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We discuss a numerical scheme to study homogeneous crystal nucleation.
Using this approach, it is possible to compute the height of the free energy
barrier that separates the solid from the liquid phase and the rate at which
this barrier is crossed. We point out that there is a fundamental difference
between the use of a global- and a local-order parameter to measure the
degree of crystallinity. Using a global-order parameter, precritical nuclei
may break up spontaneously for entropic reasons. Near the top of the
barrier the nuclei combine to form a relatively large cluster. The transition
from many small clusters to one large cluster is discussed in some detail,
Finally we present a new method that allows us to aveid this entropic
cluster break up.

1 Introduction

Homogeneous crystallization is an activated process. Small crystallites in the melt have
to reach a critical size in order to grow into a crystal. The probability of forming a
critical nucleus due to spontaneous fluctuations is determined by the excess energy of
this nucleus.’? In experiments, the height of this barrier is typically of the order of 75
ksT.! This implies that, at any given instant, the density of critical nuclei is of the order
of 1 per 10'® ¢cm®. More importantly, these nuclei are very short lived. Hence, it is
extremely difficult to study the critical nuclei experimentally. However, it is the structure
and the dynamics of these critical nuclei which play a crucial role in the nucleation
process,1~12

The rate of crystal nucleation depends exponentially on the degree of supercooling.
For this reason, a direct molecular dynamics simulation of crystal nucleation will fail at
small supercooling. Under such circumstances, it is better to use a hybrid approach in
which the computation of the energy barrier and the crossing rate are separated. To this
end, one needs to define a ‘reaction coordinate’® which connects the fluid with the solid
phase. Here, we follow the ideas of Van Duijneveldt and Frenkel® and use the orienta-
tional order parameter Q, , as introduced by Steinhardt er al.'? to act as the reaction
coordinate. This order parameter is sensitive to the degree of global orientational order
in the system. In the liquid there is only local orientational order, whereas the solid
presents global orientational order. Hence, this order parameter is sensitive to the
overall degree of crystallinity in the system. However, it is less sensitive to the difference
between the possible crystalline structures. This is useful, because it implies that no
particular reaction path to one of the crystalline structures that could be formed is
favoured.
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We can define a (Landau) Gibbs free energy as a function of this order parameter.'*
G{®) = constant — kgT In[ P(P]] (1)

where P(@) is the probability per unit interval of finding the order parameter around a
given value of @. As P(¢) is an equilibrium property of the system, it can be obtained
both by Monte Carlo (MC) and molecular dynamics (MD) simulations. In order to
obtain good statistics on P(®) even ncar the top of the barrier, we have applied the
umbrella sampling scheme of Torrie and Valleau.'® The main idea of this scheme is to
bias the sampling of configuration space and correct for the bias afterwards. We can bias
the sampling of configuration space by adding a fictitious potential to the potential of
our model system. Configuration space is then sampled according to exp(f{Uqg™)
+ W[D(g™)]}), where Ugy(g") is the potential energy of the unbiased system and
W[®d(g™)] is the biasing potential. In principle, one could use a single biasing potential
to sample the entire barrier at once. However, it is usual to break up the sampling into
several ‘windows’, each with its own biasing potential. We have taken our biasing
potentials to be a harmonic function of the order parameter:

WIdg")] = S ko[ P(g") — Po]* (2)

Note that the width and *location’ of the sampling depend on kg and @,. By changing
the centre value of the harmonic poteatial, #,, we can move the system from a liquid-
like to a solid-like state.

In order to calculate the nucleation rate, we make use of the fact that the rate of
crystallization can be considered as the product of two factors: (1) the probability. of
finding the system at the top of the barrier and (2) the rate with which this transition
state is crossed, Denoling the transition state separating the liquid from the solid phase
by ®*, we consider states for which @ < * as liquid and configurations for which
@ > @* as solid. We can now apply linear response theory,'® to find the transition rate
from the liquid to the solid state to be given by 191

(AP — P*)) (PP — PMO[H(1) — *T)
(B(P* — @)) KD — *))

k1) = = Po(P*)R(1), (3)
where # is the Heaviside function.

Noting that if ®{®* the system is in the liquid state, it is clear that Py(@*) is the
probability of finding the system at the top of the barrier divided by the probability of
finding it in the lquid state. It is an equilibrium property which can be measured both
by MC and MD. The second contribution to the rate is R(f), which is the average flux
over the barrier. It is a dynamical quantity and can only be measured by MD.

From the expression in eqn. (3), we can obtain the transition-state theory approx-
imation for the rate constant by taking the limit of t > 07 :

. (PSP — PN

kst ,Egﬂ k(1) = B(@* — D) @
‘In transition-state theory it is assumed that all trajectories that initially are heading
towards the solid, that is #{0) > 0, will indeed end up in the solid, and similarly, all
trajectories that initially are heading towards the liquid will end up in the liquid state.
This assumption is only correct if no trajectories recross the top of the barrier. The
reduction of k(f) by recrossing is usually indicated by the transmission x, which is
defined as:
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To compute the crossing rate R(r), we make use of the so-called ‘blue-moon ensem-
ble”.'*2? Constrained MD simulations are performed to generate a set of uncorrelated
configurations of the system at the top of the barrier. These configurations are then used
as initial states to calculate the time correlation function in R(z).

2 Structure analysis

The overall crystallinity of the system can be quantified using global bond-order param-
eters.!? However, it is often useful to be able to identify individual particles as solid-like
or liquid-like. To this end we have developed a technique which is rather insensitive to
the nature of the crystalline structure.
The analysis starts with the local orientational order parameters il D) defined as
1 Wt
Qi) = —= Y Y. (F; 6
q}m() Nb(l) j;l lm( J) ( )
where Y,,(#;) are spherical harmonics, #;; is a unit vector in the direction of the bond
between particle i and its neighbour j and the sum runs over all N{i) ncighbours. A
global order parameter, such as Q, is obtained by computing 0., , the average of §,,.(i)
over all particles, and then constructing rotational invariants @, from the O - In the
same way we can also construct local invariants:

4 1 172
ai) = (51%1 Y énm(f)lz) NG
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with wy(i) given by
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These local-order parameters are sensitive to the local order around particle i. However,
the local order is large, not only in the solid, but also in the liquid. Hence, both in the
liquid and in the solid the local-order parameters ¢.(f) are non-zero, see Fig. 1. The
reason that, nevertheless, a global-order parameter, such as Qs ., vanishes in the liquid, is
that all g (i) add up incoherently, In the solid, the dem() add up coherently and, as a
consequence, the global-order parameters are non-zero, It is precisely this phenomenon
that we exploit to identify solid-like particles.

To every particle i we attribute a normalized (2 x 6 + 1)-dimensional complex vector
§¢(1), with components

72 (10)

Bould = 7——22oL)
(2 tawor)

m=—

We can now define a dot product of the vectors g, of neighbouring particles i and j:
6
g6(l) - g6(j) = Z 6é6m(i)qﬁm(j)* (11)
e
By construction, g4(f) * g4(i) = 1.,

We now consider particles i and j to be ‘connected’ if g6(i) - q6(j) exceeds a certain
threshold, in our case 0.5. It is clear that, in the solid, almost all g¢(i) are in-phase with
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Fig. 1 Probability distribution functions of the local-order parameters, as defined in eqn. (7) and

(8), in a Lennard-Jones system for a thermally equilibrated liquid, bec and fec structure at 20%

supercooling (P = 5.68, T = 0.92). The distribution functions are based on averages over 50 inde-
pendent atomic configurations.

one another and add up coherently to produce a non-zero Qg . Using this criterion all
particles in the solid will turn out to be connected with one another. However, we have
to add another criterion. The reason is that, even in the liquid, it will frequently happen
that the bond-order of a neighbouring particle is fairly coherent and thus the particles
are considered to be ‘comnected’, see Fig. 2. We, therefore, only identify a particle as
solid-like if the number of connections with its neighbouring particies exceeds a thresh-
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Fig. 2 Distributions of g4(i)-¢4(j) of all neighbouring particles i and j for a thermally equilibrated
Lennard-Jones liquid, bee and foc phase, at coexistence (P = 5.68, T = 1.15). Based on averages
over 50 independent atomic configurations.
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Fig. 3 Distributions of the number of connections per particle in a Lennard-Jones system for a
thermally equilibrated liquid, bec and fec structure at coexistence (P = 5.68, T = 1.15). The dis-
tributions are based on averages over 50 independent atomic configurations.

old value. To illustrate this technique, Fig. 3 shows the histograms of the number of
connections per particle for the liquid, the bec structure and the foe structure of the
Lennard-Jones system, all equilibrated at the fee-liquid coexistence point. As is to be
expected, the average number of connections per particle is less in the liquid than in
either solid. More importantly, the histogram for the liquid phase exhibits very little
overlap with the histograms of the two solid phases. We find that, with a threshold value
of seven connections per particle, more than 99% of the particles in an fcc structure are
identified as being solid-like. Even for the bee structure, which is rather open and disor-
dered, this method identifies more than 97% of the particles as solid-like. In contrast, for
the liguid, less than 1% of the particles were identified as being solid-like. Thus, this
analysis method gives an unambiguous, local criterion to identify solid-like particles.
Once we have identified the individual solid-like particles, we can perform standard
cluster analysis to recognize crystallites. We apply the criterion that any two solid-like
particles that are neighbours belong to the same solid cluster.

21 Identification of the crystalline structure

Having identified the clusters, we now wish to characterize their crystalline structure. To
this end, we again make use of the local orientational order parameters. In a perfect
crystal, the local bond order is the same for every particle. However, in a crystal that is
equilibrated at a finite temperature, the local structure varies from one particle to
another. Hence, a crystal structure equilibrated at a finite temperature will be character-
ized by a distribution of values of the local-order parameters, rather than by a single
one. In fact, each phase has its own unique distribution. To illustrate this, we have
shown in Fig. 1 the distribution functions of the local order parameters for the liquid,
bee and fee structure, It is clear that, although the distributions are broad, there is still
considerable difference between the distributions that correspond to the different phases.
We therefore used these distributions as a ‘fingerprint’ to identify the crystal structure of
the clusters.

To make the identification of a solid cluster quantitative, we have adopted the fol-
lowing procedure. We first determine the distribution functions of the local-order
parameters in the cluster and, as reference, for the thermally equilibrated liquid, bce and
fee structure (the local bond-order parameters, as well as the Voronoi analysis, indicated
that these were the most common structures). We concatenate the distribution functions
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of (i), 4(i) and Wwg(i) [W,(i) shows the same distribution for the liquid and bee phase] to
form a single, unique distribution function. For each structure we then associate a vector
# with the histogram of this distribution function, where the components of this vector
correspond to the bins of the histogram. We can now decompose the vector of the
cluster into the characteristic vectors of the thermally equilibrated liquid, bee and foe
structure by minimizing

Az = [ﬁcl - (.fiiq 6liq +fbcc iIJcc: +ffcc ﬁt't:t:)]z (12)

where ¥, 5, Ppec and ¥y arc the vectors associated with the histograms of the cluster,
the liquid, the bee structure and the fee structure, respectively. Clearly, the coefficients
Siiq» foee and fi. are indicative of the type of crystal structure of the cluster. The value of
4% is an indication of the quality of the fit. For instance, if we were to apply our analysis
to an equilibrated fcc crystal, we would find fr.. = 1, fyee = 0, fig =0and 4 = 0.

3 Computational details

All simulations were performed in the NPT ensemble. We carried out both MC and
MD simulations. In order to keep the temperature and pressure constant in the MD
simulations we employed the extended system method of Nosé and Andersen.?! The
Monte Carlo program was based on the scheme of Van Duijneveldt and Frenkel.® The
cut-off radius for the intermolecular interactions was chosen to be 2.5. For the calcu-
lations of the bond-order parameters, the cut-off distance for nearest-neighbour bonds
was 1.5, corresponding to the first minimum of g{r) in an fcc crystal at coexistence. In
order to have ncarly spherical simulation box shape, we used truncated octahedral
boundary conditions.?2

The simulations were performed in the direction of both increasing crystallinity and
decreasing crystallinity. No hysteresis was observed, although at the top of the barrier
very long simulations were required to equilibrate the system. A typical simulation in a
given Qs-window consisted of an equilibration period of 10000-50 000 cycles/timesteps,
followed by a production run of 25000-75 000 cycles/timesteps. The individual probabil-
ity distribution functions of @, in the different windows were fitted to a polynomial.? In
order to determine the flux over the barrier, constrained MD was used to generate a set
of 50 uncorrelated configurations at the top of the barrier. At the beginning of the
unconstrained MD runs to compute R(z), all particles were given a velocity drawn from
a Maxwell-Boltzmann distribution and the duration of these runs was 5z, long enough
for the system to reach a stationary state.

4 Results

We studied the formation of a critical nucleus and the rate of nucleation for a Lennard-
Jones system at 20% supercooling with respect to the melting temperature. A rough
estimate, based on classical nucleation theory, suggests that the size of the critical
nucleus is ca. 100 particles for this degree of supercooling. However, several studies
indicate that, although the core might be quite small, the interface between the liquid
and the solid is rather diffuse,>>~% implying that the number of solid-like particles may
be much larger. In order to avoid system-size artifacts, we therefore studied a rather
large system of 10 648 particles.

The simulations were performed at two different reduced pressures, P = 0.67 and
P = 5.68, and the data of Hansen and Verlet®” were used to estimate the location of the
melting curve. Below we discuss both the height of the energy barrier and the rate of
nucleation. For both quantities we make a comparison with classical nucleation theory.
Finally, we discuss the structure of the crystal nuclei.
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4.1 Free energy barriers

Fig. 4 shows the free energy barriers computed for the two different pressures. Let us
first describe qualitatively what happens as the top of the barrier is approached. Ini-
tially, in the liquid some small solid-like clusters are already present. When Q@ is
increased from the liquid both the number and size of the clusters increase. The reason
why there are initially several small clusters instead of one, is that it is entropically
favourable for the system to distribute a given amount of crystallinity over several small
clusters instead of over one relatively large cluster. We discuss this in more detail below.
However, as the top of the barrier is approached, the energetic factors dominate and
several of the small clusters combine and form a relatively large cluster. Thus, at the top
of the barrier, one large cluster, the critical nucleus, is present besides some very small
ones that were already present in the supercooled liguid. This implies that the Gibbs free
energy at the top of the barrier corresponds to the nucleation barrier. We can now make
a comparison with classical nucleation theory.
In classical nucleation theory the height of the barrier is given by !

16my’0*
3Au’

where 7 is the surface energy per unit area of the liquid/crystal interface, v is the volume
per particle in the solid and Ay is the difference in chemical potential between the bulk
solid and bulk liquid.

To obtain the difference in chemical potential Wc: can make the approximation that,
close to coexistence, it is given by

Ap = AWT, — TYT, (14)

where Ah is the enthalpy change per particle on freezing at coexistence and T, is the
melting temperature. We have taken the enthalpy change from the data of Hansen and
Verlet.2” Furthermore we also need to know the interfacial free energy, y. In fact, the
surface free energy of Lennard-Jones crystals in contact with a supercooled liquid is not

AG* =

(13)
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Fig. 4 Gibbs free energy of a Lennard-Jones system as a function of crystallinity (Q4) at 20%

supercooling for two different pressures, ie. P =568 {T =0.92) and P =067 (T = 0.6). The
Gibbs free energy barriers are ca. 25.1kgT at P = 5.68 and 19.4kgT at P = 0.67.
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known. However, Broughton and Gilmer*® have calculated the interfacial free energy for
the Lennard-Jones fee/liquid interface at coexistence, near the triple point, i.e. P &~ 0.3 If
we assume that we can take the Broughton and Gilmer values for y for our low-pressure
simulations, classical nucleation theory vields the prediction G/kgT = 17.4 at P = 0.67.
Qur simulations for P = 0.67 give G/kgT = 19.4, which is in good agreement with the
theoretical prediction. At P = 5.68 we cannot use the Broughton and Gilmer estimate
for y. However, if we make the assumption that the surface energy is proportional to the
latent heat,! which increases with pressure, we arrive at an estimate of the nucleation
barrier at P = 5.68 that is within 20% of the simulation results. So, on the whole, the
agreement with classical nucleation theory is surprisingly good.

4.2 Nucleation rate

The knowledge of the energy barrier to nucleation allows us to identify the ‘transition
state” QF, which is the location of the maximum of the free energy. We performed MD
simulations under the constraint @, = QF, in order to penerate a set of independent
configurations at the top of the barrier. The structural analysis showed that all the
configurations consisted of a relatively large single cluster and several small clusters of
the type already present in a liquid at equilibrium. Therefore, the transition state gener-
ated in this way is very similar to the critical nucleus described in the classical theory of
nucleation, These configurations were used as initial state for the computation of the
time correlation function, R(f) given in eqn. (3).

In Fig. 5 we have plotted the transmission coefficient x, as defined by eqn. (5), for
P = 0.67. If there is a single time characterizing the nucleation process, k is expected to
reach a plateau value after an initial transistory period.*'® In the present case, the
transient period is ca. 0.57. After this time, » remains approximately constant. It should
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Fig. 5 Transmission coefficient as a function of time at 20% supercooling (P = 0.67, T = 0.6). The
dotted line shows the plateau value that is established after 0.5¢. This figure is based on averaging
over 200 trajectories.
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be noticed that the statistical accuracy is rather poor, although averages were taken over
200 trajectories. This is due to the diffusive behaviour of the system at the top of the
energy barrier. Analysis of the trajectories showed that in most cases the system
remained rather close to the top of the barrier. This is an indication of the fact that the
barrier crossing is diffusive rather than ballistic. Such a behaviour also leads to a rather
small valve of the transmission coefficient; x ~ 0.05 for P =5.68 and x 202 for
P =067.

The prediction of transition state theory for the rate can be obtained from the initial
value of the flux and the results for the barrier height. It was found in the simulations
that, for P = 568 kper =735 x 107"z !, and for P = 0.67 kper = 240 x 10711771,
Combining these values with those of the transmission coefficient, we find for the nucle-
ation rate k = 4.04 x 1073t ™! in the high-pressure case and k = 4.79 x 107277 ! in
the low-pressure case. These rates are measured in units of Qg per unit time. Usually the
nucleation rate is measured in number of solid particles produced per unit volume per
unit time. If we assume that there is a linear relation between Qy and the number of
solid particles (which should be the case for large enough clusters) we get
k=123 x 107" 31 *for P=568and k= 8.19 x 10 8¢ 3t~ !for P = 0.67.

A rough estimate of the rate can also be made by making use of the diffusive charac-
ter of the behaviour of the system at the top of the barrier. If we assume that a diffusive
equation of the Kramers type?® is valid, the transition rate is given by

D
kxS PyQY)

where D is the diffusion coefficient in Q4 space close to the top of the barrier and w is a
length of the order of the barrier width. Therefore, the plateau value of R(t) should be of
the order of D /w. We computed the diffusion coefficient D, in the low-pressure case and
found that D, &~ 4 x 107° The width of the barrier can be estimated as o =~ 5§ x 1073,
which leads to a value for the plateau R = 107%™, The plateau value of R(f) was found
in the simulation to be R ~ 1.4 x 103t~ !, So, the description in terms of the diffusion
constant is in agreement with the results of the simulations.

A final question concerning the nucleation rate is how the results of the simulation
compare with the prediction of classical nucleation theory for the nucleation rate:1-3°

k = A(T)exp{ —AG*/ky T). (15)
A(T) is a kinetic prefactor and is given by

24Dn*23

A(T) = Zan FE (16)

D is the diffusion coefficient in the liquid, p;;, is the density of the liquid, n* is the size of
the critical nucleus and 4 is the atomic jump distance in the liquid. Z is the Zeldovich
factor, which relates the number of solid clusters in the steady state with the equilibrium

value, and is found to be
A\
Z=|—S—
(ﬁﬂkB Tn*) {17)

The results of the simulations lead to a value of the Zeldovich factor of Z = 5.12 x 1072
for P =568 and Z = 6.81 x 1072 for P = 0.67. The diffusion coefficient in the super-
cooled liquid was computed in a separate simulation and was found to be
D~ 1 x 107 %a%z" %, for both pressures. The atomic jump distance was approximated by
Pra?, which gives 1~ 1,00 for P =568 and i ~ 097 for P = 0.67. This leads to a
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Fig. 6 Structural composition of the largest cluster present in the Lennard-Jones system, indicated
bY fiiqs foce» Jree and 4%, as a function of Q4 (the reaction coordinate) at 20% supercooling
(P = 5.68, T = 0.92). This figure is based on averages over 50 independent atomic configurations.

prediction of the kinetic prefactor of 4 =1876 x 10 %¢7c"" for P =568 and
A =0.113¢0"3¢"1 in the low-pressure case. The value of the kinetic prefactor in the
simulation can easily be obtained by dividing the value of the rate k by exp(—AG*/kg T).
The resulting value is 4 = 9.78¢ "3~ for P = 5.68 and 4 = 21.83¢ ¢~ for P = 0.67.
Our simulations predict, therefore, kinetic prefactors that are about two orders of mag-
nitude larger than predicted by classical nucleation theory. It should be mentioned that
better agreement is obtained if no barrier for the addition of atoms to the critical cluster
is assumed, as suggested by Broughton et al.3!-32
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Fig. 7 Structure of a Lennard-Jones critical nucleus, indicated by fi,, Soces Jiee and 4%, as a func-
tion of #, the distance to its centre-of-mass, at 20% supercooling (P = 5.68, T = 0.92). This figure
is based on averages over 50 independent atomic configurations.
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4.3 Structure of the nuclei

Fig. 6 shows the structural composition of the largest cluster in our system , as a func-
tion of our reaction coordinate Qg (the results shown are for P = 5.68. The P = 0.67
results are similar). The figure shows that the precritical nuclei are predominantly bee
and liquid-like. The fact that they have a high liquid character is not surprising as the
clusters are very small, ranging from 16 particles in the metastable liquid to 30 particles
as the top of the barrier is approached. What is more interesting is that they are clearly
more bee ordered than that they are fee ordered. This suggests that, at least for the small
crystallites, we find the behaviour as predicted by the Alexander-McTague scenario,*
who argued that, in 3D nucleation, the bec phase is uniquely favoured over all other
possible crystalline phases. However, as the critical and posteritical nuclei are increas-
ingly fec-like, our results are also in agreement with the findings of Swope and Ander-
sen,!! who found that nucleation in a Lennard-Jones system mainly proceeded via fcc
crystallites,

However, the critical and postcritical nuclei are not completely fec ordered but have
a high degree of bee and liquid-like character. Again, the fact that they have a high
degree of liquid character is not surprising as these nuclei are still relatively small,
ranging from 600 particles for the critical nucleus to 1400 particles for the postcritical
nucleus at Qg = 0.045. However, the bee character is less expected. We therefore studied
the local order of the critical and postcritical nuclei in more detail, which is facilitated by
the fact that we find these nuclei to be quite spherical.

Given the spherical shape of the critical and postcritical nuclei we have calculated
the structural composition as a function of r, the distance to the centre-of-mass. Fig. 7
Shows fyq, foee and fi.. as a function of r for the critical nucleus. As expected, we see that
the core of the critical nuclei is mainly fcc ordered and that f;,. and tiiq 20 smoothly to
zero and one in the liquid, respectively. However, the fraction of bce atoms increases in
the interface before it decays to zero in the liquid. Hence, the present results show that
the fcc core is covered by a shell which has more bee character. This finding also
explains why the precritical nuclei have a high degree of bec ordering: they are so small
that they are only interface. Furthermore, note that it is also compatible with the
observation that the critical nuclei and postcritical nuclei still have considerable bee
character: our method of identifying solid-like particles also identifies in the interface as
being part of the cluster.

To summarize the evolution of the size and the structure of the nuclei as the order
parameter is increased from the liquid: initially we have small nuclei that are predomi-
nantly bee and liquid ordered. As the top of the barrier is approached, these small nuclei
merge and form one large cluster, the critical nucleus. The core of this nucleus is mainly
foc ordered. However, a high degree of bee ordering in the interface is retained.

Nevertheless, one question cannot be answered yet and that is: what is the structure
of a large but precritical nucleus? At the precritical side we always have several small
clusters, and never one relatively large cluster. In the next section we will discuss this
problem in more detail.

5 One or many crystallites?

When a liquid phase solidifies, it will tend to form the solid structure with the lowest free
energy. It is usually assumed that the lowest free energy state in the two-phase region
is one in which a single large crystallite has formed. The reason why this is the lowest
free energy state is, of course, that a single crystal has a lower surface area than a
larger number of crystallites with the same total volume. And, indeed, it scems obvious
that once crystallization is complete, the single crystal must correspond to the
(overwhelmingly) most likely situation.
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However, in a simulation, we can constrain a system to be at a given point in the
two-phase region. That is, the crystalline phase takes up a fixed volume fraction ¢, of
the total available volume. The question is: is the single crystal still, necessarily, the most
stable configuration?

In the early work of Salsburg and Wood,?? the barrier that is responsible for hyster-
esis in constant NVT simulations is estimated assuming that a system in the two-phase
region will always try to minimize its surface free energy. However, one should also
consider the fact that by breaking up a single crystal into a large number of smaller
crystallites, the system may gain entropy. The question is if and when this entropic gain
outweighs the surface free energy cost.

To arrive at an estimate, we consider the following simple model. The total Helm-
holtz free energy of a system consisting of M particles (of which N particles are in the
solid phase) in volume V at temperature T, is denoted by F. The fraction of all particles
that.are in the crystalline state is

X, =N/M (18)

Let us now compute the excess free energy per solid-like particle in a two-phase system,
using the Helmholtz free energy of the neat liquid as our reference state. The Helmholtz
free energy of the two-phase system contains three contributions:

1. A negative ‘bulk’ contribution

BFy _ _
N = A (19)

where Ay is the chemical potential difference between solid and liquid and f = 1/kgT.
This term does not change as we redistribute particles over different numbers of crys-
tallites. We need not consider this term in the rest of our analysis.

2. A surface free energy term,

FS nl:r
B _ 2 gy, 0

where n,, is the number of crystallites, 7. is the crystallite radius and y, is the free energy
per unit area of the solid/liquid interface. We can easily relate r. to the volume fraction
occupied by the solid:

L% pcr(4“/3)r2 =N (21)
where p,, is the number density of the crystal. Hence,
r, = [N(3/drp, n,)1'?° (22)

If we insert this in the expression for F,, we obtain

173
B 2 4y NG drpc T = (%) anpr[BiAmp ) (23)
1/3
= (%) #o (24

The last line defines the parameter

f() = 4“?51[(3/47‘!9&)]2:3 (25)




P-R. ten Wolde et al. 105

For the Lennard-Jones system near the triple point, fif, is a number of order 1.

3. The final term is a translational entropy term.} To estimate this term, we simply
assume that the crystallites behave like a gas of identical spherical particles. The free
energy of such a gas could, for instance, be estimated using the Carnahan-Starling equa-
tion of state. However, we shall assume that the volume fraction of solid is low, and we
therefore ignore all non-ideal terms in this free energy.

B 2 ooy /v) — 1) | (26)

It is convenient to rewrite the above expressions in terms of n,, the number of particles
per crystallite (n, = N/n_}. If we combine the surface and translational free energics, we

get:
BF(n,) _ 11,3 8 + [ (z\;/v)gl} o

N 0

Rather than carry out the minimization of the energy with respect to n,, we consider
two limiting cases, namely ny = N (n,, = 1), ie. a single crystallite and n, = N, a
total break-up of the solid into small ‘nano’ crystallites. The smallest cluster should still
be large enough to be recognized as a crystal. Hence, we should expect that there will be
of the order of 12 particles in the minimal solid cluster. We call this number n,,,. Hence
Nmax = N/nmin .

Before we proceed we should reconsider the *heat’ liquid at coexistence. Even in the
liquid there will be a finite concentration of small clusters or, what amounts to the same
thing, the average number of crystalline particles ({(N),) is non-zero in the liquid. As we
move into the two-phase region, the number of crystalline particles increases and we
should look at the initial change in energy.

To estimate {n,,»,, the number of nano-crystallites in the neat fiuid, we consider the
expression for the free energy as a function of n,:

BF\ = nefnZis Bfo + In(n,/V) — 1] (28)

To find the state of lowest free energy, we minimize with respect to n,,, to find

Blomzia + ln(%) =0 29)

Hence, the equilibrium concentration of nano-crystallites in the neat fluid is
(neef Vo = exp(— Bfo niiy (30}
The second derivative of the free energy with respect to n_, is
02 BF
ond,

1
= (31)

Therefore, close to coexistence, the dependence of the free energy on the number of
crystalline particles is given by

expl(Bfo nali)
C2nd,

mlﬂ

ABF = (AN)? (32)

t In what follows, we ignore the entropic contribution due to the integral degrees of freedom of the
cluster.

34
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or, in terms of the fraction of crystalline material X, = (AN)/M
V_exp(ffo naino’

2
2mmiﬂ

PAF = X2 (33)
Now consider the alternative scenaric where all additional crystalline material is used to

form a single cluster. The radius of this large cluster is related to the radius of the
nano-clusters by

riaarge = rn?‘:ano(p VXcr)/”min (34)
and then
[12.M%
BAF = fﬂ( _ ) (35}

Note that the free energy of a single cluster varies as X /°. Hence, initially it is always
more favourable to form many small crystallites, rather than a single large one. Let us
now estimate the point where the single cluster becomes more stable. This happens when

pY X\ V explBfo nii)p’
fo( — ) = X (36)
This implies that
2/3 2
aa_ e PN Miia oy 17
XU fo(nmin) exp(ﬂfonﬁfii)pl‘ V ( )
Qar
X, ~ V-l (38)

This means that the break-even point depends on system size. For computer simulations
of finite systems, this effect is certainly non-negligible, as illustrated by our simulation
results. A more general problem with the use of such a ‘global’ measure for the degree of
crystallinity is that the size of the smallest cluster that is stable with respect to entropic
break-up grows with system size:

12 M- n, e
[ fo Pmin 34
_Folmin ), 39
Nisge = P (nmin) (exp(ﬂfo ”rz.fii)ﬂz) >

Therefore, even if a cluster is ‘postcritical’ in the sense of classical nucleation theory, it
may still be ‘precritical’ for entropic reasons.

We emphasize that the above derivation is oversimplified. However, it shows that
problems may arise when using a global (i.e. total degree of crystallinity) rather than
local (ie. size of the largest cluster) order parameter in the construction of the free
energy barrier between liquid and solid.

6 New method

In our simulations we found that large precritical nuclei are not stabie on the liquid side
of the barrier unless the system is close to the top. We therefore devised a new method
which enables us to grow a single cluster all the way from the liquid to the solid. Rather
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Fig. 8 Gibbs free energy of the r— 123 system as a function of the size of the largest cluster present
in the system at 25% supercooling (P = 22.54, T = 0.75)

than using a global-order parameter, which is sensitive to the overall degree of crys-
tallinity in the system, we took as the order parameter the size of the largest cluster in
the system. The advantage of this scheme is that we can directly control the size of the
nucleus we want to study. In order to determine the size of the cluster, we use the
techniques to identify solid clusters as explained in Section 2. As our method of identify-
ing solid-like particles is rather insensitive to the type of ordering, we do not favour one
crystalline structure over the other.

In order to test the new method we performed NPT MC simulations on a system
consisting of soft repulsive spheres, interacting via v{r) = &lo/ry, with n = 12.5. The
degree of supercooling was 25% with respect to the coexistence point given by Agrawal
and Kofke.?® The number of particles was N = 3456, which was large enough to avoid
serious finite-size effects.

In order to sample all cluster sizes with the same frequency we again used the
umbrella sampling scheme. The biasing potential function was again taken to be a har-
monic function of the order parameter, which is now the size of the cluster, In principle,
one could recalculate the size of the cluster after every trial displacement of a particle.
However, this is computationally expensive. We therefore adopted a different procedure.
We first perform a sequence of unbiased MC cycles, that is, according to the potential of
the original system, U(g®). We then recalculate the size of the cluster and accept the
trajectory according to exp{—SAW[P(g™)]}, where AW[P(g")] is the difference. in
biasing potential before and after the sequence of unbiased MC cycles. This ensures that
we generate configurations according to exp(f{U(¢") + W[ (g™ ]1}).

Fig. 8 shows the Gibbs free energy of the system as a function of the size of the
largest cluster present in the system. The Gibbs free energy of the system can be identi-
fied with the Gibbs free energy of this cluster as there is always only one large solid
cluster present in the system. In order to illustrate this we have shown, in Fig. 9, a
snapshot of all solid-like particles in the system when it is at the liquid side of the
barrier. The large solid cluster in the middle of the box, comprising 150 particles, is
clearly seen. To show the difference from the old method, we have taken this configu-
ration as the starting configuration for a run using the old, global-order parameter Q.
In Fig. 10 the size of the largest cluster present in the system is given as a function of
‘time’, Initially, the size of the cluster drops because the system has to adjust itself to the
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Fig. 9 Snapshot of all solid particles in the r~'%* system at the precritical side of the nucleation
barrier, at 25% supercooling (P = 22.54, T = 0.75). The size of the large solid cluster in the middle
is 150 particles.

new biasing potential. The size of the cluster then fluctuates for 5000 cycles. Then,
however, the size suddenly decreases to reach a new, much smaller plateau value. It is
clear that using the global-order parameter O, the large precritical nucleus breaks up
into many small crystallites. In fact, the process is ‘reversible’, that is, if we use as the
starting configuration for a run with the new order parameter, a configuration with only
many small clusters and not a single relatively large cluster, we finally end up with a
configuration containing one relatively large cluster, and some very small clusters that
are always present in the supercooled liquid.

In summary, using a combination of umbrella sampling and ‘blue-moon’ ensemble
simulations, it is possible to compute crystal nucleation rates at moderate supercooling.
However, it is useful to choose a local rather than a global order parameter as a reaction
coordinate, because in the case of a global-order parameter, crystal nuclei may sponta-
neously break up for entropic reasons.

This work was supported in part by ‘Scheikundig Onderzoek Nederland® (SON) with
financial aid from NWO (‘Nederlandse Organisatic voor Wetenschappelijk
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Fig. 10 Size of the largest cluster present in the system as a function of the number of MC cycles
using the old global-order parameter Q. As the starting configuration we have taken the precriti-
cal configuration that is obtained with the new scheme, see Fig. 9.
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