by a connected dominating set.1.1 Our ResultsWe present two approximation algorithms for this problem. The �rst algorithm develops agreedy algorithm for solving the problem. A naive greedy algorithm is shown to do badly.Surprisingly, with a simple modi�cation we are able to show an approximation factor of 2(1 +H(�)) (in practice, this algorithm appears to do very well). We also provide a very e�cientimplementation of this algorithm.The second algorithm is an improvement of the �rst algorithm. The algorithm �nds adominating set in the �rst phase, and in the second phase connects the dominating set. In anearlier version of this paper [8] we established a bound of H(�) + H(H(�)). Using Slav�ik'sgreedy set-cover bound [17], we were able to show that the approximation factor is lnn+O(1).Recently, Berman suggested a modi�cation to the algorithm, which improves the approximationfactor to H(�) + 2. We describe this algorithm and give a simple proof for a performanceguarantee of ln � + 3.We also show an approximation preserving reduction from the set-cover problem to the con-nected dominating set problem, showing that it is hard to improve the approximation guaranteeunless NP � DTIME[nO(log logn)] [13, 6]. We give a 3 lnn approximation for the version whenthe vertices have weights. We also show that the upper bound of 2 ln k for approximating nodeweighted Steiner trees [10], can be improved to ln k, when all Steiner vertices have unit weight.We then use this result to give a 3 ln k approximation for �nding a connected dominating set fora speci�ed subset of vertices. We also outline a second algorithm that gives an approximationfactor of (1 + c)H(min(�; k)) + O(1), where c is the best approximation ratio for the Steiner2



tree problem (currently c = 1:644 [12]). Even though this algorithm has a better approximationguarantee, it is not practical due to the high running time, albeit polynomial.1.2 PreliminariesThe Steiner tree problem is de�ned as follows: given a subset of required vertices in an edgeweighted graph, �nd a minimum weight tree spanning the required subset of vertices. (Notethat the tree may include other vertices that are not required vertices.) The node weightedSteiner tree problem is essentially the same problem, except that the vertices of the graph haveweights associated with them and the weight of the tree is the sum of the weights of its vertices.The Unit Node Weighted Steiner tree is the special case when all vertices that are not required,have the same weight. The required vertices all have zero weight.The set cover problem is the following: given a set of elements U , and a set of subsets S, ofU , we wish to �nd the smallest collection of sets S 0 � S such that [S2S0S = U .The set TSP problem is de�ned as follows: given an edge weighted graph G = (V;E) anda partition of V = (V1 [ V2 [ : : :[ Vk), �nd the shortest tour that contains at least one vertexfrom each Vi.Given a graph G = (V;E), we use � to denote the maximum degree of a vertex in thegraph. We use n and m to denote the number of vertices and edges in G. We use N(v) todenote the set of neighbors of a vertex v.1.3 ApplicationsThe paper by Paul and Miller [15] discusses applications related to testing nodes in a computernetwork using a short \traveling tourist tour". They also consider the related question of �ndinga tour that visits each edge of the graph (connected vertex cover). This is needed when onerequires testing the links as well as the nodes. Approximation algorithms for the latter problemwere given by Arkin, Halld�orsson and Hassin [1]. We observe that there is a simple algorithmfor the unweighted connected vertex cover problem that gives a factor 2 approximation (the onegiven in [1] is more complicated). Do a Depth First Search, and take all the non-leaf vertices asthe nodes in the vertex cover. This clearly induces a connected graph, and the approximationratio is 2, as shown by Savage [16]. In practice, however this method will probably give largeconnected vertex covers.Other applications for the connected dominating set problem are in doing broadcasts forwireless computers in digital battle�elds. The broadcast is done to the vertices in the con-nected dominating set. The nodes in the connected dominating set are responsible for relayingmessages. Each node not in the dominating set, is not responsible for relaying any messages[9]. Other relevant issues are regarding the maintenance of the connected dominating set as thenetwork topology changes.2 Algorithm IWe introduce an algorithm that �nds a connected dominating set, by \growing" a tree.3



The idea behind the algorithm is the following: grow a tree T , starting from the vertex ofmaximum degree. At each step we will pick a vertex v in T and \scan it". Scanning a vertex,adds edges to T from v to all its neighbors not in T . In the end we will �nd a spanning tree T ,and will pick the non-leaf nodes as the connected dominating set.Initially all vertices are unmarked (white). When we scan a vertex (color it black), we markall its neighbors that are not in T and add them to T (color them gray). Thus marked nodesthat have not been scanned are leaves in T (gray nodes). The algorithm continues scanningmarked nodes, until all the vertices are marked (gray or black). The set of scanned nodes (blacknodes) will form the CDS in the end.The main question is the following: what rule should we use for picking a vertex to bescanned? A natural choice is to pick the vertex that has the maximum number of unmarked(white) neighbors. We call this the \yield" of the scan step. Unfortunately, as the followingexample shows this may not work well (see Fig. 1).uv N(u)N(v)Figure 1: Example to show that the scanning rule fails.Let u and v be vertices of degree d. There is a solution of size four, by picking a path fromu to v as the CDS. The algorithm begins by marking and scanning u. This adds all of u'sneighbors to T . We pick a vertex from N(u) and scan it, adding its only unmarked neighbor(from N(v)) to T . At this point, each vertex has exactly one unmarked neighbor. We couldpick a vertex from N(u) again, and scan it, adding its only unmarked neighbor to T . Thiscontinues until all the vertices from N(u) have been scanned. Finally we scan a vertex fromN(v) and mark v. At this point, the algorithm has picked d+ 2 vertices.Implementation Issues: The above algorithm can be implemented in O(m) time (and wasimplemented). To achieve this running time, we use a data structure DS that maintains allgray vertices in T with a key value equal to the number of white neighbors that they have.Rather than using a heap, we maintain an array of linked lists, where DS[i] is a pointer to a(doubly linked) list containing all the gray vertices that have exactly i white neighbors. We alsomaintain an integer maxd that records the maximum i, such that DS[i] 6= nil. This makes iteasy to locate a gray vertex with the highest \yield". The main work is in updating the valueof maxd when DS[maxd] becomes nil. The work that is done is at most O(maxd), and sinceat this step, maxd vertices are colored gray, we can \charge" the work done to the verticesthat are colored gray at this step. (Equivalently, we could develop a potential function to prove4



this.) The other operations are easy to perform (for example, when a vertex is colored gray,we need to update the entries for its neighbors that are already in DS and create an entry inDS for this vertex). The entire algorithm runs in O(m) steps. This implementation is usefulbecause it leads to a heuristic for the maximum leaf spanning tree problem as well [11].Modi�ed Greedy Algorithm: We now modify the scanning rule to prove a good approxi-mation ratio for this class of algorithms (that grow a connected dominating set). We de�ne anew operation of scanning a pair of adjacent vertices u and v. Let u be gray and v be white.Scanning the pair means, �rst making u black (this makes v along with some other nodes, gray)and then coloring v black (makes more nodes gray). The total number of nodes that are coloredgray is called the \yield" of the scan step. At each step, we will either scan a single vertex, ora pair of vertices, whichever gives the higher yield. (In some sense we are doing a \look-ahead"by one extra vertex, and are willing to scan a pair, if this has a higher yield.)It is clear that this algorithm �nds the optimal solution in the example shown in Fig. 1.What is perhaps a little surprising, is that this simple modi�cation lets us prove the followingtheorem.Theorem 2.1 Using the scanning rule described above yields a connected dominating set ofsize at most 2(1 +H(�)) � jOPTDS j.Proof: Let OPTDS be the set of vertices in an optimal dominating set. The sets of verticesof G dominated by vertex i 2 OPTDS is called Si (we assume that i also belongs to Si. If avertex is dominated by more than one vertex, we arbitrarily put it in one of the sets). Theproof will be based on a charging scheme. Each time we scan a vertex, we add a new vertex toour connected dominating set. We will \charge" each new vertex marked (colored gray) in thisstep. Since each vertex in the graph gets marked exactly once, it is charged exactly once (the�rst time it is marked). We will then prove that the total charge on the vertices belonging to aset Si (for any i) is at most 2(1+H(�)). Since there are jOPTDS j sets in the optimal solution,the theorem follows.Assume that when we pick a vertex to scan, we mark x new vertices. We will charge eachsuch newly marked vertex 1x . In some steps we scan two vertices, and charge each newly markedvertex 2x . The main advantage of the \look-ahead" is the following. The instant we mark somenodes in set Si, even if vertex i has not been marked, since it is adjacent to a marked vertex, itbecomes eligible to be scanned as part of a pair. Without the look-ahead, only marked verticeswere candidates to be scanned .We now prove the upper bound on the total charges to vertices belonging to a single setSi. At each step, some vertices may get marked. The number of unmarked vertices is initiallyu0, and �nally drops to 0. Let uj denote the number of unmarked vertices after step j. Forsimplicity, let us assume that at each step some vertices of Si are marked, so the number ofunmarked vertices decreases at each step.The number of marked vertices after the �rst step is u0 � u1. Each vertex gets a charge ofat most 2u0�u1 (the actual charge may be a lot smaller, if only one vertex was scanned at thisstep, or if we marked many other vertices as well). Once some vertex in Si is marked, vertex ibecomes an \eligible" vertex to be scanned as a part of a pair, since it is adjacent to a marked5



vertex. In the jth step, the number of vertices of set Si that get marked is uj � uj+1, and thecharge to each vertex is at most 2uj as vertex i was an eligible vertex to be scanned. Let uk = 0.Adding up all the charges we get2u0 � u1 (u0 � u1) + k�1Xj=1 2uj (uj � uj+1)� 2 + 2 k�1Xj=1 (uj � uj+1)uj :(With some algebraic manipulation (see [5, page 977]), one can show that this is at most2(1 +H(�)). 2Remark: We could modify the algorithm and at each step scan either one or two vertices,whichever results in a smaller charge to each vertex. In practice, this should give better solu-tions.Implementation Issues: A naive implementation appears to give a worst case running timeof O(mn2). In each iteration we choose either one vertex, or a pair of vertices, and color themblack. It is clear that we may have �(n) iterations, since the optimal solution may have �(n)vertices. In each iteration, we wish to identify a pair of nodes with the highest yield. For eachgray vertex u, we scan its adjacency list and consider all its white neighbors. For each whiteneighbor v of u, we wish to determine the number of vertices that would get marked if wescanned the pair (u; v). Since u and v have common white neighbors, we cannot simply addup the number of white neighbors of each vertex to obtain the \yield" of this pair. We need toidentify the number of white neighbors of v that are not adjacent to u (since those will not becolored gray by u). The number of steps in a single iteration can be computed as follows.Let G be the gray nodes in T . LetW be the white vertices that are adjacent to gray vertices.We can upper bound the total work done in a single iteration as follows:S = Xu2G Xv2N(u)^v2W d(v) :In the double summation each vertex in W is counted as many times as the number of its grayneighbors, we obtain the following.S � Xv2W d(v)2 � Xv2W n � d(v) � O(mn) :This yields a bound of O(mn2). We now show that the total number of steps over all iterationsis O(mn) by a more careful analysis.For each vertex we can maintain two adjacency lists, one of its gray neighbors and one ofits white neighbors. We use dW (u) to denote the number of white neighbors of u and dG(u) todenote the number of gray neighbors of u. The work done in a single iteration is as follows:S = Xu2G Xv2W^v2N(u)dW (v)6



= Xv2W dW (v) � dG(v) :(In the double summation, each vertex v is counted as many times as the number of its grayneighbors.) Observe that at this step, we will make a subset of white vertices gray.Lemma 2.2 The number of white vertices that are made gray in this iteration is at least12 maxv2W dW (v) :Proof: We pick the pair of vertices that give the highest \yield"; we certainly consider all suchvertices v, and color their white neighbors gray. We might pick a single vertex with a smalleryield, but only if its yield is at least half the yield of a pair of vertices. 2At this step, we can \charge" the vertices whose color changed from white to gray. Thecharge to each such vertex is at mostPv2W dW (v) � dG(v)12 maxv2W dW (v)� 2 Xv2W dG(v) = 4m :Since each vertex changes color from white to gray exactly once over the entire algorithm,and there are n such vertices the total number of steps is O(mn).The only remaining issue is maintaining the required adjacency lists. This can be done eachtime we change the color of a vertex from white to gray by scanning its adjacency list, andupdating the structures for its neighbors.3 Algorithm IIAn alternate approach to growing one connected tree is to grow separate components thatform a dominating set and to then connect them together. One straightforward approach isto �nd a dominating set using a greedy heuristic, and to use a Steiner tree approximation toconnect it. Since members of the optimum connected dominating set along with the membersof the dominating set we found, form a spanning tree, we can prove a performance guarantee ofc(1 +H(�)), where c is the best approximation ratio for the unweighted Steiner tree problem(currently c = 1:644 [12]).For the special case when the required vertices form a dominating set in a graph and alledges have unit weight, Berman and F�urer [3] have announced a new algorithm with c = 43 .Thus we can improve the performance ratio to 43(1 + H(�)). By applying a simple greedystrategy to connect the vertices in the dominating set, we proved a bound of H(�)+H(H(�))[8]. Here we present a modi�cation of the above algorithm, as suggested by Berman [2], andare able to prove a performance guarantee of ln � + 3. (Berman has an alternate proof for aperformance ratio of H(�) + 2.) 7



The algorithm runs in two phases. At the start of the �rst phase all nodes are coloredwhite. Each time we include a vertex in the dominating set, we color it black. Nodes that aredominated are colored gray (once they are adjacent to a black node). In the �rst phase thealgorithm picks a node at each step and colors it black, coloring all adjacent white nodes gray.A piece is de�ned as a white node or a black connected component. At each step we pick anode to color black that gives the maximum (non-zero) reduction in the number of pieces.We show that at the end of this phase if no vertex gives a non-zero reduction to the numberof pieces, then there are no white nodes left.In the second phase, we have a collection of black connected components that we need toconnect. Recursively connect pairs of black components by choosing a chain of two vertices,until there is one black connected component. Our �nal solution is the set of black verticesthat form the connected component.Lemma 3.1 At the end of the �rst phase there are no white vertices left.Proof: Suppose there is a white node v at the end of the phase. We will show that there isa vertex that strictly reduces the number of pieces. If v has a white neighbor then coloring vblack, reduces the number of white nodes by two, and increases the number of black componentsby one, thus picking v would reduce the number of pieces. Otherwise, v has a gray neighboru. Coloring u black would reduce the number of white nodes, and not increase the number ofblack components since u is adjacent to a black node. Thus picking u reduces the number ofpieces. 2We show that at the end of the �rst phase there is always a pair of black components thatcan be connected by choosing a chain of two vertices. For each such component i, we considerthe shortest path to component j. The path goes through vertices u1; u2; u3; : : : ; uk not incomponents i or j. u1 is dominated by a vertex in component i. Observe that u2 is gray,otherwise picking u1 would give a strict reduction in the number of pieces. Thus u2 is adjacentto a black component ` (` 6= i since we selected the shortest path from i to j). Components iand ` can be connected by choosing a chain of two vertices.Theorem 3.2 The connected dominating set found by the algorithm is of size at most (ln�+3) � jOPT j.Proof: De�ne ai as the number of pieces left after ith iteration, and a0 = n. Since a node canconnect up to � pieces, jOPT j � a0� . Consider i + 1st iteration. The optimal solution canconnect ai pieces. Hence the greedy procedure is guaranteed to pick a node which connects atleast l aijOPT jm pieces. This gives us the recurrence relation,ai+1 � ai � � aijOPT j�+ 1 � ai(1� 1jOPT j) + 1 :Its solution is, ai+1 � a0(1� 1jOPT j)i + i�1Xj=i(1� 1jOPT j)j :8



Notice after jOPT j � ln a0jOPT j iterations, the number of pieces left is less than 2 � jOPT j. Foreach node we choose, we will decrease the number of pieces by at least one. This will continueuntil the number of black components is at most jOPT j, thus at most jOPT j more vertices arepicked.Assume from this point onwards, we stop after choosing af more nodes. The numberof pieces left to connect is at most jOPT j � af . We connect the remaining pieces choosingchains of two vertices in the second phase. The total number of nodes chosen is at mostjOPT j � ln a0jOPT j + jOPT j+ af + 2(jOPT j � af ), and since jOPT j � a0� , the solution found hasat most jOPT j � (ln� + 3) nodes. 2Remark: Berman, [2], has an alternate proof of H(�)+ 2 of the same algorithm. However,since ln � � H(�)� 0:7, the di�erence is very small.4 Generalizations4.1 Vertex Weighted GraphsAn approximation factor of 3 lnn is possible when the vertices have weights. The algorithm�rst �nds a dominating set, and then connects the nodes in the dominating set.Step 1. Use a weighted set cover approximation algorithm to �nd a dominating set DS. (A setcover instance is created by making each vertex an element, and each vertex corresponds to aset that contains the vertex itself, together with its neighbors. The greedy algorithm picks setsbased on the ratio of their weight to the number of new elements they cover.)Step 2. To connect the vertices in DS we use a node-weighted Steiner tree approximationalgorithm due to Klein and Ravi [10] to �nd a Steiner tree that includes all the vertices in DS,after making the weights of all vertices in DS equal to zero. This yields a connected dominatingset CDS.Theorem 4.1 The weight of vertices in CDS is at most 3 lnn � jOPT j where OPT is theminimum weight connected dominating set in G.Proof: The weight of the vertices in DS is at most ln� � jOPT j. We now run the algorithm byKlein and Ravi [10] for the node-weighted Steiner tree case. The approximation factor of thealgorithm is 2 lnk, where k is the number of Steiner vertices. Consider the vertices in OPT ;these together with the vertices in DS induce a connected subgraph. Hence there exists anode weighted Steiner tree of weight OPT . The total weight of the vertices in the connecteddominating set is the weight of DS together with the weights of optional vertices chosen fromG in the Steiner instance. Adding the weight of the two sets gives the required bound. 2Before looking at other generalizations, we �rst consider a problem closely related to ourdiscussion. 9



4.2 Unit Node Weighted Steiner TreesThe best known algorithm for node weighted Steiner trees, has a performance ratio of 2 lnk,where k is the number of required vertices [10]. However, if the nodes have unit weight, thereis a simpler algorithm, which gives a better performance ratio.We have k required vertices in a graph G = (V;E), which we want to connect using theleast number of non-required vertices. We assume that the non-required vertices have weight1, and the required vertices have weight 0.Our algorithm runs in two phases. In the �rst phase, the algorithm greedily picks highdegree stars (a star is a vertex that has at least two required vertices belonging to distinctcomponents as neighbors) and merges them, until very few components are left. In the secondphase, the algorithm runs a Steiner tree approximation algorithm with each edge having unitweight.In a preprocessing phase we merge all adjacent required vertices into their connected com-ponents. We pick � = 2c+1 where c is the best approximation ratio for the unweighted Steinertree problem.Algorithm AStep 1. In each iteration choose a vertex that merges the largest number of required verticesuntil we reach a stage that the number of components left to merge is less than iteration countlnk�� +e�or no merging is possible.Step 2. Apply an (edge weighted) Steiner tree approximation algorithm, with each edge havingunit weight.Theorem 4.2 The above algorithm �nds a solution to the unit node weighted Steiner tree(UNST) problem with an approximation factor of ln k (which is best possible), when the optimalsolution is greater than c � e�.Proof: Assume that the set of components remaining after the �rst phase is A0. We claim thatthere is a Steiner tree with jA0j+ jOPT j edges. Thus when we apply an (edge weighted) Steinertree approximation, we get a tree with at most c � (jA0j+ jOPT j) edges.If the number of iterations in the �rst phase is r, the �nal solution has a cost r+ c � (jA0j+jOPT j). We now proceed to give a bound on r.Let ai components be left after ith iteration. Since jOPT j nodes are capable of mergingthese components, for each i, in the ith iteration, there must be a node that merges l ai�1jOPT jmcomponents. This gives a bound on ai,ai � ai�1 � � ai�1jOPT j�+ 1 � ai�1(1� 1jOPT j) + 1:We can easily verify that ai � a0 � (1 � 1jOPT j)i +Pi�1j=0(1 � 1jOPT j)j . The second term is ageometric series that sums to at most jOPT j. Thus when i = (ln k � �) � jOPT j the �rst term10



is at most e�, and the number of components ai � jOPT j+ e� � ilnk�� + e�. This guaranteesthat the number of iterations, r � (ln k � �) � jOPT j.If we stop because no merging by stars is possible, then the components have disjointneighborhoods, and OPT has to pick at least one vertex from each neighborhood. Thus jA0j �jOPT j. If we stop because the number of components is small, then jA0j � jOPT j + e�. Inany case, jA0j � jOPT j + e� and this yields a solution of cost at most ln k � jOPT j + c � e� +(2c � �)jOPT j. Putting � = 2c + 1 gives at most ln k � jOPT j vertices in our solution (whenjOPT j � c � e2c+1 . 2The optimality of this approximation ratio was established by Berman (see [10]).We can modify the above algorithm, to run until no further merging is possible.Algorithm BStep 1. In each iteration choose a vertex that merges the largest number of required vertices(at least two).Step 2. Apply an (edge weighted) Steiner tree approximation algorithm, with each edge havingunit weight.Theorem 4.3 The above algorithm �nds a solution to the unit node weighted Steiner tree(UNST) problem with an approximation factor of ln� + 2c+ 1 .Proof: As before, let ai denote the number of vertices left after the ith iteration and a0 = n.Then after jOPT j � ln a0jOPT j ; there are at most 2 � jOPT j components to connect. Hence we willcontinue to merge by stars for jOPT j more iterations then the number of components will bede�nitely less than jOPT j.Since each Steiner vertex can be adjacent to at most � required vertices, jOPT j � a0� .If at this stage we use af more iterations before invoking the edge weighted Steiner treealgorithm, there is a tree with jOPT j � af + jOPT j edges. So we �nd a solution of cost atmost c � (jOPT j � af + jOPT j). The �nal solution has at most jOPT j � ln a0jOPT j + jOPT j +af + c � (jOPT j � af + jOPT j) nodes. Since jOPT j � a0� , we get a performance guarantee ofln� + 2c+ 1 for the algorithm. 24.3 Dominating a Subset of VerticesWe now address the connected dominating set problem when we are required to dominate onlya speci�ed subset S of the vertices. The cost of the solution is the size of the smallest connecteddominating set that dominates the vertices in S. (Notice that the objective function is slightlydi�erent from the unit node weighted Steiner tree problem, where required vertices have zerocost. In the Steiner CDS problem, we are charged for all vertices in the �nal solution that arenot leaf nodes in the tree that connects S.) 11



Unweighted GraphsLet jSj = k, and OPT denote the optimal solution. we present two algorithm that solve thisproblem. A straightforward strategy is to �rst �nd a small dominating set A, of the vertices inS, and to then connect these nodes.Algorithm AStep 1. Greedily choose a dominating set of the vertices in S. We can transform this to aset cover problem in which corresponding to each vertex v we have a set that includes all itsneighbors and itself. The greedy algorithm for set cover yields a dominating set A.Step 2. For each element in A choose a representative element in S that is adjacent to it. Callthis set R(A). Run the unit node weighted Steiner tree approximation algorithm to �nd aSteiner tree with required set R(A). The �nal solution is the union of A, R(A), and the Steinertree vertices.Theorem 4.4 The connected dominating set for the subset S of size k, is at most 3 lnk timesthe optimal.Proof: Since we chose the cover greedily, we have that jAj � jOPT j � ln k, since OPT forms adominating set for S.Notice that jAj � k. We cannot claim that there is a Steiner tree of size jOPT j connectingthe set A. But there is a Steiner tree of size jOPT j connecting the elements of set R(A), sincethe connected dominating set also forms a Steiner tree on the members of S, and R(A) � S.Notice that jR(A)j � jAj � k. Apply Theorem 4.2, and obtain a Steiner tree of R(A), of size atmost jOPT j�ln jR(A)j. So the �nal solution is of cost less than jAj+jR(A)j+jOPT j�ln jR(A)j �3 ln k � jOPT j. 2Algorithm BStep 1. We modify the greedy set cover algorithm on the set S, to run until no vertex coversmore than one uncovered vertex of S. We call the set of vertices chosen as B.Step 2. We now choose the uncovered vertices of S , calling this set B0.Step 3. For each member of B, choose a representative element of S that it dominates.Let this set be R(B). We apply an (edge weighted) Steiner tree approximation, with the set ofrequired nodes as R(B) [B0. The �nal solution is the nodes of this tree and the nodes of B.Theorem 4.5 The connected dominating set for the subset S, is at most (c+ 1)H(�) + c� 1times the optimal (where c is the Steiner ratio). We de�ne � as the size of the largest subset ofS, adjacent to a node in the graph (� � min(�; k)).Proof: By a slight modi�cation to the proof given in [5, page 977] we can prove, jBj � (H(�)�1) � jOPT j. (Since the �rst step reduces to �nding a set cover with the size of the largest setbeing �). Since OPT cannot dominate any two vertices of B0 by one vertex, jB0j � jOPT j.Notice B [B0 dominates the set S. 12



Consider the set R(B); there is a Steiner tree with jR(B)j+jB0j+jOPT j edges that connectsthe nodes of R(B) [B0.Apply an (edge weighted) Steiner tree approximation, with all edges having unit weight, and�nd a tree of size c � (jR(B)j+ jB0j+ jOPT j), where c is the Steiner ratio [12]. Since this tree isedge weighted, it has essentially the same number of nodes, including those of R(B)[B0. Sincewe have to add the vertices ofB as well, we get an upper bound of c�(jR(B)j+jB0j+jOPT j)+jBj.Notice that jR(B)j � jBj � (H(�)� 1) � jOPT j, and jB0j � jOPT j. This gives us a solution ofcost at most ((c+ 1) �H(�) + c� 1) � jOPT j. 2This de�nitely is a better algorithm in terms of the worst case approximation guarantee.However the �rst algorithms is simpler and faster. Most of the approximation algorithms thatreduce the Steiner ratio below 2, have a high running time [4, 12].5 Lower Bounds5.1 Hardness result for Connected Dominating SetWe can prove that the set-cover problem can be reduced to the connected dominating setproblem by an approximation preserving reduction, thus showing that the approximation factorH(�) will be hard to improve. This is based on the hardness results for set cover proven byLund and Yannakakis [13] and Feige [6].Given a set cover instance we reduce it to a connected dominating set problem as follows:Let the set cover instance be to cover the set U , with minimum number of sets from thecollection S = fS1; S2; : : : ; Smg.Construct a graph G, that has vertex set U Sfu; v; v1; v2; : : : ; vmg. An element e 2 U , andvi has an edge joining them i� e 2 Si. Each vi has an edge to v. u has an edge only to v. (seeFig. 2) uv vmv1e1 e3e2 enFigure 2: Reduction of set cover to connected dominating sets.Let us look at a minimum connected dominating set of G. Vertex v belongs to any con-nected dominating set, and hence u does not belong to any minimal connected dominating set.13



No vertex ej is chosen in a minimal connected dominating set, since any node that it mightpotentially dominate, is already dominated by v, which also provides the connectivity. Hencewe will only have v and some vi's. These vi's will correspond to the minimum cover for thegiven instance of set cover.The size of the connected dominating set is one more than the minimum set cover. Thus ap-proximating the connected dominating set with a factor of (1��)H(�) would mean approximat-ing minimum set cover within the same factor. This would imply thatNP � DTIME[nO(loglogn)][6].5.2 Hardness results for GeneralizationsWe show two simple reductions, that demonstrate that other generalizations of the CDS prob-lem may be as hard to approximate as the \set TSP" problem for which no approximationalgorithms are known. (For the Euclidean case, Mata and Mitchell [14] have given approxima-tion algorithms for this problem.)
cjVjFigure 3: Reduction of set TSP problem to edge weighted CDSTheorem 5.1 A polynomial approximation algorithm for the edge weighted connected domi-nating set problem with factor f(n) would imply a polynomial approximation algorithm for theset TSP problem with factor 2f(n).Proof: We show how to reduce the set TSP problem to the edge weighted connected dominatingset problem. Consider a set TSP instance G = (V;E) where V = (V1 [ V2 [ : : :[ Vk). For eachsubset Vj , introduce a special vertex cj , and add edges from cj to all v 2 Vj , with very highcost edges. For u; v 2 Vj , if (u; v) 62 E, add the edge (u; v) with very high cost. Call this newgraph G0. 14



Any set TSP tour in G chooses at least one vertex of Vj to visit. Thus all nodes of Vj [fcjgwill be dominated by the corresponding node in the tour. Since every node of G occurs in someVj , this yields a dominating set. Since these are nodes on a tour, they also form a connectedset. Hence OPTCDS � OPTTOUR.If we have a connected dominating set of G0, then it must have a vertex of Vj to dominatecj . Hence the dominating set must have at least one vertex from each set Vj . If the cost of thisconnected dominating set is small (� f(n)OPTCDS), since we are not using the high cost edgesin G0, we are using only the edges of the graph G. By traversing this tree twice, we can producea tour in G, with cost at most 2f(n)OPTCDS � 2f(n)OPTTOUR. Thus, if we can approximatethe connected dominating set with edge weights to a factor f(n), we can approximate set TSPwithin a factor 2f(n). 2Theorem 5.2 A polynomial approximation algorithm for the node weighted Steiner connecteddominating set problem with factor f(n) would imply a polynomial approximation algorithm forthe set TSP problem with factor 2f(n).Proof: The proof is similar to the proof of the previous theorem. Given a set TSP instanceG = (V;E) where V = (V1 [ V2 [ : : : [ Vk) we construct a graph G0. First convert the edgeweights of the set TSP problem into node weights. For every edge e = (vp; vq) 2 E, create anextra node vpq of the same cost, connected to vp and vq. All other nodes are given 0 cost. Forevery subset Vj , introduce a special vertex cj (of very high cost), and connect it to all v 2 Vj.We show that the problem reduces to �nding a node weighted connected dominating set of thesubset U = fcj jj = 1 : : :kg of nodes of G0.Any set TSP tour in G chooses at least one vertex of Vj to visit. Thus each cj will bedominated. The weight of the edges e = (vp; vq) translates to the weight of the correspondingvertices vpq. Since the nodes form a tour, they also form a connected set in G0, together withthe new nodes that subdivide edges. Thus OPTCDS � OPTTOUR.Consider a connected dominating set that dominates U . To dominate cj , it must pick avertex from Vj . (W.l.o.g, the connected dominating set does not contain cj .) If the cost ofthis connected dominating set is small (� f(n)OPTCDS), (since we are not using the high costnodes in G0), we are using only the nodes of the graph G along with nodes that correspondto the subdivided edges. Thus the dominating set chooses vertices that are also in G, and thecorresponding vertices for each edge of G that it includes. This yields a tree that connectsat least one element from each Vj using edges of G. By traversing this tree twice, we canproduce a tour in G, of cost at most 2f(n)OPTCDS � 2f(n)OPTTOUR. Thus, if we able toapproximate the connected dominating set of a subset with node weights to a factor f(n), wecan approximate set TSP within a factor 2f(n). 2Acknowledgements: We thank Ray Miller and Azriel Rosenfeld for �rst mentioning thetraveling tourists problem. We thank Vaduvur Bharghavan for re-igniting our interest in theconnected dominating sets problem. We would like to thank Estie Arkin, and Randeep Bhatiafor useful discussions. We thank Balaji Raghavachari and Serge Plotkin for raising the questionsabout the vertex weighted case, and the Steiner case respectively. We thank Piotr Berman forallowing us to include his improvement to Algorithm II.15
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