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Numerical Evidence for bce Ordering at the Surface of a Critical fee Nucleus
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We report a computer-simulation study of the crystal nucleation barrier and the structure of crystal
nuclei in a Lennard-Jones system at moderate supercooling. The stable structure of the Lennard-Jones
solid is known to be face-centered cubic. We find that the precritical nuclei are predominantly body-
centered cubic ordered. But, as the nucleus grows to its critical size, the core becomes fcc ordered.
Surprisingly, however, the interface of the critical nucleus retains a high degree of bce-like ordering.
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In 1897 Ostwald [1] formulated his “step” rule, stating
that the crystal phase that is nucleated from the melt need
not be the one that is thermodynamically most stable,
but the one that is closest in free energy to the fluid
phase. Stranksi and Totomanow [2] reexamined this rule
and argued that the phase that will form is the one that
has the lowest free-energy barrier of formation, rather
than the phase that is globally stable under the conditions
prevailing. More recently, Alexander and McTague [3]
have argued, on the basis of Landau theory, that at least
for small supercooling, nucleation of the body-centered-
cubic (bcc) phase should uniquely be favored in all simple
fluids exhibiting a weak first order phase transition. Also
a theoretical study by Klein and Leyvraz [4] suggests
that a metastable bcc phase can easily be formed from
the undercooled liquid. Experimentally, nucleation of a
metastable bcc phase has been observed in rapidly cooled
metal melts [5].

However, when attempts were made to investigate the
formation of metastable bcc nuclei on a microscopic
scale, using computer simulation [6—12], the picture that
emerged gave little support for the Alexander-McTague
scenario. For the Lennard-Jones system, which is known
to have a stable face-centered-cubic (fcc) structure up
to the melting curve, the formation of a metastable
bce phase was observed in only one of the simulation
studies reported [6], while all other studies [7—12] found
evidence for the formation of fcc nuclei. Of particular
interest is the simulation of Swope and Andersen [12] on
a system comprising one million Lennard-Jones particles.
This study showed that, although both fcc and bee nuclei
are formed in the early stages of the nucleation, only
the fcc nuclei grow into larger crystallites. It should
be noted however, that in all these simulation studies,
very large degrees of supercooling (down to 50% of the
melting temperature, or lower) had to be imposed to see
any crystal formation on the time scale of the simulation.
For such a large undercooling one should expect the free-
energy barrier for nucleation into essentially all possible
crystal phases to be quite small. It is therefore not obvious
that crystal nucleation at large undercooling will proceed
in the same way as close to the freezing point.
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In the present study, homogeneous nucleation in a
Lennard-Jones system closer to the freezing point is in-
vestigated. Rather than using a “brute-force” approach
where we wait for nuclei to form spontaneously, we use
the scheme developed by one of us [13] to study the free-
energy barrier to crystal nucleation. The advantage of this
technique is that it can be used even at small (i.e., realistic)
undercooling where the straightforward molecular dynam-
ics technique will not work, because the nucleation barrier
diverges at coexistence. Moreover, the sampling technique
that we employ [13,14] allows us to stabilize the critical
nucleus and study its structure in detail.

In order to measure the free-energy barrier that sepa-
rates the supercooled liquid from the solid, we must first
define an order parameter which acts as a “reaction co-
ordinate,” in the sense that it has a small value in the
liquid state and a large value when the system has crystal-
lized. Moreover, as we do not know a priori which crys-
tal structure will form, we must use an order parameter
that is sensitive only to the overall degree of crystallinity
in the system but not to the differences between the pos-
sible crystal structures. van Duijneveldt and Frenkel [13]
have shown that the bond orientational order parameter
Qs (see below), first introduced by Steinhardt, Nelson,
and Ronchetti [15], satisfies these requirements and can
be conveniently implemented in numerical simulations.

The Gibbs free energy of the system, G, is a function
of this order parameter [16]:

G(Q6) = const — kT In[P(Q¢)], (1)

where P(Qg) is the probability per unit interval to find the
order parameter around a given value of Qg. Both Monte
Carlo (MC) and molecular dynamics (MD) simulations
have been performed to measure P(Qg). In order to get a
reliable estimate of P(Qg) even near the top of the barrier,
we used the umbrella sampling technique of Torrie and
Valleau [14], in which the sampling of configuration
space is biased in such a way that good statistics can be
obtained for all values of Qs.

All simulations were carried out at constant temperature
and pressure. In the MD simulations this was done using
the extended system method of Nosé and Andersen [17].
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The MC program was based on the scheme used by van
Duijneveldt and Frenkel [13]. In what follows we use
reduced units, such that the Lennard-Jones well depth € is
the unit of energy, while the Lennard-Jones diameter o is
the unit of length. In order to minimize artifacts due to the
finite system size, we simulated a fairly large system, i.e.,
of 10648 particles. Simulations were performed in the
direction of both increasing and decreasing crystallinity.
All results reported below are based on simulations that
were free of hysteresis. It should be stressed, however,
that, near the top of the barrier, very long simulations
were required to equilibrate the system.

In our simulations, we studied the nucleation bar-
rier under conditions of moderate (20%) supercooling,
at two different pressures: P = 0.67 (T = 0.6) and
P =568 (T = 0.92). We find that initially, as Qg is
increased from the liquid, the number of small solid
clusters in the liquid increases. The reason why there
are, initially, several small solid clusters is that it is
entropically favorable for the system to distribute a given
amount of crystallinity over several clusters. However,
as the top of the barrier is approached, the energetic
factors dominate and several of these small solid clusters
combine into a large one. This cluster corresponds to the
critical nucleus. When Qg is increased even further this
critical nucleus grows. Figure 1 shows the Gibbs free
energy of the system relative to the liquid phase, as a
function of crystallinity (Qg). The value of the Gibbs free
energy of the system at the top of the barrier corresponds
to the nucleation barrier. To our knowledge this is the
first numerical determination of such a nucleation barrier.
We have compared the measured nucleation barrier
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FIG. 1. The Gibbs free energy of a Lennard-Jones system
as a function of crystallinity (Qg¢) at 20% undercooling for
two different pressures, i.e., P = 5.68 (T = 0.92) and P =
0.67 (T = 0.6). The Gibbs free-energy barriers are approxi-
mately 25.1k3T at P = 5.68 and 19.4kgT at P = 0.67.

with the corresponding prediction of classical nucleation
theory (CNT).

To make such a comparison, we need to know the solid-
liquid surface free energy . In fact, vy, is not known
for Lennard-Jones crystals in contact with a supercooled
liquid. However, Broughton and Gilmer have calculated
the interfacial free energy for the Lennard-Jones fcc-
liquid interface at coexistence, near the triple point
(i.e., at low pressure) [18]. If we assume that we
can use the Broughton-Gilmer values for y,; under the
conditions of our simulations, CNT yields the following
predictions for the nucleation barriers: G/kgT = 17.4
at P = 0.67 and G/kgT = 82 at P = 5.68. We find
from our simulations that G/kzT = 19.4 for the lower
pressure (see Fig. 1), which is in good agreement with
the theoretical prediction. The discrepancy between CNT
and simulation for P = 5.68 is most likely mainly due
to the fact that y,, at this temperature and pressure is, in
fact, somewhat larger (=40%) than the Broughton-Gilmer
estimate. A direct test of the CNT prediction for the
size of the critical nucleus is more subtle as it depends
sensitively on the criterion used to identify “solidlike”
particles. Different measures of the size of the critical
nucleus are compared in a forthcoming publication [19].

Next, we consider the structure of the crystal nuclei.
In order to analyze the structure of a crystalline cluster,
we must first determine which particles are solidlike. In
previous simulation studies of homogeneous nucleation
many different criteria have been used [6,8,12,20,21] to
identify solidlike particles. A problem with most of these
techniques is that they require an a priori assumption
about the structure of the solid. As we wish to postpone
identification of the solid structure to as late a stage
as possible, we have devised a novel method that is
insensitive to the type of crystalline ordering in the
cluster. Details of this scheme will be discussed in
Ref. [19]. Here we briefly sketch the essentials. We
characterize the local structure around particle i by a set

of numbers
Ny (i)

1 .

I = 5 ,; Yim(£is) )
where Y/m(f’i j) are spherical harmonics, f;; is a unit
vector in the direction of the bond between particle i
and its neighbor j, and the sum runs over all N,(i)
neighbors. A global bond order parameter, such as Qg,
is obtained by computing Q,,,, the average of g, (i) over
all particles, and then constructing a rotational invariant
0, outof the 0y, : Q1 = (5157 Youe 1 [O4ml?)/2. From
the g,,,(i) we can, in the same way, construct an invariant
q,(i) which measures the local bond order around particle
i. However, such a local invariant is not very useful to
identify solidlike particles, because it is large not only
in the solid, but also in the liquid where the local order
remains high. The reason why, nevertheless, a global
order parameter such as Qg vanishes in the liquid is that
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all the g, (i) add up incoherently in the liquid. It is
precisely the coherence of local bond order in a solid
that we use to identify solidlike particles. To this end,
we construct a normalized complex factor g;(i), with
components §j, (i) proportional to the g, (i) defined in
Eq. (2). We can now define-a dot product of the vectors
q of neighboring particles i and j:
I

@@ - g =2 amDamj). 3)
m=—1

Clearly, g;(i) - g;(i) = 1. We consider two neighboring
particles i and j to be ‘“connected” if the dot product
gs(i) - Ge(j) exceeds a certain threshold (in our case,
0.5). As it can happen by chance that in the liquid the
vectors gg(i) of neighboring particles are in phase with
each other, we add an extra criterion: a particle will be
identified as solidlike only if the number of “connections”
with its neighboring particles exceeds a given minimum
(we obtained robust results with a lower limit of seven
connected neighbors).

After we have identified the solidlike clusters, we wish
to characterize the local crystal structure of the clusters.
To this end, we again make use of the local bond-order
parameters defined above. In a perfect crystal, the local
bond order is the same for all particles. However, in a
crystal at finite temperature, we will find a distribution
of local order parameter values. The nature of this
distribution varies from one crystal structure to another.
We have identified the local crystalline symmetry of a
solid cluster as follows. We interpret the histogram of the
local order parameter distribution as a vector ¥cjys (with
as many components as there are bins in the histogram).
This vector, we then decompose into the characteristic
vectors of the thermally equilibrated liquid, bcc, and fec
structures, which are denoted by ¥iiq, Ubee, and Vg,
respectively. In practice, we achieve this by minimizing
the “distance” A:

A% = [l_;clus - (fliql—;liq + fbcci;bcc + ffcc’jfcc)]z' @

Siig> foce, and frc are a measure for the type of order
present in the cluster. The value of A is an indication of
the quality of the fit. For instance, if we were to apply our
analysis to a thermally equilibrated fcc crystal, we would
find fre = 1 and A = 0.

We have used the above analysis to study the structure
of the nuclei that form in the supercooled Lennard-Jones
fluid. Here we present only the results for the system
at P = 5.68. The results for P = 0.67 are qualitatively
similar [19]. Figure 2 shows fliq, fbcc, and fre for the
largest cluster in our system as the system moves up the
nucleation barrier. We note that the precritical nuclei are
predominantly bcc-like with an appreciable “liquidlike”
character (in the equilibrated liquid we also found small
(13 particles) icosahedral clusters, but these did not grow
[19]). However, near the top of the barrier there is a clear
change in the nature of the solid nuclei from bcc-like to
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FIG. 2. Structural composition of the largest cluster, indicated
by fiig> foees Sfrec» and A%, as a function of Q¢ at 20%
undercooling (P = 5.68,7 = 0.92). This figure is based on
averages over 50 independent atomic configurations.

fcc-like. The fact that the precritical nuclei are rather
liquidlike is not very surprising as they are very small
and almost all interface. What is more interesting is that
these nuclei are clearly more bcc ordered than fcc ordered.
This suggests that, at least for small crystallites, we find
the behavior predicted by the Alexander-McTague theory
[3]. Yet, as the larger clusters are increasingly fcc-like,
the present results are also compatible with the findings of
Swope and Andersen [12], who observed that nucleation
proceeded through fcc crystallites.

Still, we note that the critical and postcritical nuclei are
not fully fcc ordered. They have both appreciable liquid-
like and bcce-like character. In fact, it is not surprising
to find some liquidlike behavior as the nuclei still have
a relatively large crystal-liquid interface. In contrast, the
bee-like character is more intriguing. We have therefore
analyzed the local order of the critical nucleus. This is
facilitated by the fact that we find our critical (and post-
critical) nuclei to be quite spherical [22] (in striking con-
trast to the ramified structures sometimes observed at large
undercooling [20,21]). Given the spherical shape of the
critical and postcritical nuclei, it is meaningful to calculate
Slig» foce, and free in a spherical shell of radius r around
the center of mass of the cluster. Figure 3 shows the ra-
dial profile of the local order of the critical nucleus. As
expected, we find that the core of the nucleus is predom-
inantly fcc-like and that fjq and ff.. smoothly go to one
and zero, respectively, in the liquid. In fact, we find that
the crystal-liquid interface is rather broad, approximately
40, which is in agreement with nonclassical theories of
homogeneous nucleation [23,24]. However, what is very
surprising is that fp.., before decaying to zero in the liq-
uid, increases at the interface and becomes even larger than
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FIG. 3. Structure of the critical nucleus, indicated by fiig,

Sfoeer» fice» and A2, as a function of r, the distance to its
center of mass, at 20% undercooling (P = 5.68,T = 0.92).
This figure is based on averages over 50 independent atomic
configurations.

ffce- The surface enhancement of the bcc signature is ab-
sent when we bring a fcc crystallite in contact with a liquid
and do not allow the surface structure to relax. Hence, the
present simulations suggest that the fcc-like core of the
equilibrated nuclei is “wetted” by a shell which has more
bee character. This also explains the overall bce character
of the precritical nuclei: the structure of these small clus-
ters is almost completely surface dominated.

In summary, our simulations indicate that homogeneous
crystal nucleation in a Lennard-Jones system close to co-
existence proceeds via nuclei that are initially predomi-
nantly bce ordered. When these nuclei grow, their cores
become more fcc ordered. However, in the interface a
high degree of bcc ordering is retained, even in the limit
of large crystals. This finding may explain why earlier
simulations on small systems [6] found evidence for bcc-
like crystal nuclei, while simulations on larger systems
all found that crystallization proceeded through fcc nuclei
[8—12].

Experimental observation of the surface structure of
critical nuclei seems difficult for atomic or simple molec-
ular liquids. However, in the case of crystallization in col-
loidal liquids, it should in principle be possible to image
pre- and postcritical crystal nuclei, using confocal scan-
ning laser microscopy.
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