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Bulletin Editor: Vladimiro Sassone, Southampton, United Kingdom
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by TEX and CTEX in TX. The Ed-
itor is grateful to Uffe H. Engberg, Hans Hagen, Marloes van der Nat, and
Grzegorz Rozenberg for their support.

All contributions are to be sent electronically to

bulletin@eatcs.org

and must be prepared in LATEX 2ε using the class beatcs.cls (a version of
the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be bundled in a ZIP file.

Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Please, consult
http://www.eatcs.org/bulletin/howToSubmit.html.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 6/8 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, and thematic issues of
the Bulletin dedicated to currently hot topics, as well as suggestions for new
regular sections.

The EATCS home page is http://www.eatcs.org
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Letter from the President

Dear EATCS members,

Time is approaching for ICALP 2006, and
we look forward to seeing many of you in
Venice this summer. ICALP again this year
attracted a very high number of
submissions, and as you can see from the
official ICALP’06 website,
icalp06.dsi.unive.it, we shall have a
high-quality scientific event with lots of
interesting events, including three
co-located conferences and nine workshops.
Let me also mention the EATCS Award
Ceremony, during which this year’s Gödel
Prize will be awarded to Manindra Agrawal,
Neeraj Kayal, and Nitin Saxena for their
paper “PRIMES is in P", Annals of
Mathematics 160(2), 781-793, 2004, and the
EATCS Distinguished Award will be presented
to Professor Mike Paterson, University of
Warwick, in recognition of his outstanding
scientific contributions to theoretical
computer science.

Also, we shall have the annual EATCS
General Assembly during ICALP in Venice.
As usual, the EATCS annual report will be
made available before the General Assembly
on our web pages, www.eatcs.org. In this
report you will find information on our
activities during the past year, as well as
figures on EATCS membership and finances.
We hope to have a lively discussion during
the General Assembly. If you suggestions
for specific topics to be put on the
agenda, don’t hesitate to contact me or any
other memebr of the Council.

Mogens Nielsen, Aarhus
May 2006
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Letter from the Bulletin Editor
Dear Reader,

Welcome to the June 2006 issue of the Bulletin
of the EATCS, which among the usual variety of
contributions hosts the first installment of
Gerhard Woeginger’s Algorithmics Column. Gerhard
is a professor at Eidhoven University of
Technology, where he heads the Combinatorial
Optimization group. After completing his PhD in
1991 at Graz University of Technology, he held
academic positions in Graz, Twente and Eindhoven.
His research interests focus on optimisation
problems, including polyhedral techniques, local
search, online routing, performance guarantees for
approximation algorithms. As Gerhard takes over
the column, we wish him a long and fruitful
collaboration with the Bulletin.

Regarding the rest of the regular columns, several
surveys stand out. These include Bouyer and
Chevalier’s paper on the control of timed and
hybrid systems, Michael Domaratzki’s ‘Enumeration
of Formal Languages,’ Köbler and Lindner’s survey
on learning via the Fourier transform, and Merlijn
Sevenster’s work on Henkin quantifiers.

The volume presents four refereed contributions,
including Larry Moss’s on self-replication, and is
closed by a set of three reports from international
meetings. I am particularly glad to draw your
attention to Faron Moller’s thorough report from
the annual British Colloquium on Theoretical
Computer Science, BCTCS 2006. Reports from
conferences also feature in Alfredo Viola’s News
from Latin America, and in and Hartmut Ehrig’s
Formal Specification column.

Enjoy

Vladimiro Sassone, Southampton
June 2006
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R   J C

K. Makino(Tokyo Univ.)

Nippon from South to North

The Last Article!!

Quite a while ago, early 1992, I thought of a new series for this column —Nippon
from South to North. The idea is to ask someone in each area of Japan to introduce
TCS researchers around him/her with some personal comments about them. This
was a nice idea because I do not have to worry about an article at least for the June
issue;-)

I decided to start fromKyushu, the major southmost island, simply because
I knew that ProfessorSatoru Miyanois the best person to ask the first article of
the series. Since then I have been asking several researchers to write a report on
local TCS researchers. Then finally, we came up to the major northmost island,
Hokkaido, and with this 15th article, I can happily close this series.

I would like to express my sincere thanks to the contributors of this series, and
thank the readers to their interest to this series!

Osamu Watanabe
Tokyo Inst. of Tech.

TCS Researchers

in Hokkaido University
Hokkaido is the northernmost and
second-largest island in Japan. It is
only 1.5 hour by air from Tokyo to
Hokkaido, but the climate is quite
different to that of the mainland.
Colder and drier, it is a popular des-
tination during both the hot summer
months and the winter ski season.
Transparent lakes, a large purple car-
pet of lavender, vast ice floes, illumi-
nated large snow statues in Sapporo
snow festival. . . there are many at-
tractions for travelers. Prof. A. Namamura
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Sapporo, the capital of Hokkaido, is the fifth largest city in Japan, and the
population is about 1.9 million. Sapporo is one of the most comfortable cities to
live in Japan. Living cost here is not so high comparing to that in other large cities.
It is a planned city developed in 19th century, and is organized in a grid pattern.
Since the address is specified as like North 12 West 5, which means the 12th north
and the 5th west block from the center of the city, it is easy to reach a destination
without losing your way. Sea food here is delicious and you can eat fresh Sushi
with reasonable price. In an hour from the center of the city, you can reach several
ski slopes, Jozankei Spa and Chitose international airport.

Hokkaido University, established in 1876 as Sapporo Agricultural College,
was the first college in Japan to award bachelor degrees. The first Vice President
Dr. Clark’s words, “Boys, be ambitious!”, are one of the most well-known phrases
among Japanese people.

In Hokkaido University, now one of main Japanese universities, researches
in almost all academic disciplines are conducted. As for TCS researchers, the
number of them had increased twice when Graduate School of Information Sci-
ence and Technology was established in April, 2004. Now, let’s introduce TCS
researchers in Hokkaido University.

Yuzuru Tanaka is working on database and VLSI algorithms. He is the
founder of Meme Media Laboratory and well-known as the developer ofIntel-
ligentPad, a new-era software architecture.

Thomas Zeugmannjoined from University of Lübeck is working on com-
putational learning theory, especially, inductive inference. Since he was also at
Kyusyu University from 1997 to 2000, he is very familiar with Japanese culture.
Now, he is the steering committee chair of the Algorithmic Learning Theory work-
shop. He is a good-looking guy!

Makoto Haraguchi is working on analogical reasoning. This year he is the
head of Department of Electronics and Information Engineering, and having very
busy days.

Hiroki Arimura joined from Kyusyu University is working on computational
learning theory and semi-structured data mining. He is a very nice guy and the
first person who takes on any troublesome job.

Shin-ichi Minato joined from NTT laboratories is a specialist on binary deci-
sion diagrams. His doctor thesis was published by Kluwer Academic Publishers.
He is a good violinist and a local orchestra member.

Tetsuya Yoshida joined from Osaka University is a specialist of machine
learning and data mining. He is working on efficient algorithms for extracting
interesting substructures from collections of graphs.

Takuya Kida joined from Kyusyu University is working on string pattern
matching, especially, that in a compressed text. Last year, he was the youngest
associate professor in Faculty of Engineering.
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Kimihito Ito is working on logic programming and web application. He is
now belonging to Research Center for Zoonosis Control and trying to predict the
next spreading influenza virus.

Yoshiaki Okubo is working on data abstraction. He is belonging to the same
laboratory as Prof. Haraguchi, and is busy for supporting the busy professor.

Jan Poland joined from Swiss institute for Artificial Intelligence is a post
doctor fellow in Zeugmann research group. He is working on learning theory.

Atsuyoshi Nakamura, who is writing this article, was joined from NEC Com-
pany four years ago. He is working on computational learning theory and its ap-
plication on WWW. He thought Hokkaido is too cold for human being to live
before, but now he thinks Hokkaido is the best place to live.

Hokkaido university is huge and the author’s experience here is only four
years, so there might be many other TCS researchers the author has not yet been
aware of. Members introduced above belong to CS division, and researches by
the other members in CS division are also based on mathematics such as statistics,
functional analysis, fuzzy logic and so on. Members with different mathematical
bases in CS division have been progressing by positively affecting each other.

Finally, all CS division members welcome TCS researchers’ visits to Hokkaido
University. Please keep in mind that Hokkaido is the best place to visit in Japan!

Atsuyoshi Nakamura
Graduate School of Information Science and Technology

Hokkaido University
atsu@main.ist.hokudai.ac.jp

The Japanese Chapter

Chair: Kazuo Iwama

V.Chair: Osamu Watanabe

Secretary: Kazuhisa Makino

email: eatcs-jp@is.titech.ac.jp

URL: http://www.is.titech.ac.jp/~watanabe/eatcs-jp
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BRICS, Basic Research in Computer Science,
Aarhus, Denmark

Elsevier Science
Amsterdam, The Netherlands

IPA, Institute for Programming Research and Algorithms,
Eindhoven, The Netherlands

Microsoft Research,
Cambridge, United Kingdom

PWS, Publishing Company,
Boston, USA

TUCS, Turku Center for Computer Science,
Turku, Finland

UNU/IIST, UN University, Int. Inst. for Software Technology,
Macau, China
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News from Australia

by

C.J. Fidge

School of Engineering and Data Communications
Queensland University of Technology, Brisbane, Australia

http://www.fit.qut.edu.au/~fidgec

Over the past twelve months, researchers in Australian universities have been ob-
sessed by three letters: RQF. This abbreviation stands for the Research Quality
Framework, the Australian Government’s newly-proposed scheme for allocating
research funds to the tertiary education sector.

For as long as most of us care to remember, the Australian Govern-
ment’s Department of Education, Science and Training has run the annual
Higher Education Research Data Collection process. Each year Australian
university administrators have been required to prepare a report on the
number and type of publications produced by their academic and research
staff, and the number and value of research grants awarded to academic
staff. These figures are used to decide how much money the govern-
ment will give to each university as part of its annual operating grant. See
http://www.dest.gov.au/sectors/research_sector/online_forms_
services/higher_education_research_data_collection.htm.

Not surprisingly, this method of allocating funds has attracted considerable
criticism, especially because it emphasises quantity over quality. In particular, it
encourages Australian researchers to publish large numbers of low quality papers.
Studies have shown that since the system was introduced there has been a steady
increase in the number of research papers published by Australian academics and
a corresponding decrease in the ‘impact’ of these papers as measured by citation
indices.
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Early last year, in response to these criticisms, the Minister for Education, Sci-
ence and Training, Dr Brendan Nelson, announced that a new funding allocation
scheme would be developed, the Research Quality Framework. An Expert Advi-
sory Group was established to examine best practice in this area and report back
to the government on the ‘Preferred Model’ for its implementation.

While this was being done, the 38 Australian universities went into a frenzy,
trying to second guess what the model would be and jostling to position them-
selves in the best possible way with respect to it. The Australian Technology Net-
work universities, of which the Queensland University of Technology is a mem-
ber, even conducted a full-scale trial of the anticipated reporting process, to assess
how much it would cost to implement and how each university would fare.

A document describing the Advisory Group’s proposal appeared in September
2005 (http://www.dest.gov.au/sectors/research_sector/policies_
issues_reviews/key_issues/research_quality_framework/rqf_
preferred_model.htm). The approach was influenced by the scheme currently
used in the UK. It describes a system in which each university nominates
‘Research Groupings’ of academics and researchers in various disciplines. For
each such group several outstanding researchers are selected and their four best
research outputs are described in an ‘Evidence Portfolio’. This includes proof of
the ‘impact’ of the research output in terms of citation counts, industrial uptake,
etc. An RQF Moderation Panel will then produce a report based on this evidence
which determines the amount of funding made available to each university.

Since then, however, the whole process has been thrown into confusion.
Firstly, the timeline for the RQF’s introduction has slipped from ‘early 2006’ to
‘mid 2006’ and now to ‘2007’. Secondly, news from Britain indicates that that
country intends to abandon its own RQF-like process in favour of a simpler model
just like the one Australia currently uses, making the wisdom of the whole ap-
proach questionable. Thirdly, the costs of administering the proposed model have
been disclosed to be extremely high.The Australiannewspaper recently reported
that the government has set aside $3 million just for establishment of the RQF,
while the Australian universities are estimating that it will cost them $50 million
to prepare for it. Finally, the impetus for the reform has been diminished by a cab-
inet reshuffle which has seen the minister pushing to change the existing funding
model replaced. The latest word is that the new minister will continue the policies
of her predecessor, but for now the universities will just have to wait and see.

Lastly, to end on a more positive note, this is my annual reminder to con-
sider escaping the northern hemisphere winter and take a summer holiday in
Australia to attendComputing: The Australasian Theory Symposium(CATS) in
January/February 2007. Research paper submissions are due on the 11th of Au-
gust. Full details are available athttp://www-staff.it.uts.edu.au/~cbj/
cats07/CATS07.html.
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News from India

by

Madhavan Mukund
Chennai Mathematical Institute

Chennai, India
madhavan@cmi.ac.in

In this edition of News from India, we look ahead to some of the schools, work-
shops and conferences coming up during the second half of 2006.

Summer School on Algorithms, Complexity, Cryptology. A summer school
on Algorithms, Complexity and Cryptologyis being organized in Bangalore from
May 22 to June 9, 2006 by Microsoft Research India and the IISc Mathematics
Initiative, Indian Institute of Science, Bangalore.

The school is aimed at senior undergraduate students, graduate students, re-
search scholars and faculty members and will focus on the following topics: Fac-
toring problem and Linear Algebra, Pairing Based Cryptosystems, A Cryptog-
raphers view of System Security, Recent problems in Linear Algebra, Auctions
and Game Theory, Signal Processing for Applications with a security twist, Au-
thentication, hashing and Watermarking, Elliptic Curves for Undergraduates, and
Elliptic Curves and Cryptography.

The list of speakers includes Dan Boneh (Stanford, USA), Kamal Jain (Mi-
crosoft Research, USA), David Jao (Microsoft Research, USA), Ravi Kannan
(Yale University, USA), Kivanc Mihcak (Microsoft Research, USA), A. Shamir
(Weizmann Institute, Israel), and Eran Tromer (Weizmann Institute, Israel).

More information about the school available athttp://math.iisc.ernet.
in/~imi/sacc.htm.

Formal Methods Update Meeting. During the past few years, the Indian As-
sociation for Research in Computing Science (IARCS) has organized regular “up-
date” meetings in the area of formal methods. The meetings are intended as a
forum for Indian researchers and students in theoretical computer science to up-
date themselves on current trends and to explore new research areas.
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This year’s meeting will be held at IIT Guwahati from 3–6, July 2006. As
in previous years, the meeting will be devoted to talks, tutorials, discussions and
presentations by researchers on recent trends and advances in the field. The broad
theme this year isVerification of Infinite State Systems. The last meeting was held
in IIT Bombay in July, 2005, with the themeAdvances in Concurrency, Logic
and Verification. Earlier meetings were at IMSc, Chennai with themesModels for
Programs, Timed SystemsandAutomata and Verification.

More information about the workshop is available athttp://www.iitg.
ernet.in/cse/fac/pbhaduri/update06.

SEFM 2006. SEFM 2006, the 4th IEEE International Conference on Software
Engineering and Formal Methods, will be held in Pune, India during the period
September 11–15, 2006. The aim of the conference is to bring together practi-
tioners and researchers from academia, industry and government to advance the
state-of-the-art in formal methods, to scale up their application in software indus-
try and to encourage their integration with practical engineering methods.

The Program Committee for SEFM 2006 is jointly chaired by Paritosh Pandya
(TIFR, Mumbai, India) and Dang Van Hung (UNU-IIST, Macao, China). This
year’s invited speakers are Sriram Rajamani (Microsoft Research India, India),
John Rusby (SRI International, USA), Joseph Sifakis (CNRS and VERIMAG,
France) and Bertrand Meyer (ETH Zurich, Switzerland).

The website for SEFM 2006 is athttp://www.iist.unu.edu/SEFM06.

FSTTCS 2006. The 26th edition of FSTTCS will take place from December
13–15, 2006 at the Indian Statistical Institute, Kolkata. It will be preceded by two
pre-conference workshops on December 11–12, 2006.

The Program Committee is co-chaired by S. Arun-Kumar and Naveen Garg
from IIT, Delhi. The list of invited speakers for FSTTCS 2006 includes Gordon
Plotkin (Edinburgh, UK), Emo Welzl (ETH Zurich, Switzerland), Gérard Boudol
(INRIA, Sophia Antipolis, France), David Shmoys (Cornell, USA), and Eugene
Asarin (LIAFA, Paris 7, France).

The conference website is athttp://www.fsttcs.org.

ISAAC 2006. The 17th International Symposium on Algorithms and Computa-
tion (ISAAC 2006) will take place in Kolkata, India. The Program Committee is
chaird by Tetsuo Asano (JAIST, Japan). The invited speakers at ISAAC 2006 are
Tamal Dey, (Ohio State, USA) and Kazuo Iwama (Kyoto, Japan)

The conference website is athttp://www.isical.ac.in/~isaac06.

Madhavan Mukund<madhavan@cmi.ac.in>
Chennai Mathematical Institute
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News from Latin America

by

Alfredo Viola

Instituto de Computación, Facultad de Ingenierìa
Universidad de la República

Casilla de Correo 16120, Distrito 6, Montevideo, Uruguay
viola@fing.edu.uy

In this issue I present the reports of ITW 2006 and LATIN 2006 and the Call
for Participation of SBMF 2006. At the end I present a list of the main events
in Theoretical Computer Science to be held in Latin America in the following
months.

Report of ITW 2006 (by Sergio Verdú).

The 2006 IEEE Information Theory Workshop has taken place in Punta del Este,
Uruguay, on March 13-17, 2006. Gadiel Seroussi and Alfredo "Tuba" Viola
chaired the Workshop and Ron Roth and Marcelo Weinberger chaired the Pro-
gram Committee.

Playground of the Argentinean upper crust, Punta de Este is a Summer resort
of manicured lawns, manor houses, high-rise apartments, and endless beaches.

With 155 registrants the workshop was a great success technically and oth-
erwise. Uruguay and the United States supplied two thirds of the attendees (in
roughly equal parts), with the rest hailing from Argentina, Australia, Austria,
Brazil, Britain, Canada, Finland, France, Germany, Greece, Hungary, Israel, Italy,
Japan, Korea, Mexico, Norway, Portugal, Spain, and Switzerland.

Elwyn Berlekamp and Jorma Rissanen gave the keynote lectures and the in-
vited and contributed sessions covered most major topics within the purview of
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the IT Society. The full lineup of talks along with a photo gallery can be seen at
http://www.fing.edu.uy/itw06.

In addition to a superbly produced proceedings (CD-ROM available from
IEEE), the registration package included a kaleidoscope, a professionally de-
signed poster with an enigmatic binary inscription, a T-shirt, an ITW cap (sure
to become a sought-after item in e-bay), and a tube of sunscreen (which, alas,
remained unopened).

A visit to the atelier of Carlos Paez Vilaro took place on Wednesday. Not only
were we able to chat with the jovial 82 year-old renowned artist, but we witnessed
a breathtaking sunset from his cliffside house.

Performing at the end of the banquet, a professional troupe of musicians,
singers and dancers, were joined by a number of workshop participants who show-
cased their dancing skills in fields such as tango, milonga and candombe. No
information theorist seemed to be quite ready to quit their day job.

Overlapping with ITW2006, the superb facilities of the Conrad Resort, hosted
the Miss Uruguay beauty contest. Rumor has it that some ITW participants
skipped a paper or two to peek in the rehearsals of that event. Which just goes to
show the proverbial wide range of interests of our members.

Report of LATIN 2006 (by Avi Wigderson).

LATIN 2006 was held in the charming city of Valdivia, in the Lake District of
Chile, during March 20-24. Both the scientific program and local arrangements
were chaired by Marcos Kiwi, who has done an excellent job on both fronts. At-
tendants from all over the world, seasoned by many conferences, voiced their ex-
citement about the high level of care by Marcos and his team to make this meeting
enjoyable and productive. Among the highlights was the tour to the smoke-puffing
volcano Villarica, and the lava caves on it. The perfect organization included per-
fect weather for all by one day of the meeting - almost unheard of in this rainy
part of the world.

LATIN 2006 received a record number of 224 submissions and 66 papers
were accepted (29.5 %). Moreover, 115 registrants from 22 different countries
participated in the Conference. Chile, Canada and the United Stated contributed
around half of the attendees with the rest hailing form Brazil, China, Egypt, Fin-
land, France, Germany, Greece, Hong-Kong, Israel, Italy, Japan, Mexico, Norway,
Sweden, Switzerland, Uruguay, UK, and Spain.

Gastón Gonnet and Ricardo Baeza-Yates ended their term as members of
the steering committee. Its current members are: Martín Farach-Colton, Mar-
cos Kiwi, Yoshiharu Kohayakawa, Daniel Panario, Sergio Rajsbaum, and Gadiel
Seroussi. Seehttp://www.latintcs.org for details.
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SBMF 2006 - Call for Participation.

The Brazilian Symposium on Formal Methods (SBMF) is the official event of the
Brazilian Computer Society (SBC) in the area of formal methods. The event is
annual, joining up to more than 100 participants registered each year. Beyond
technical sessions, tutorials and mini-courses, the symposium also presents in-
vited speakers from the international community. A selection of the conference
proceedings is published in the Electronic Notes in Theoretical Computer Science
series from Elsevier. In 2006, the symposium will be held in Natal, the largest city
of Rio Grande do Norte and its capital, jointly with the International Conference
on Graph Transformations as well as its satellite events.

Regional Events

• May 15 - 17, 2006, Itatiaia, RJ, Brazil: SBLP 2006 - 10th Brazilian Sym-
posium on Programming Languages (http://sblp.ime.eb.br/).

• August 20 - 25, 2006, Santiago de Chile, Chile: 19th IFIP World Computer
Congress 2006 (http://www.wcc-2006.org).

• August 22 - 24, 2006, Santiago de Chile, Chile: 4th IFIP International Con-
ference on Theoretical Computer Science (http://www.wcc-2006.org).

• September 17 - 23, 2006, Natal, RN, Brazil: SMBF 2006 - Brazilian Sym-
posium on Formal Methods (http://www.dimap.ufrn.br/sbmf2006).

• September 17 - 23, 2006, Natal, RN, Brazil: ICGT 2006 - International
Conference on Graph Transformation
(http://www.dimap.ufrn.br/icgt2006).

• September 18 - 22, 2006, San Luis Potosí, México: ENC 2006 - Encuentro
Internacional de Ciencias de la Computación
(http://enc.smcc.org.mx).

• November 27 - 30, 2006, Montevideo, Uruguay: XIII CLAIO - Congreso
Latino-Iberoamericano de Investigaciónn Operativa (http://www.fing.
edu.uy/inco/eventos/claio2006).

• January 10 - 13, 2007, Buenos Aires, Argentina: Conference on Logic
Computability and Randomness 2007
(http://www.dc.uba.ar/people/logic2007).
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News from New Zealand

by

C.S. Calude

Department of Computer Science, University of Auckland
Auckland, New Zealand

cristian@cs.auckland.ac.nz

0. The Fifth International Conference UC06 will be held at the University of
York, UK, on 4-8 September 2006.http://www.cs.york.ac.uk/nature/
uc06/index.php.

Keynote Speakers are: Rainer Blatt (Innsbruck, Austria); Gerard Dreyfus (ES-
PCI, Paris, France); Michael C. Mozer (University of Colorado, USA); Erik Win-
free (CalTech, USA); Damien Woods (University College Cork, Ireland).

1. The latest CDMTCS research reports are (http://www.cs.auckland.ac.
nz/staff-cgi-bin/mjd/secondcgi.pl):

276. A. Juarna and V. Vajnovski. Combinatorial Isomorphisms Beyond a Simion
-Schmidt’s Bijection, 01/2006

277. C. S. Calude, E. Calude and M. J. Dinneen. A New Measure of the Diffi-
culty of Problems, 02/2006

278. S. Schwarz. Lukasiewvicz Logics and Weighted Logics over MV Semi-
rings, 05/2006

279. L. Staiger. The Kolmogorov Complexity of Infinite Words, 05/2006.
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Artur Czumaj† Christian Sohler‡

Abstract

We survey recent advances in the area of sublinear-time algorithms.

1 Introduction

The area ofsublinear-time algorithmsis a new rapidly emerging area of computer
science. It has its roots in the study of massive data sets that occur more and more
frequently in various applications. Financial transactions with billions of input
data and Internet traffic analyses (Internet traffic logs, clickstreams, web data)
are examples of modern data sets that show unprecedented scale. Managing and
analyzing such data sets forces us to reconsider the traditional notions of efficient
algorithms: processing such massive data sets in more than linear time is by far
too expensive and often even linear time algorithms may be too slow. Hence, there

∗Research supported in part by NSF ITR grant CCR-0313219 and NSF DMS grant 0354600.
†Department of Computer Science, New Jersey Institute of Technology and Department of

Computer Science, University of Warwick. Email:aczumaj@acm.org
‡Department of Computer Science, Rutgers University and Heinz Nixdorf Institute, University
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is the desire to develop algorithms whose running times are not only polynomial,
but in fact aresublinearin n.

Constructing a sublinear time algorithm may seem to be an impossible task
since it allows one to read only a small fraction of the input. However, in recent
years, we have seen development of sublinear time algorithms for optimization
problems arising in such diverse areas as graph theory, geometry, algebraic com-
putations, and computer graphics. Initially, the main research focus has been on
designing efficient algorithms in the framework ofproperty testing(for excellent
surveys, see [26, 30, 31, 40, 49]), which is an alternative notion of approxima-
tion for decision problems. But more recently, we see some major progress in
sublinear-time algorithms in the classical model of randomized and approxima-
tion algorithms. In this paper, we survey some of the recent advances in this area.
Our main focus is on sublinear-time algorithms for combinatorial problems, espe-
cially for graph problems and optimization problems in metric spaces.

Our goal is to give a flavor of the area of sublinear-time algorithms. We fo-
cus on the most representative results in the area and we aim to illustrate main
techniques used to design sublinear-time algorithms. Still, many of the details
of the presented results are omitted and we recommend the readers to follow
the original works. We also do not aim to cover the entire area of sublinear-
time algorithms, and in particular, we do not discuss property testing algorithms
[26, 30, 31, 40, 49], even though this area is very closely related to the research
presented in this survey.

Organization. We begin with an introduction to the area and then we give some
sublinear-time algorithms for a basic problem in computational geometry [14].
Next, we present recent sublinear-time algorithms for basic graph problems: ap-
proximating the average degree in a graph [25, 34] and estimating the cost of
a minimum spanning tree [15]. Then, we discuss sublinear-time algorithms for
optimization problems in metric spaces. We present the main ideas behind re-
cent algorithms for estimating the cost of minimum spanning tree [19] and facil-
ity location [10], and then we discuss the quality of random sampling to obtain
sublinear-time algorithms for clustering problems [20, 46]. We finish with some
conclusions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms is known for a very long time, but ini-
tially it has been used to denote “pseudo-sublinear-time” algorithms, where after
an appropriatepreprocessing, an algorithm solves the problem in sublinear-time.
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For example, if we have a set ofn numbers, then after anO(n logn) preprocess-
ing (sorting), we can trivially solve a number of problems involving the input
elements. And so, if the after the preprocessing the elements are put in a sorted
array, then inO(1) time we can find thekth smallest element, inO(logn) time we
can test if the input contains a given elementx, and also inO(logn) time we can
return the number of elements equal to a given elementx. Even though all these
results are folklore, this is not what we call nowadays a sublinear-time algorithm.

In this survey, our goal is to study algorithms for which the input is taken
to be in any standard representation and with no extra assumptions. Then, an
algorithm does not have to read the entire input but it may determine the output by
checking only a subset of the input elements. It is easy to see that for many natural
problems it is impossible to give any reasonable answer if not all or almost all
input elements are checked. But still, for some number of problems we can obtain
good algorithms that do not have to look at the entire input. Typically, these
algorithms arerandomized(because most of the problems have a trivial linear-
time deterministic lower bound) and they return only anapproximatesolution
rather than the exact one (because usually, without looking at the whole input we
cannot determine the exact solution). In this survey, we present recently developed
sublinear-time algorithm for some combinatorial optimization problems.

Searching in a sortedlist. It is well-known that if we can store the input in
a sorted array, then we can solve various problems on the input very efficiently.
However, the assumption that the input array is sorted is not natural in typical
applications. Let us now consider a variant of this problem, where our goal is
to searchfor an elementx in a linked sorted list containingn distinctelements1.
Here, we assume that then elements are stored in a doubly-linked, each list ele-
ment has access to the next and preceding element in the list, and the list is sorted
(that is, if x follows y in the list, theny < x). We also assume that we have access
to all elements in the list, which for example, can correspond to the situation that
all n list elements are stored in an array (but the array is not sorted and we do
not impose any order for the array elements). How can we find whether a given
numberx is in our input or is not?

On the first glace, it seems that since we do not have direct access to the rank
of any element in the list, this problem requiresΩ(n) time. And indeed, if our goal
is to design a deterministic algorithm, then it is impossible to do the search ino(n)
time. However, if we allow randomization, then we can complete the search in

1The assumption that the input elements aredistinctis important. If we allow multiple elements
to have the same key, then the search problem requiresΩ(n) time. To see this, consider the input in
which about a half of the elements has key 1, another half has key 3, and there is a single element
with key 2. Then, searching for 2 requiresΩ(n) time.
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O(
√

n) expected time (and this bound is asymptotically tight).
Let us first sample uniformly at random a setS of Θ(

√
n) elements from the

input. Since we have access to all elements in the list, we can select the setS in
O(
√

n) time. Next, we scan all the elements inS and inO(
√

n) time we can find
two elements inS, p andq, such thatp ≤ x < q, and there is no element inS that
is betweenp andq. Observe that since the input consist ofn distinct numbers,p
andq are uniquely defined. Next, we traverse the input list containing all the input
elements starting atp until we find either the sought keyx or we find elementq.

Lemma 1. The algorithm above completes the search in expectedO(
√

n) time.
Moreover, no algorithm can solve this problem in o(

√
n) expected time.

Proof. The running time of the algorithm if equal toO(
√

n) plus the number
of the input elements betweenp andq. SinceS containsΘ(

√
n) elements, the

expected number of input elements betweenp andq is O(n/|S|) = O(
√

n). This
implies that the expected running time of the algorithm isO(

√
n).

For a proof of a lower bound ofΩ(
√

n) expected time, see, e.g., [14]. ut

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geometric setting. Given two
convex polygonsA andB in R2, each withn vertices, determine if they intersect,
and if so, then find a point in their intersection.

It is well known that this problem can be solved inO(n) time, for example,
by observing that it can be described as a linear programming instance in 2-
dimensions, a problem which is known to have a linear-time algorithm (cf. [24]).
In fact, within the same time one can either find a point that is in the intersection
of A andB, or find a lineL that separatesA from B (actually, one can even find
a bitangent separating lineL, i.e., a line separatingA andB which intersects with
each ofA andB in exactly one point). The question is whether we can obtain a
better running time.

The complexity of this problem depends on the input representation. In the
most powerful model, if the vertices of both polygons are stored in an array in
cyclic order, Chazelle and Dobkin [13] showed that the intersection of the poly-
gons can be determined in logarithmic time. However, a standard geometric rep-
resentation assumes that the input is not stored in an array but ratherA andB are
given by their doubly-linked lists of vertices such that each vertex has as its suc-
cessor the next vertex of the polygon in the clockwise order. Can we then test ifA
andB intersect?

Chazelle et al. [14] gave anO(
√

n)-time algorithm that reuses the approach
discussed above for searching in a sorted list. Let us first sample uniformly at
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Figure 1:(a) Bitangent lineL separating CA and CB, and (b) the polygon PA.

randomΘ(
√

n) vertices from eachA and B, and letCA andCB be the convex
hulls of the sample point sets for the polygonsA andB, respectively. Using the
linear-time algorithm mentioned above, inO(

√
n) time we can check ifCA and

CB intersects. If they do, then the algorithm will get us a point that lies in the
intersection ofCA andCB, and hence, this point lies also in the intersection ofA
andB. Otherwise, letL be the bitangent separating line returned by the algorithm
(see Figure 1 (a)).

Let a andb be the points inL that belong toA andB, respectively. Leta1 and
a2 be the two vertices adjacent toa in A. We will define now a new polygonPA. If
none ofa1 anda2 is on the sideCA of L the we definePA to be empty. Otherwise,
exactly one ofa1 anda2 is on the sideCA of L; let it bea1. We define polygon
PA by walking froma to a1 and then continue walking along the boundary ofA
until we crossL again (see Figure 1 (b)). In a similar way we define polygonPB.
Observe that the expected size of each ofPA andPB is at mostO(

√
n).

It is easy to see thatA andB intersects if and only if eitherA intersectsPB or
B intersectsPA. We only consider the case of checking ifA intersectsPB. We first
determine ifCA intersectsPB. If yes, then we are done. Otherwise, letLA be a
bitangent separating line that separatesCA from PB. We use the same construction
as above to determine a subpolygonQA of A that lies on thePB side ofLA. Then,
A intersectsPB if and only if QA intersectsPB. SinceQA has expected sizeO(

√
n)

and so doesPB, testing the intersection of these two polygons can be done in
O(
√

n) expected time. Therefore, by our construction above, we have solved the
problem of determining if two polygons of sizen intersect by reducing it to a
constant number of problem instances of determining if two polygons of expected
sizeO(

√
n) intersect. This leads to the following lemma.

Lemma 2. [14]The problem of determining whether two convex n-gons intersect
can be solved inO(

√
n) expected time, which is asymptotically optimal.

Chazelle et al. [14] gave not only this result, but they also showed how to ap-
ply a similar approach to design a number of sublinear-time algorithms for some
basic geometric problems. For example, one can extend the result discussed above
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to test the intersection of two convex polyhedra inR3 with n vertices inO(
√

n) ex-
pected time. One can also approximate the volume of ann-vertex convex polytope
to within a relative errorε > 0 in expected timeO(

√
n/ε). Or even, for a pair of

two points on the boundary of a convex polytopeP with n vertices, one can esti-
mate the length of an optimal shortest path outsideP between the given points in
O(
√

n) expected time.
In all the results mentioned above, the input objects have been represented

by a linked structure: either every point has access to its adjacent vertices in the
polygon inR2, or the polytope is defined by a doubly-connected edge list, or so.
These input representations are standard in computational geometry, but a natural
question is whether this is necessary to achieve sublinear-time algorithms — what
can we do if the input polygon/polytop is represented by a set of points and no
additional structure is provided to the algorithm? In such a scenario, it is easy to
see that noo(n)-time algorithm can solve exactly any of the problems discussed
above. That is, for example, to determine if two polygons withn vertices intersect
one needsΩ(n) time. However, still, we can obtain some approximation to this
problem, one which is described in the framework ofproperty testing.

Suppose that we relax our task and instead of determining if two (convex)
polytopesA andB in Rd intersects, we just want to distinguish between two cases:
eitherA andB are intersection-free, or one has to “significantly modify”A andB
to make them intersection-free. The definition of the notion of “significantly mod-
ify” may depend on the application at hand, but the most natural characterization
would be to remove at leastεn points inA andB, for an appropriate parameter
ε (see [18] for a discussion about other geometric characterization). Czumaj et
al. [23] gave a simple algorithm that for anyε > 0, can distinguish between the
case whenA andB do not intersect, and the case when at leastεn points has to be
removed fromA andB to make them intersection-free: the algorithm returns the
outcome of a test if a random sample ofO((d/ε) log(d/ε)) points fromA intersects
with a random sample ofO((d/ε) log(d/ε)) points fromB.

Sublinear-time algorithms: perspective. The algorithms presented in this sec-
tion should give a flavor of the area and give us the first impression of what do we
mean by sublinear-time and what kind of results one can expect. In the follow-
ing sections, we will present more elaborate algorithms for various combinatorial
problems for graphs and for metric spaces.

3 Sublinear Time Algorithms for Graph Problems

In the previous section, we introduced the concept of sublinear-time algorithms
and we presented two basic sublinear-time algorithms for geometric problems. In



37 37

37 37

The Bulletin of the EATCS

29

this section, we will discuss sublinear-time algorithms for graph problems. Our
main focus is on sublinear-time algorithms for graphs, with special emphasizes on
sparse graphs represented by adjacency lists where combinatorial algorithms are
sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of the vertices of an undirected
connected graphG = (V,E), i.e., for any vertexv ∈ V we can query for its degree.
Can we achieve a good approximation of the average degree inG by looking at a
sublinear number of vertices? At first sight, this seems to be an impossible task.
It seems that approximating the average degree is equivalent to approximating
the average of a set ofn numbers with values between 1 andn − 1, which is not
possible in sublinear time. However, Feige [25] proved that one can approximate
the average degree inO(

√
n/ε) time within a factor of 2+ ε.

The difficulty with approximating the average of a set ofn numbers can be
illustrated with the following example. Assume that almost all numbers in the
input set are 1 and a few of them aren− 1. To approximate the average we need
to approximate how many occurrences ofn − 1 exist. If there is only a constant
number of them, we can do this only by looking atΩ(n) numbers in the set. So,
the problem is that these large numbers can “hide” in the set and we cannot give a
good approximation, unless we can “find” at least some of them.

Why is the problem less difficult, if, instead of an arbitrary set of numbers,
we have a set of numbers that are the vertex degrees of a graph? For example,
we could still have a few vertices of degreen − 1. The point is that in this case
any edge incident to such a vertex can be seen at another vertex. Thus, even if
we do not sample a vertex with high degree we will see all incident edges at other
vertices in the graph. Hence, vertices with a large degree cannot “hide.”

We will sketch a proof of a slightly weaker result than that originally proven
by Feige [25]. Letd denote the average degree inG = (V,E) and letdS denote the
random variable for the average degree of a setS of s vertices chosen uniformly
at random fromV. We will show that if we sets ≥ β

√
n/εO(1) for an appropriate

constantβ, thendS ≥ (1
2 − ε) · d with probability at least 1− ε/64. Additionally,

we observe that Markov inequality immediately implies thatdS ≤ (1 + ε) · d
with probability at least 1− 1/(1 + ε) ≥ ε/2. Therefore, our algorithm will pick
8/ε setsSi, each of sizes, and output the set with the smallest average degree.
Hence, the probability that all of the setsSi have too high average degree is at
most (1− ε/2)ε/8 ≤ 1/8. The probability that one of them has too small average
degree is at most8

ε
· ε64 = 1/8. Hence, the output value will satisfy both inequalities

with probability at least 3/4. By replacingε with ε/2, this will yield a (2+ ε)-
approximation algorithm.
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Now, our goal is to show that with high probability one does not underestimate
the average degree too much. LetH be the set of the

√
εn vertices with highest

degree inG and letL = V \ H be the set of the remaining vertices. We first argue
that the sum of the degrees of the vertices inL is at least (12 − ε) times the sum
of the degrees of all vertices. This can be easily seen by distinguishing between
edges incident to a vertex fromL and edges withinH. Edges incident to a vertex
from L contribute with at least 1 to the sum of degrees of vertices inL, which is
fine as this is at least 1/2 of their full contribution. So the only edges that may
cause problems are edges withinH. However, since|H| =

√
εn, there can be

at mostεn such edges, which is small compared to the overall number of edges
(which is at leastn− 1, since the graph is connected).

Now, letdH be the degree of a vertex with the smallest degree inH. Since we
aim at giving a lower bound on the average degree of the sampled vertices, we
can safely assume that all sampled vertices come from the setL. We know that
each vertex inL has a degree between 1 anddH. Let Xi, 1 ≤ i ≤ s, be the random
variable for the degree of theith vertex fromS. Then, it follows from Hoeffding
bounds that

Pr[
s∑

i=1

Xi ≤ (1− ε) · E[
s∑

i=1

Xi]] ≤ e−
E[
∑r

i=1 Xi ]·ε
2

dH .

We know that the average degree is at leastdH · |H|/n, because any vertex inH
has at least degreedH. Hence, the average degree of a vertex inL is at least
(1

2 − ε) · dH · |H|/n. This just meansE[Xi] ≥ (1
2 − ε) · dH · |H|/n. By linearity of

expectation we getE[
∑s

i=1 Xi] ≥ s · (1
2 − ε) · dH · |H|/n. This implies that, for our

choice ofs, with high probability we havedS ≥ (1
2 − ε) · d.

Feige showed the following result, which is stronger with respect to the de-
pendence onε.

Theorem 3. [25] UsingO(ε−1 ·
√

n/d0) queries, one can estimate the average
degree of a graph within a ratio of(2+ ε), provided that d≥ d0.

Feige also proved thatΩ(ε−1 ·
√

n/d) queries are required, whered is the aver-
age degree in the input graph. Finally, any algorithm that uses only degree queries
and estimates the average degree within a ratio 2− δ for some constantδ requires
Ω(n) queries.

Interestingly, if one can also use neighborhood queries, then it is possible to
approximate the average degree usingÕ(

√
n/εO(1)) queries with a ratio of (1+ ε),

as shown by Goldreich and Ron [34]. The model for neighborhood queries is as
follows. We assume we are given a graph and we can query for theith neighbor of
vertexv. If v has at leasti neighbors we get the corresponding neighbor; otherwise
we are told thatv has less thani neighbors. We remark that one can simulate
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degree queries in this model withO(logn) queries. Therefore, the algorithm from
[34] uses only neighbor queries.

For a sketch of a proof, let us assume that we know the setH. Then we can use
the following approach. We only consider vertices fromL. If our sample contains
a vertex fromH we ignore it. By our analysis above, we know that there are only
few edges withinH and that we make only a small error in estimating the number
of edges withinL. We loose the factor of two, because we “see” edges fromL to
H only from one side. The idea behind the algorithm from [34] is to approximate
the fraction of edges fromL to H and add it to the final estimate. This has the
effect that we count any edge betweenL andH twice, canceling the effect that we
see it only from one side. This is done as follows. For each vertexv we sample
from L we take a random set of incident edges to estimate the fractionλ(v) of its
neighbors that is inH. Let λ̂(v) denote the estimate we obtain. Then our estimate
for the average degree will be

∑
v∈S∩L(1+ λ̂(v)) · d(v)/|S ∩ L|, whered(v) denotes

the degree ofv. If for all vertices we estimateλ(v) within an additive error ofε,
the overall error induced by thêλ will be small. This can be achieved with high
probability queryingO(logn/ε2) random neighbors. Then the output value will be
a (1+ ε)-approximation of the average degree. The assumption that we knowH
can be dropped by taking a set ofO(

√
n/ε) vertices and settingH to be the set of

vertices with larger degree than all vertices in this set (breaking ties by the vertex
number).

(We remark that the outline given above is different from the proof in [34].)

Theorem 4. [34]Given the ability to make neighbor queries to the input graph G,
there exists an algorithm that makesO(

√
n/d0 · ε

−O(1)) queries and approximates
the average degree in G to within a ratio of(1+ ε).

3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute a minimum spanning
tree. Since the minimum spanning tree is of size linear in the number of vertices,
no sublinear algorithm for sparse graphs can exists. It is also know that no constant
factor approximation algorithm witho(n2) query complexity in dense graphs (even
in metric spaces) exists [37]. Given these facts, it is somewhat surprising that it
is possible to approximate the cost of a minimum spanning tree in sparse graphs
[15] as well as in metric spaces [19] to within a factor of (1+ ε).

In the following we will explain the algorithm for sparse graphs by Chazelle
et al. [15]. We will prove a slightly weaker result than in [15]. LetG = (V,E)
be an undirected connected weighted graph with maximum degreeD and integer
edge weights from{1, . . . ,W}. We assume that the graph is given in adjacency
list representation, i.e., for every vertexv there is a list of its at mostD neighbors,
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which can be accessed fromv. Furthermore, we assume that the vertices are
stored in an array such that it is possible to select a vertex uniformly at random.
We assume also that the values ofD andW are known to the algorithm.

The main idea behind the algorithm is to express the cost of a minimum span-
ning tree as the number of connected components in certain auxiliary subgraphs
of G. Then, one runs a randomized algorithm to estimate the number of connected
components in each of these subgraphs.

To start with basic intuitions, let us assume thatW = 2, i.e., the graph has only
edges of weight 1 or 2. LetG(1) = (V,E(1)) denote the subgraph that contains all
edges of weight (at most) 1 and letc(1) be the number of connected components in
G(1). It is easy to see that the minimum spanning tree has to link these connected
components by edges of weight 2. Since any connected component inG(1) can be
spanned by edges of weight 1, any minimum spanning tree ofG hasc(1)− 1 edges
of weight 2 andn−1−(c(1)−1) edges of weight 1. Thus, the weight of a minimum
spanning tree is

n− 1− (c(1) − 1)+ 2 · (c(1) − 1) = n− 2+ c(1) = n−W+ c(1) .

Next, let us consider an arbitrary integer value forW. DefiningG(i) = (V,E(i)),
whereE(i) is the set of edges inG with weight at mosti, one can generalize the
formula above to obtain that the costMST of a minimum spanning tree can be
expressed as

MST = n−W+
W−1∑
i=1

c(i) .

This gives the following simple algorithm.

AMSTW(G, ε)
for i = 1 to W− 1

Compute estimator̂c(i) for c(i)

output M̃ST= n−W+
∑W−1

i=1 ĉ(i)

Thus, the key question that remains is how to estimate the number of con-
nected components. This is done by the following algorithm.
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ACC(G, s)
{ Input: an arbitrary undirected graph G }
{ Output: ĉ: an estimation of the number of connected components of G }

chooses verticesu1, . . . ,us uniformly at random
for i = 1 to s do

chooseX according toPr[X ≥ k] = 1/k
run breadth-fist-search (BFS) starting atui until either

(1) the whole connected component containingui has
been explored, or

(2) X vertices have been explored
if BFS stopped in case (1)then bi = 1
elsebi = 0

output ĉ = n
s

∑s
i=1 bi

To analyze this algorithm let us fix an arbitrary connected componentC and
let |C| denote the number of vertices in the connected component. Letc denote
the number of connected components inG. We can write

E[bi] =
∑

connected componentC

Pr[ui ∈ C] · Pr[X ≥ |C|] =
∑

connected componentC

|C|
n
·

1
|C|
=

c
n
.

And by linearity of expectation we obtainE[ĉ] = c.
To show that ˆc is concentrated around its expectation, we apply Chebyshev

inequality. Sincebi is an indicator random variable, we have

Var [bi] = E[b2
i ] − E[bi]

2 ≤ E[b2
i ] = E[bi] = c/n .

Thebi are mutually independent and so we have

Var [ĉ] = Var
[n
s
·

s∑
i=1

bi
]
=

n2

s2
·

s∑
i=1

Var [bi] ≤
n · c

s
.

With this bound forVar [ĉ], we can use Chebyshev inequality to obtain

Pr[|ĉ− E[̂c]| ≥ λn] ≤
n · c

s · λ2 · n2
≤

1
λ2 · s

.

From this it follows that one can approximate the number of connected compo-
nents within additive error ofλn in a graph with maximum degreeD in O( D·logn

λ2·%
)

time and with probability 1− %. The following somewhat stronger result has been
obtained in [15]. Notice that the obtained running time isindependent of the input
size n.
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Theorem 5. [15]The number of connected components in a graph with maximum
degree D can be approximated with additive error at most±λn inO( D

λ2 log(D/λ))
time and with probability3/4.

Now, we can use this procedure with parametersλ = ε/(2W) and% = 1
4W in

algorithm AMSTW. The probability that at least one call to A-
CC is not within an additive error±λn is at most 1/4. The overall
additive error is at most±εn/2. Since the cost of the minimum spanning tree is at
leastn− 1 ≥ n/2, it follows that the algorithms computes inO(D ·W3 · logn/ε2)
time a (1± ε)-approximation of the weight of the minimum spanning tree with
probability at least 3/4. In [15], Chazelle et al. proved a slightly stronger result
which has running timeindependent of the input size.

Theorem 6. [15]AlgorithmAMSTW computes a valuẽMST that with
probability at least3/4 satisfies

(1− ε) ·MST ≤ M̃ST≤ (1+ ε) ·MST .

The algorithm runs iñO(D ·W/ε2) time.

The same result also holds whenD is only the average degree of the graph
(rather than the maximum degree) and the edge weights are reals from the interval
[1,W] (rather than integers) [15]. Observe that, in particular, for sparse graphs for
which the ratio between the maximum and the minimum weight is constant, the
algorithm from [15]runs in constant time!

It was also proved in [15] that any algorithm estimatingMST requiresΩ(D ·
W/ε2) time.

3.3 Other Sublinear-time Results for Graphs

In this section, our main focus was on combinatorial algorithms for sparse graphs.
In particular, we did not discuss a large body of algorithms for dense graphs repre-
sented in the adjacency matrix model. Still, we mention the results of approximat-
ing the size of the maximum cut inconstant timefor dense graphs [28, 32], and
the more general results about approximating all dense problems in Max-SNP in
constant time[2, 8, 28]. Similarly, we also have to mention about the existence of
a large body of property testing algorithms for graphs, which in many situations
can lead to sublinear-time algorithms for graph problems. To give representative
references, in addition to the excellent survey expositions [26, 30, 31, 40, 49], we
want to mention the recent results on testability of graph properties, as described,
e.g., in [3, 4, 5, 6, 11, 21, 33, 43].
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4 Sublinear-Time Algorithms for Metric Problems

One of the most widely considered models in the area of sublinear time approxi-
mation algorithms is thedistance oracle modelfor metric spaces. In this model,
the input of an algorithm is a setP of n points in a metric space (P,d). We assume
that it is possible to compute the distanced(p,q) between any pair of pointsp,q
in constant time. Equivalently, one could assume that the algorithm is given ac-
cess to then × n distance matrix of the metric space, i.e., we have oracle access
to the matrix of a weighted undirected complete graph. Since the full description
size of this matrix isΘ(n2), we will call any algorithm witho(n2) running time a
sublinear algorithm.

Which problems can and cannot be approximated in sublinear time in the dis-
tance oracle model? One of the most basic problems is to find (an approximation)
of the shortest or the longest pairwise distance in the metric space. It turns out
that the shortest distance cannot be approximated. The counterexample is a uni-
form metric (all distances are 1) with one distance being set to some very small
valueε. Obviously, it requiresΩ(n2) time to find this single short distance. Hence,
no sublinear time approximation algorithm for the shortest distance problem ex-
ists. What about the longest distance? In this case, there is a very simple1

2-
approximation algorithm, which was first observed by Indyk [37]. The algorithm
chooses an arbitrary pointp and returns its furthest neighborq. Let r, s be the
furthest pair in the metric space. We claim thatd(p,q) ≥ 1

2 d(r, s). By the triangle
inequality, we haved(r, p)+d(p, s) ≥ d(r, s). This immediately implies that either
d(p, r) ≥ 1

2 d(r, s) or d(p, s) ≥ 1
2 d(r, s). This shows the approximation guarantee.

In the following, we present some recent sublinear-time algorithms for a few
optimization problems in metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete graphG. A natural question is
whether we can find out anything about the minimum spanning tree of that graph.
As already mentioned in the previous section, it is not possible to find ino(n2)
time a spanning tree in the distance oracle model that approximates the minimum
spanning tree within a constant factor [37]. However, it is possible toapproximate
the weightof a minimum spanning tree within a factor of (1+ε) in Õ(n/εO(1)) time
[19].

The algorithm builds upon the ideas used to approximate the weight of the
minimum spanning tree in graphs described in Section 3.2 [15]. Let us first ob-
serve that for the metric space problem we can assume that the maximum distance
isO(n/ε) and the shortest distance is 1. This can be achieved by first approximat-
ing the longest distance inO(n) time and then scaling the problem appropriately.
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Since by the triangle inequality the longest distance also provides a lower bound
on the minimum spanning tree, we can round up to 1 all edge weights that are
smaller than 1. Clearly, this does not significantly change the weight of the mini-
mum spanning tree. Now we could apply the algorithm AMSTW from
Section 3.2, but this would not give us ano(n2) algorithm. The reason is that in
metric case we have a complete graph, i.e., the average degree isD = n− 1, and
the edge weights are in the interval [1,W], whereW = O(n/ε). So, we need a
different approach. In the following we will outline an idea how to achieve a ran-
domizedo(n2) algorithm. To get a near linear time algorithm as in [19] further
ideas have to be applied.

The first difference to the algorithm from Section 3.2 is that when we develop
a formula for the minimum spanning tree weight, we use geometric progression
instead of arithmetic progression. Assuming that all edge weights are powers of
(1 + ε), we defineG(i) to be the subgraph ofG that contains all edges of length
at most (1+ ε)i. We denote byc(i) the number of connected components inG(i).
Then we can write

MST = n−W+ ε ·
r−1∑
i=0

(1+ ε)i · c(i) , (1)

wherer = log1+εW− 1.
Once we have (1), our approach will be to approximate the number of con-

nected componentsc(i) and use formula (1) as an estimator. Although geometric
progression has the advantage that we only need to estimate the connected compo-
nents inr = O(logn/ε) subgraphs, the problem is that the estimator is multiplied
by (1+ ε)i. Hence, if we use the procedure from Section 3.2, we would get an
additive error ofεn · (1 + ε)i, which, in general, may be much larger than the
weight of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. We will use a
different graph traversal than BFS. Our graph traversal runs only on a subset of
the vertices, which are calledrepresentative vertices. Every pair of representative
vertices are at distance at leastε ·(1+ε)i from each other. Now, assume there arem
representative vertices and consider the graph induced by these vertices (there is a
problem with this assumption, which will be discussed later). Running algorithm
ACC on this induced graph makes an error of±λm, which
must be multiplied by (1+ ε)i resulting in an additive error of±λ · (1 + ε)i · m.
Since them representative vertices have pairwise distanceε · (1 + ε)i, we have
a lower boundMST ≥ m · ε · (1 + ε)i. Choosingλ = ε2/r would result in a
(1+ ε)-approximation algorithm.

Unfortunately, this simple approach does not work. One problem is that we
cannot choose a random representative point. This is because we have no a priori
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knowledge of the set of representative points. In fact, in the algorithm the points
are chosen greedily during the graph traversal. As a consequence, the decision
whether a vertex is a representative vertex or not, depends on the starting point
of the graph traversal. This may also mean that the number of representative
vertices in a connected component also depends on the starting point of the graph
traversal. However, it is still possible to cope with these problems and use the
approach outlined above to get the following result.

Theorem 7. [19] The weight of a minimum spanning tree of an n-point metric
space can be approximated iñO(n/εO(1)) time to within a(1+ ε) factor and with
confidence probability at least3

4.

4.1.1 Extensions: Sublinear-time(2+ ε)-approximation of metric TSP and
Steiner trees

Let us remark here one direct corollary of Theorem 7. By the well known relation-
ship (see, e.g., [51]) between minimum spanning trees, travelling salesman tours,
and minimum Steiner trees, the algorithm for estimating the weight of the mini-
mum spanning tree from Theorem 7 immediately yieldsÕ(n/εO(1)) time (2+ ε)-
approximation algorithms for two other classical problems in metric spaces (or in
graphs satisfying the triangle inequality): estimating the weight of thetravelling
salesman tourand theminimum Steiner tree.

4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one can estimate the cost of the
metric uniform facility locationproblem inÕ(n/εO(1)) time [10]. This problem is
defined as follows. We are given ann-point metric space (P,d). We want to find a
subsetF ⊆ P of open facilities such that

|F| +
∑
p∈P

d(p, F)

is minimized. Here,d(p, F) denote the distance fromp to the nearest point inF.
It is known that one cannot find a solution that approximates the optimal solution
within a constant factor ino(n2) time [50]. However, it is possible to approximate
thecostof an optimal solution within a constant factor.

The main idea is as follows. Let us denote byB(p, r) the set of points from
P with distance at mostr from p. For eachp ∈ P let rp be the unique value that
satisfies ∑

q∈B(p,rp)

(rp − d(p,q)) = 1 .

Then one can show that
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Lemma 8. [10]
1
4
·Opt ≤

∑
p∈P

rp ≤ 6 ·Opt ,

where Opt denotes the cost of an optimal solution to the metric uniform facility
location problem.

Now, the algorithm is based on a randomized algorithm that for a given point
p, estimatesrp to within a constant factor in timeO(rp · n · logn) (recall that
rp ≤ 1). Thus, the smallerrp, the faster the algorithm. Now, letp be chosen
uniformly at random fromP. Then the expected running time to estimaterp is
O(n logn ·

∑
p∈P rp/n) = O(n logn · E[rp]). We pick a random sample setS of

s = 100 logn/E[rp] points uniformly at random fromP. (The fact that we do not
know E[rp] can be dealt with by using a logarithmic number of guesses.) Then
we use our algorithm to compute for eachp ∈ S a valuêrp that approximatesrp

within a constant factor. Our algorithm outputsn
s ·
∑

p∈S r̂p as an estimate for the
cost of the facility location problem. Using Hoeffding bounds it is easy to prove
that n

s ·
∑

p∈S rp approximates
∑

p∈P rp = Optwithin a constant factor and with high
probability. Clearly, the same statement is true, when we replace therp values by
their constant approximationŝrp. Finally, we observe that expected running time
of our algorithm will beÕ(n/εO(1)). This allows us to conclude with the following.

Theorem 9. [10] There exists an algorithm that computes a constant factor
approximation to the cost of the metric uniform facility location problem in
O(n log2 n) time and with high probability.

4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsets (clusters) of similar char-
acteristics are one of the most fundamental problems in computer science, oper-
ations research, and related fields. Clustering problems arise naturally in various
massive datasets applications, including data mining, bioinformatics, pattern clas-
sification, etc. In this section, we will discuss theuniformly random samplingfor
clustering problems in metric spaces, as analyzed in two recent papers [20, 46].

Let us consider a classical clustering problem known as thek-median prob-
lem. Given a finite metric space (P,d), the goal is to find a setC ⊆ P of k centers
(points inP) that minimizes

∑
p∈P d(p,C), whered(p,C) denotes the distance from

p to the nearest point inC. Thek-median problem has been studied in numerous
research papers. It is known to beNP-hard and there exist constant-factor ap-
proximation algorithms running iñO(n k) time. In two recent papers [20, 46], the
authors asked the question about the quality of the uniformly random sampling
approach tok-median, that is, is the quality of the following generic scheme:
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(a) (b) (c)

Figure 2: (a) A set of points in a metric space, (b) its3-clustering (white points corre-
spond to the center points), and (c) the distances used in the cost for the3-median.

(1) choose a multisetS ⊆ P of sizes i.u.r. (with repetitions),
(2) run anα-approximation algorithmAα on inputS to compute a solutionC∗

(3) return setC∗ (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size sample setS will suffice to
obtain a good approximation guarantee. Furthermore, as observed in [46] (see also
[45]), in order to have any guarantee of the approximation, one has to consider the
quality of the approximation as a function of the diameter of the metric space.
Therefore, we consider a model with the diameter of the metric space∆ given,
that is, withd : P× P→ [0,∆].

Using techniques from statistics and computational learning theory, Mishra et

al. [46] proved that if we sample a setS of s= Õ
((
α∆
ε

)2
(k ln n+ ln(1/δ))

)
points

from P i.u.r. (independently and uniformly at random) and runα-approximation
algorithmAα to find an approximation of thek-median forS, then with probability
at least 1− δ, the output set ofk centers hasaverage distanceto the nearest center
of at most 2·α ·med(P, k)+ε, wheremed(P, k) denotes theaverage distanceto the
k-medianC, that is,med(P, k) =

∑
v∈P d(v,C)

n . We will now briefly sketch the analysis
due to Czumaj and Sohler [20] of a similar approximation guarantee but with a
smaller bound fors.

LetCopt denote an optimal set of centers forP and letcost(X,C) be the average
cost of the clustering of setX with center setC, that is,cost(X,C) =

∑
x∈X d(x,C)
|X| .

Notice thatcost(P,Copt) = med(P, k). The analysis of Czumaj and Sohler [20] is
performed in two steps.

(i) We first show that there is a set ofk centersC ⊆ S such thatcost(S,C) is a
good approximation ofmed(P, k) with high probability.

(ii) Next we show that with high probability, every solutionC for P with cost
much bigger thanmed(P, k) is either not a feasible solution forS (i.e.,C *
S) or cost(S,C) � α · med(P, k) (that is, the cost ofC for the sample setS
is large with high probability).
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SinceS contains a solution with cost at mostc·med(P, k) for some smallc,Aα
will compute a solutionC∗ with cost at mostα·c·med(P, k). Now we have to prove
that no solutionC for P with cost much bigger thanmed(P, k) will be returned, or
in other words, that ifC is feasible forS then its cost is larger thanα ·c·med(P, k).
But this is implied by (ii). Therefore, the algorithm will not return a solution with
too large cost, and the sampling is a (c · α)-approximation algorithm.

Theorem 10. [20] Let 0 < δ < 1, α ≥ 1, 0 < β ≤ 1 andε > 0 be approximation
parameters. If s≥ c·α

β
·
(
k+ ∆

ε·β
·
(
α · ln(1/δ) + k · ln

(
k∆α
ε β2

)))
for an appropriate

constant c, then for the solution set of centers C∗, with probability at least1− δ it
holds the following

cost(V,C∗) ≤ 2 (α + β) · med(P, k) + ε .

To give the flavor of the analysis, we will sketch (a simpler) part (i) of the
analysis:

Lemma 11. If s ≥ 3∆α(1+α/β) ln(1/δ)

β·med(P,k)
thenPr

[
cost(S,C∗) ≤ 2 (α + β) · med(P, k)

]
≥

1− δ.

Proof. We first show that if we consider the clustering ofS with the optimal set
of centersCopt for P, thencost(S,Copt) is a good approximation ofmed(P, k). The
problem with this bound is that in general, we cannot expectCopt to be contained
in the sample setS. Therefore, we have to show also that the optimal set of centers
for S cannot have cost much worse thancost(S,Copt).

Let Xi be the random variable for the distance of theith point inS to the nearest
center ofCopt. Then,cost(S,Copt) = 1

s

∑
1≤i≤s Xi, and, sinceE[Xi] = med(P, k),

we also havemed(P, k) = 1
s · E
[∑

Xi
]
. Hence,

Pr
[
cost(S,Copt) > (1+ β

α
) · med(P, k)

]
= Pr
[∑
1≤i≤s

Xi > (1+ β
α
) · E
[∑
1≤i≤s

Xi
]]
.

Observe that eachXi satisfies 0≤ Xi ≤ ∆. Therefore, by Chernoff-Hoeffding
bound we obtain:

Pr
[ ∑

1≤i≤s

Xi > (1+ β/α) · E
[ ∑

1≤i≤s

Xi
]]
≤ e−

s·med(P,k)·min{(β/α),(β/α)2}
3∆ ≤ δ . (2)

This gives us a good bound for the cost ofcost(S,Copt) and now our goal is to
get a similar bound for the cost of the optimal set of centers forS. Let C be the
set ofk centers inS obtained by replacing eachc ∈ Copt by its nearest neighbor
in S. By the triangle inequality,cost(S,C) ≤ 2 · cost(S,Copt). Hence, multiset
S contains a set ofk centers whose cost is at most 2· (1 + β/α) · med(P, k) with
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probability at least 1− δ. Therefore, the lemma follows becauseAα returns an
α-approximationC∗ of thek-median forS. ut

Next, we only state the other lemma that describe part (ii) of the analysis of
Theorem 10.

Lemma 12. Let s≥ c·α
β
·
(
k+ ∆

ε·β
·
(
α · ln(1/δ) + k · ln

(
k∆α
ε β2

)))
for an appropriate

constant c. LetC be the set of all sets of k centers C of P withcost(P,C) >
(2α + 6β) · med(P, k). Then,

Pr
[
∃Cb ∈ C : Cb ⊆ S andcost(S,Cb) ≤ 2 (α + β) med(P, k)

]
≤ δ . ut

Observe that comparing the result from [46] to the result in Theorem 10, The-
orem 10 improves the sample complexity by a factor of∆ · logn/ε while ob-
taining a slightly worse approximation ratio of 2 (α + β) med(P, k) + ε, instead of
2αmed(P, k) + ε as in [46]. However, since the polynomial-time algorithm with
the best known approximation guarantee hasα = 3 + 1

c for the running time of
O(nc) time [9], this significantly improves the running time of [46] for all realistic
choices of the input parameters while achieving the same approximation guaran-
tee. As a highlight, Theorem 10 yields a sublinear-time algorithm that in time
Õ((∆

ε
· (k + log(1/δ)))2) — fully independent of n— returns a set ofk centers for

which the average distance to the nearest median is at mostO(med(P, k)) + ε with
probability at least 1− δ.

Extensions. The result in Theorem 10 can be significantly improved if we as-
sume the input points are inEuclidean spaceRd. In this case the approximation
guarantee can be improved to (α + β) med(P, k) + ε at the cost of increasing the
sample size tõO( ∆·α

ε·β2
· (k d+ log(1/δ))).

Furthermore, a similar approach as that sketched above can be applied to study
similar generic sample schemes for other clustering problems. As it is shown in
[20], almost identical analysis lead to sublinear (independent onn) sample com-
plexity for the classicalk-means problem. Also, a more complex analysis can be
applied to study the sample complexity for themin-sum k-clustering problem[20].

4.4 Other Results

Indyk [37] was the first who observed that some optimization problems in metric
spaces can be solved in sublinear-time, that is, ino(n2) time. He presented (1

2 −ε)-
approximation algorithms for MaxTSP and the maximum spanning tree problems
that run inO(n/ε) time [37]. He also gave a (2+ ε)-approximation algorithm
for the minimum routing cost spanning tree problem and a (1+ ε) approximation
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algorithm for the average distance problem; both algorithms run inO(n/εO(1))
time.

There is also a number of sublinear-time algorithms for various clustering
problems in either Euclidean spaces or metric spaces, when the number of clus-
ters is small. For radius (k-center) anddiameter clusteringin Euclidean spaces,
sublinear-time property testing algorithms [1, 21] and tolerant testing algorithms
[48] have been developed. The first sublinear algorithm for thek-medianproblem
was a bicriteria approximation algorithm [37]. This algorithm computes inÕ(n k)
time a set ofO(k) centers that are a constant factor approximation to thek-median
objective function. Later, standard constant factor approximation algorithms were
given that run in timeÕ(n k) (see, e.g., [44, 50]). These sublinear-time results
have been extended in many different ways, e.g., to efficient data streaming al-
gorithms and very fast algorithms for Euclideank-median and also tok-means,
see, e.g., [9, 12, 16, 27, 35, 36, 41, 42, 45]. For another clustering problem, the
min-sum k-clustering problem(which is complement to the Max-k-Cut), for the
basic case ofk = 2, Indyk [39] (see also [38]) gave a (1+ ε)-approximation algo-
rithm that runs in timeO(21/εO(1)

n (logn)O(1)), which is sublinear in the full input
description size. No such results are known fork ≥ 3, but recently, [22] gave
a constant-factor approximation algorithm for min-sumk-clustering that runs in
time O(n k(k logn)O(k)) and a polylogarithmic approximation algorithm running
in time Õ(n kO(1)).

4.5 Limitations: What Cannot be done in Sublinear-Time

The algorithms discussed in the previous sections may suggest that many opti-
mization problems in metric spaces have sublinear-time algorithms. However, it
turns out that the problems listed in the previous sections are more like excep-
tions than a norm. Indeed, most of the problems have a trivial lower bound that
exclude sublinear-time algorithms. We have already mentioned in Section 4 that
the problem of approximating the cost of the lightest edge in a finite metric space
(P,d) requiresΩ(n2), even if randomization is allowed. The other problems for
which no sublinear-time algorithms are possible include estimation of the cost of
minimum-cost matching, the cost of minimum-cost bi-chromatic matching, the
cost of minimumnon-uniformfacility location, the cost ofk-median fork = n/2;
all these problems requireΩ(n2) (randomized) time to estimate the cost of their
optimal solution to within any constant factor [10].

To illustrate the lower bounds, we give two instances of the metric spaces
which are indistinguishable by anyo(n2)-time algorithm for which the cost of the
minimum-cost matching in one instance is greater thanλ times the one in the other
instance (see Figure 3). Consider a metric space (P,d) with 2n points,n points in
L andn points inR. Take a random perfect matchingM between the points inL
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(a) RL

1

1

1

1

1

1

d(e) = 1

(b) RL

1

1

1

1

1

1

d(e) = B

Figure 3:Two instance of the metric matching which are indistinguishable in o(n2) time
and whose cost differ by a factor greater thanλ. The perfect matching connecting L with
R is selected at random and the edge e is selected as a random edge from the matching.
We set B= n (λ − 1)+ 2. The distances not shown are all equal to n3 λ.

andR, and then choose an edgee ∈ M at random. Next, define the distance in
(P,d) as follows:

• d(e) is either 1 orB, where we setB = n (λ − 1)+ 2,

• for anye∗M \ {e} setd(e∗) = 1, and

• for any other pair of pointsp,q ∈ P not connected by an edge fromM,
d(p,q) = n3 λ.

It is easy to see that both instances define properly a metric space (P,d). For
such problem instances, the cost of the minimum-cost matching problem will de-
pend on the choice ofd(e): if d(e) = B then the cost will ben− 1+ B > nλ, and
if d(e) = 1, then the cost will ben. Hence, anyλ-factor approximation algorithm
for the matching problem must distinguish between these two problem instances.
However, this requires to find if there is an edge of lengthB, and this is known to
require timeΩ(n2), even if a randomized algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of the large body of research
known in the area of sublinear-time algorithms in such a short paper. In this
survey, our main goal was to give some flavor of the area and of the types of the
results achieved and the techniques used. For more details, we refer to the original
works listed in the references.

We did not discuss two important areas that are closely related to sublinear-
time algorithms: property testing and data streaming algorithms. For interested
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readers, we recommend the surveys in [7, 26, 30, 31, 40, 49] and [47], respectively.
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1 Introduction

Learning via the Fourier transform is a basic tool when learning in the PAC model
under the uniform distribution. It has been successfully applied to various natural
concept classes ranging from decision trees to constant depth circuits. The most
remarkable example is Jackson’s Harmonic Sieve algorithm [19] for learning DNF
formulas in polynomial time with membership queries. Learning via the Fourier
transform has thus provided a successful attack on the notoriously open problem
of learning DNF formulas in the distribution-free PAC model without membership
queries. The fastest known algorithm for this problem runs in time 2Õ(n1/3) [27].

The Fourier spectrum of Boolean functions has been first applied in theo-
retical computer science by Kahn, Kalai and Linial [22] to answer a question
posed by Ben-David and Linial [3] concerning the sensitivity of Boolean func-
tions. The first application in computational learning is due to Linial, Mansour
and Nisan [33]. The Fourier transform of a Boolean functionf can be regarded as
a representation off as a linear combination over the basis of all parity functions.
Each coefficient is given by the correlation betweenf and the corresponding basis
function. Learning can then be achieved through estimating the Fourier coeffi-
cients based on a sufficiently large sample off . For simple concept classes it
is often possible to establish a certain property of the concepts in terms of their
Fourier transform, which implies that each concept in the class can be approxi-
mated by paying attention to only a small part of its Fourier spectrum. The learn-
ing problem is then reduced to estimating the Fourier coefficients in the important
part of the spectrum.

In this column we concentrate on learning functions with properties which
can be expressed in terms of their Fourier spectrum. In a first part we review some
basic algorithms, starting with the ubiquitous low-degree algorithm of Linial et
al. [33]. Then we present the KM-algorithm of Kushilevitz and Mansour [30] for
finding all significant Fourier coefficients. Next we describe Jackson’s Harmonic
Sieve algorithm which combines the KM-algorithm with boosting, and finally we
present the more recent algorithm of Jackson et al. [20] which can be regarded
as a simplified Harmonic Sieve obtained by replacing the KM-algorithm by an
exhaustive search.

In a second part we concentrate on learning classes of monotone functions
based on sensitivity arguments, including Bshouty and Tamon’s work on mono-
tone functions [9], Servedio’s learnability result for monotone DNF [40], and the
very recent learning algorithm of O’Donnell and Servedio for monotone decision
trees [39] based on a sensitivity result due to Friedgut [14].

We do not make any attempt to be comprehensive. However, we do hope to
convince the reader that learning via the Fourier transform is a true success story
with no end in sight.
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2 Notation and basic facts

In this section we fix the notation and give formal definitions for some of the
concepts used in this paper. Further we state some basic facts for further reference.

Fourier Transform

We are interested in learning Boolean concept classes, i.e., each concept can be
represented as a Boolean functionf : {0,1}n → {true, false}. We denote the class
of all Boolean functions of arityn by Bn. If we identify true with 1 andfalse
with 0, thenBn forms a vector space of dimension 2n over the fieldF2. The
regular basis forBn consists of the 2n functionsterma(x), a ∈ {0,1}n, mapping
x to 1, if x = a, and to 0 otherwise. Clearly, any Boolean functionf ∈ Bn has a
unique representationf =

∑
a∈{0,1}n caterma with coefficientsca = f (a). For many

applications it is important to have a basis with the following useful properties.

(a) “Simple” functions should have small representations. E.g., if the value
of f is already determined by a small subset of its variables, then many
coefficients should vanish.

(b) Transforming f to a “similar” function f ′ (e.g., f ′(x) = f (x ⊕ a)) should
allow for an easy conversion of the coefficient representations of the two
functions.

By embeddingBn into a richer structure, namely the vector spaceR{0,1}
n
=

{ f : {0,1}n→ R} overR, these properties can be easily achieved. In fact, if we re-
quire from our basis{χa | a ∈ {0,1}n} that it contains the functionsχei (x) = (−1)xi

(in order to fulfill property (a)) and that all basis functionsχa have the property

χa(x⊕ b) = χa(x)χa(b), (1)

then also property (b) is fulfilled. This is easy to see, since for any functionf with
the representationf (x) =

∑
a∈{0,1}n caχa(x) it follows that the functionf⊕b(x) =

f (x⊕ b) has the representation

f⊕b(x) = f (x⊕ b) =
∑

a∈{0,1}n

caχa(x⊕ b) =
∑

a∈{0,1}n

caχa(x)χa(b), (2)

implying that the coefficientsc′a of f⊕b can be written asc′a = χa(b)ca. Property
(1) requires that the base functions are homomorphisms from the Abelian group
({0,1}n,⊕) to the multiplicative group (R∗, ·) of non-zero real numbers. It is easy
to show that exactly theparity functions

χa(x) = (−1)
∑n

i=1 ai xi , a ∈ {0,1}n
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have this property and that these functions indeed form a basis for the vector
spaceR{0,1}

n
. By identifying the vectora ∈ {0,1}n with the setS = {i ∈ [n] |

ai = 1}, where we use [n] to denote the set{1, . . . ,n}, we get the more convenient
representation

χS(x) = (−1)
∑

i∈S xi , S ⊆ [n].

More generally it can be shown that for any finite Abelian groupG the class of all
homomorphisms fromG to the multiplicative group (C∗, ·) of non-zero complex
numbers form a groupF (under multiplication, with the constant 1 function as
neutral element) that is isomorphic toG. Moreover, the functions inF form an
orthogonal basis for the vector spaceCG overC of all functions f : G → C. The
elements ofF are called thecharactersof G andF is called theFourier basisfor
CG.

In the caseG = ({0,1}n,⊕) all functionsχS in the Fourier basis are real-valued
and hence also form a basis for the subspaceR{0,1}

n
of all functionsf : {0,1}n→ R.

In fact, using the natural notion ofinner-product

〈 f ,g〉 = 2−n
∑

x∈{0,1}n

f (x)g(x) = E[ f (x)g(x)],

it is easy to verify that the Fourier basisF = {χS | S ⊆ [n]} forms an orthonormal
system of functions, i.e.

〈χS, χT〉 = E[χS(x)χT(x)] = E[χS∆T(x)] =

1, S = T,

0, otherwise,
(3)

implying that all parity functions have unit norm‖χS‖ = 1, where thenormof a
function f is induced by the inner-product using the rule

‖ f ‖ =
√
〈 f , f 〉 =

√
2−n
∑

x

f (x)2.

More generally, forp > 0 thep-normis defined as

‖ f ‖p = E[| f (x)|p]1/p =
(
2−n
∑

x

| f (x)|p
)1/p

and the∞-norm is
‖ f ‖∞ = max

x
| f (x)|.

Notice that the norm induced by the inner-product coincides with the 2-norm. We
remark for further use that for 0< p ≤ q ≤ ∞, ‖ f ‖p ≤ ‖ f ‖q. Since the Fourier
basis is orthonormal, theFourier coefficients f̂ (S) in theFourier expansion

f =
∑
S⊆[n]

f̂ (S)χS
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of f can be written as the inner-productf̂ (S) = 〈 f , χS〉 of f and the basis func-
tions χS. The function f̂ : 2[n] 7→ R mapping eachfrequency S⊆ [n] to the
corresponding Fourier coefficient f̂ (S) is called theFourier transformof f . A
crucial property off̂ is that if f does not depend on a variablexj, then all coef-
ficients f̂ (S) with j ∈ S vanish (cf. property (a)). Using (3) it follows for any
functions f ,g: {0,1}n→ R that

E[ f g] = E
[(∑

S f̂ (S)χS
)(∑

T ĝ(T)χT
)]
=
∑

S,T f̂ (S)ĝ(T)E[χSχT ]

=
∑

S f̂ (S)ĝ(S).

Hence, a further consequence of the orthonormality of the Fourier basis isParse-
val’s identitystating that

‖ f ‖2 =
∑

S

f̂ (S)2.

If we identify true with −1 andfalse with 1, i.e., if we letBn = { f : {0,1}n →
{−1,1}}, then Parseval’s identity implies that for a Boolean functionf ∈ Bn, the
squaresf̂ (S)2 of the Fourier coefficients of f sum up to 1 and thus induce a prob-
ability distribution on the frequencies. For a collectionG ⊆ 2[n] of frequencies we
refer to the “probability”

∑
S∈G f̂ (S)2 of G as theweight of the Fourier spectrum

of f on Gor simply asf ’s Fourier weight on G.
Clearly, by the linearity of the vector spaceR{0,1}

n
, the Fourier transform of

f + g is obtained as the sum̂f + g = f̂ + ĝ of the Fourier transforms off andg.
Hence, ifg is obtained from a functionf by removing all coefficients outsideG,
i.e.,g =

∑
S∈G f̂ (S)χS, then Parseval’s identity implies

‖ f − g‖2 =
∑

S

‖ f̂ − g(S)‖2 =
∑

S

‖ f̂ (S) − ĝ(S)‖2 =
∑
S<G

f̂ (S)2.

Notice thatg need not be Boolean. But it is easy to see that we can approximate
any real-valued functiong by the Boolean function

sgn(g(x)) =

 1, g(x) ≥ 0

−1, otherwise,

where
Pr[ f (x) , sgn(g(x))] ≤ ‖ f − g‖2.

We close this subsection with a useful inequality due to Beckner and Bonami
[2, 6]. For any realδ ∈ [0,1] let Tδ be the linear operator mapping a functionf
to the functionTδ( f ) =

∑
S δ
|S| f̂ (S)χS, i.e.,Tδ in some sense reduces the Fourier

weight of the high frequencies (where high means that|S| is large). The Beckner-
Bonami inequality states that‖Tδ( f )‖ ≤ ‖ f ‖1+δ2. Since for any functionf taking
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only values in the range{−1,0,1} we have‖ f ‖22 = ‖ f ‖
p
p for all p > 0, the Beckner-

Bonami inequality implies for such functions that

‖Tδ( f )‖2 ≤ ‖ f ‖21+δ2 =
(
‖ f ‖1+δ

2

1+δ2
)2/(1+δ2)

= (‖ f ‖2)2/(1+δ2). (4)

For further information and background on the Fourier transform of Boolean func-
tions we refer to [12, 42, 38, 10, 32].

Learning

We consider the well-known distribution-specific variant of Valiant’s Probably
Approximate Correct (PAC) learning model [43]. Letf be a Boolean function and
D be a distribution on the instance space{0,1}n. Forε > 0 we say that a Boolean
function h is an (ε,D)-approximationof f if PrD[h(x) , f (x)] ≤ ε, wherex is
chosen according toD. We useEX( f ,D) to denote an oracle which, when in-
voked, returns a randomlabeled example(x, f (x)) wherex is chosen according to
D. A concept class C⊆ Bn is learnable with respect to Dif there is a random-
ized learning algorithm Awhich, for all targets f ∈ C and parametersε, δ > 0,
when given inputsε, δ and oracle access toEX( f ,D), A(ε, δ,EX( f ,D)) outputs
with probability 1− δ a Boolean functionh which is an (ε,D)-approximation of
f . Here, the probability is taken over the random choices ofA and the random
labeled examples returned byEX( f ,D), where we assume that the random exam-
ples are selected independently from each other and from the random choices of
A.

We also considerweak learnability, where the hypothesish produced by the
learning algorithmA is only slightly more accurate than random guessing. For
γ > 0 we say that a Boolean functionh is a weak(γ,D)-approximationof f if
PrD[h(x) , f (x)] ≤ 1/2 − γ. Now a concept classC is weakly learnable with
advantageγ and with respect to Dif there is a learning algorithmA such that for
all f ∈ C and parametersγ, δ > 0, A(γ, δ,EX( f ,D)) outputs with probability 1− δ
a weak (γ,D)-approximation off .

If the learning algorithmA requires direct access to the oraclef rather than
EX( f ,D), then we say thatC is learnablewith membership queries. If D is the
uniform distribution, we generally omit the reference toD. For more background
on learning we refer to [24].

Prominent examples of natural concept classes aredecision treeswith a single
variable at each inner node,DNF formulas, andconstant depthAC0 circuits. Note
that every decision tree withm nodes can be transformed into a DNF formula
with at mostm terms, and that everym-term DNF formula can be regarded as a
constant depth AC0 circuit of sizem+ 1 and depth 2. For background on circuit
complexity we refer the reader to a standard textbook like [46]. For a discussion of
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the Fourier transform of these concept classes we refer to the excellent overview
of Mansour [35]. A more recent overview is provided by Jackson and Tamon’s
tutorial [21].

Probability Theory

For later use we state the following result to which we refer to as the Chernoff-
Hoeffding bound. LetX1, . . . ,Xm be independent random variables taking values
in the real interval [a,b] and having expectationE[Xi] = µ. Then for anyλ >
0, with probability at most 2e−2λ2m/(b−a)2

, the additive error of the estimate forµ
obtained by taking the arithmetic mean ofmobservations of the random variables
X1, . . .Xm is greater than or equal toλ,

Pr
[∣∣∣ 1

m

∑m
i=1 Xi − µ

∣∣∣ ≥ λ] ≤ 2e−2λ2m/(b−a)2
.

In other words, with confidence 1− 2e−2λ2m/(b−a)2
, the arithmetic mean provides a

λ-accurate estimate forµ.

Further Notation

We measure the closeness of two real-valued functionsf andg in terms of the
2-norm squared of the difference off andg. That is, we say thatf andg are
ε-close if ‖ f − g‖2 ≤ ε. Note that for Boolean functionsf andg it holds that
‖ f − g‖2 = 4 Pr[f (x) , g(x)] and hence,f andg areε-close if and only iff is an
(ε/4)-approximation ofg.

3 Basic algorithms

In this section we review some basic algorithms for learning via the Fourier trans-
form. We start with the low-degree algorithm of Linial et al. [33] and its appli-
cation to AC0 circuits. Next we present the KM-algorithm of Kushilevitz and
Mansour [30] which can be used to learn decision trees in polynomial time with
membership queries and its application to DNF formulas due to Mansour [36].
Then we describe Jackson’s Harmonic Sieve [20] which learns DNF formulas in
polynomial time with membership queries. Finally we brievly review the simple
exhaustive search algorithm of Jackson, Klivans and Servedio [20] which can be
applied to majorities over AC0 circuits.

3.1 The low-degree algorithm

The first application of Fourier analysis in computational learning theory is due
to Linial et al. [33]. The learning result is based on an upper bound for the 2-
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norm of f̂ restricted to high frequencies, where the bound depends on the circuit
complexity of f . So suppose thatf is a Boolean function satisfying∑

|S|>t

f̂ (S)2 ≤ ε.

For the real-valued functiong =
∑
|S|≤t f̂ (S)χS it follows by Parseval’s identity

that
‖ f − g‖2 =

∑
|S|>t

f̂ (S)2 ≤ ε,

which means thatf can beε-approximated by fading out the high frequenciesS
with |S| > t. This observation reduces the learning problem forf to the problem
of computing the Fourier coefficients f̂ (S) for all low-order frequenciesS with
|S| ≤ t.

This task can be accomplished by thelow-degree algorithmwhich is the most
fundamental algorithm in the context of learning via the Fourier transform. The
algorithm is presented in Figure 1. The simple but crucial observation is that
each coefficient f̂ (S) can be expressed as the expectationE[ f (x)χS(x)], wherex
is chosen uniformly at random. Thus each coefficient f̂ (S) can be accurately es-
timated with high confidence by drawing a sufficiently large sample fromEX( f ).
More specifically, the low-degree algorithm draws a polynomial number innt, 1/ε
and log 1/δ of labeled examples fromEX( f ) and computes for eachS of size at
most t an empirical estimateaS for f̂ (S). By applying the Chernoff-Hoeffding
bound it follows that with probability 1− δ, each estimateaS is within additive
errorλ = (ε/nt)1/2 from its expected valuêf (S). In this case the approximation
g =
∑
|S|≤t aSχS satisfies

‖ f − g‖2 =
∑

S

( f̂ (S) − ĝ(S))2 =
∑
|S|≤t

( f̂ (S) − aS)2 +
∑
|S|>t

f̂ (S)2

≤ ntλ2 + ε = 2ε,

and since Pr[sgn(g(x)) , f (x)] ≤ ‖ f − g‖2, it follows that the output hypothesis
h = sgn(g) is an (ε/2)-approximation off . The running-time is dominated by the
sample size and thus polynomial innt, 1/ε and log(1/δ).

Theorem 1. For any Boolean function f satisfying∑
|S|>t

f̂ (S)2 ≤ ε,

the low-degree algorithm on inputs t,ε, δ and access to EX( f ) outputs with prob-
ability 1− δ an O(ε)-approximation of f in timepoly(nt,1/ε, log(1/δ)).
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input: frequency boundt, accuracyε, confidenceδ and access toEX( f )
output: a Boolean functionh approximatingf

1. requestm= 2nt

ε
ln(2nt

δ
) labeled examples (xi , f (xi)) from EX( f )

2. for eachS ⊆ [n] with |S| ≤ t computeaS =
1
m

∑m
i=1 f (xi)χS(xi)

3. outputh = sgn(
∑
|S|≤t aSχS)

Figure 1: The low-degree algorithm

Let us remark for further reference, that the low-degree algorithm can be easily
generalized to Boolean functionsf satisfying

∑
S∈G f̂ (S)2 ≤ ε for an arbitrary

collectionG ⊆ 2[n] of frequencies, provided thatG is explicitly given as part of
the input. In this case, the running-time is poly(n, |G|,1/ε, log(1/δ)).

Based on Hastad’s Switching Lemma [17], Linial et al. [33] showed that for
any Boolean functionf which is computable by an AC0 circuit of depthd and size
M it holds that ∑

|S|>t

f̂ (S)2 ≤ 2M2−t1/d/20.

Applying the low-degree algorithm witht = O(log(M/ε)d) immediately yields the
following learning result.

Corollary 2. [33] The class ofAC0 circuits of depth d and size M over n variables
is learnable in time

poly(nlog(M/ε)d
, log(1/δ)).

Since anm-term DNF formula is computable by a circuit of sizem + 1
and depth 2 it further follows thatm-term DNF formulas are learnable in time
poly(nlog(m/ε)2

, log(1/δ)).
By a result due to Kharitonov [25], Corollary 2 cannot be significantly im-

proved under a plausible cryptographic assumption. However, as we will see in
Section 3.4, the exponentd can be reduced tod − 1. This will imply thatm-term
DNF formulas are in fact learnable in time poly(nlog(m/ε), log(1/δ)).

3.2 The KM-Algorithm

For sufficiently simple functions it is sometimes possible to bound the 1-norm
of the Fourier transform. A nice example provide decision trees, for which the
1-norm of the Fourier transform can be bounded by the number of nodes in the
tree by fairly elementary methods [30]. So suppose thatf is a Boolean function
satisfying

‖ f̂ ‖1 ≤ k.
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Coef(S, k):

1. if k = n and C(S, k) ≥ θ2 then return ({S})

2. if k < n and C(S, k) ≥ θ2 then

return (Coef(S, k+ 1)∪ Coef(S ∪ {k+ 1}, k+ 1))

3. return (∅)

Figure 2: The recursive procedure Coef

Then clearly, ∑
| f̂ (S)|≤ε/k

f̂ (S)2 ≤ (ε/k)
∑

| f̂ (S)|≤ε/k

f̂ (S) ≤ ε,

which means thatf can beε-approximated by ignoring the small Fourier coeffi-
cients having absolute value at mostε/k. This observation reduces the learning
problem for f to the problem of finding all frequenciesS whose Fourier coeffi-
cients are larger in absolute value than some given thresholdθ.

This problem can be solved by an algorithm of Goldreich and Levin [16]
which is a key ingredient in their proof that parity functions are hard-core predi-
cates for one-way functions. The algorithm has been first applied in the learning
setting by Kushilevitz and Mansour [30]. The idea behind the algorithm is best
described in terms of the recursive procedure Coef given in Figure 2, which can
be regarded as a depth-first search on the binary tree of depthn. Here, each node
is given by its levelk ∈ [n] and a setS ⊆ [1, k], where we use the notation [m,n]
to describe the set{m, . . . ,n}. In each node (S, k) we consider the sum

C(S, k) =
∑

T⊆[k+1,n]

f̂ (S ∪ T)2.

If k = n, then Coef has reached at a leaf of the tree, and since in this caseC(S, k) =
f̂ (S)2, the procedure returnsS if and only ifC(S, k) ≥ θ2. If (S, k) is an inner node
with C(S, k) < θ2, then there is no setT ⊆ [k+1,n] with | f̂ (S∪T)| ≥ θ. Thus there
is no need to further explore the subtree of this node. Otherwise, Coef recursively
continues the search with the two children (S, k+1) and (S∪{k+1}, k+1) of (S, k).
Invoking Coef with the root node (∅,0), the procedure returns the collection of all
frequencies corresponding to Fourier coefficients with an absolute value greater
thanθ.

Concerning the number of recursive calls performed by Coef, first note that
by Parseval’s identity,∑

S⊆[1,k]

C(S, k) =
∑
S⊆[n]

f (S)2 = ‖ f ‖2 = 1,
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implying that in each levelk there are at most 1/θ2 nodes (S, k) with C(S, k) ≥ θ2.
Thus, the total number of recursive calls can be bounded byn/θ2. The main
algorithmic difficulty, however, is the computation of the sumsC(S, k). This can
be solved by expressingC(S, k) as a nested expectation. More precisely, consider
the functiong: {0,1}n−k → R which maps a suffix x ∈ {0,1}n−k to the expectation
Ey[ f (yx)χS(y)] for a uniformly chosen prefixy ∈ {0,1}k. For any prefixy ∈ {0,1}k

andT ⊆ [k+1,n] we haveχS∪T(z) = χS∆T(z) = χS(y)χT(x), wherez= yx. Hence,

f̂ (S ∪ T) = Ez[ f (z)χS∪T(z)] = Ex
[
Ey[ f (yx)χS(y)χT(x)]

]
= Ex[g(x)χT(x)],

implying that f̂ (S∪ T) = ĝ(T). Now, by using Parseval’s identity, we can express
C(S, k) as

C(S, k) =
∑

T⊆[k+1,n]

ĝ(T)2 = Ex[g(x)2] = Ex
[
Ey[ f (yx)χS(y)]2]

for uniformly chosenx ∈ {0,1}n−k andy ∈ {0,1}k. By applying the Chernoff-
Hoeffding bound, this means that we can estimateC(S, k) by first estimating the
inner expectation for a small number of random suffixesx and then estimate the
outer expectation as the average sum of the squared estimates for the inner ex-
pectation. For each given suffix x, the estimate for the inner expectation can be
obtained from a small number of valuesf (yx) for random prefixesy, which can
be obtained by asking the oraclef . By using sufficiently accurate estimates of
C(S, k) it can be shown that with high probability, the modified search still runs
in polynomial time and returns a set containing all frequenciesS with | f̂ (S)| ≥ θ.
Furthermore, each frequencyS in the set satisfies| f̂ (S)| = Ω(θ), which by Parse-
val’s identity implies that the number of frequencies in the returned collection is
at mostO(1/θ2).

Lemma 3. [30] There is a randomized algorithm A such that for each Boolean
function f and thresholdθ > 0, A(θ, δ, f ) outputs with probability1−δ a collection
G ⊆ 2[n] of size O(1/θ2) containing all frequencies S with| f̂ (S)| ≥ θ. A runs in
timepoly(n,1/θ, log(1/δ)).

As observed by Jackson [19] the algorithm of Lemma 3 can also be applied to
real-valued functionsf : {0,1}n → R. In this case, the number of recursive calls
of the procedure Coef is bounded by‖ f ‖n/θ2 rather thann/θ2. Further notice
that the confidence in the Chernoff-Hoeffding bound depends on the range of the
random variables whose mean we want to estimate. In casef is real-valued, the
range of these random variables is [−‖ f ‖2∞, ‖ f ‖

2
∞] rather than [−1,1], implying that

the number of labeled examples fromf needed to estimateC(S, k) additionally
depends on the parameter‖ f ‖∞. Since‖ f ‖ ≤ ‖ f ‖∞, the running-time becomes
polynomial inn, 1/θ, log(1/δ) and‖ f ‖∞. Let us state this extension to real-valued
functions for later use.
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Lemma 4. [19] There is a randomized algorithm A such that for each function
f : {0,1}n → R satisfying‖ f ‖∞ ≤ k and thresholdθ > 0, A(θ, δ, k, f ) outputs with
probability1−δ a collection G⊆ 2[n] containing all frequencies S with| f̂ (S)| ≥ θ.
A runs in timepoly(n, k,1/θ, log(1/δ)).

Coming back to Boolean functionsf ∈ Bn satisfying‖ f̂ ‖1 ≤ k, we can use the
algorithm of Lemma 3 to find a small collectionG containing all frequenciesS for
which | f̂ (S)| ≥ ε/k in time poly(n, k,1/ε, log(1/δ)), and then use the generalized
low-degree algorithm onG to output anO(ε)-approximation off . This algorithm
is known as theKushilevitz-Mansour algorithm, or simplyKM-algorithm, and we
state its properties in the following theorem.

Theorem 5. [30] For each Boolean function f satisfying‖ f̂ ‖1 ≤ k, the KM-
algorithm, given inputs k,ε, δ and oracle access to f , outputs with probability
1− δ an O(ε)-approximation of f in timepoly(n, k,1/ε, log(1/δ)).

As already mentioned at the beginning of this section, any Boolean function
f computable by a decision tree withm nodes satisfies‖ f̂ ‖1 ≤ m. Thus, the KM-
algorithm learns decision trees in polynomial time, although, a disadvantage of
this result is that membership queries are needed.

Corollary 6. [30] The class of decision trees with m nodes is learnable with mem-
bership queries in timepoly(n,m,1/ε, log(1/δ)).

For some applications, it is more convenient to consider thesparsenessof a
Boolean functionf . This property is closely related to the 1-norm off̂ . We say
that a functionf is k-sparse, if the support{S ⊆ [n] | f̂ (S) , 0} of f̂ has size at
mostk. Clearly, if f is k-sparse then‖ f̂ ‖1 ≤ k. On the other hand, if‖ f̂ ‖1 ≤ k,
then f is ε-close to the functiong =

∑
| f̂ (S)|>ε/k f̂ (S)χS. By Parseval’s identity, the

number of frequenciesS with | f̂ (S)| > ε/k is less thank2/ε2. Hence it follows
that g is (k2/ε2)-sparse. We call a Boolean function (ε, k)-sparseif it is ε-close
to ak-sparse function. It is not hard to show (see [30]) that for any (ε, k)-sparse
function f , ∑

| f̂ (S)|≤ε/k

f̂ (S)2 ≤ ε + ε2/k.

Thus, the KM-algorithm is applicable to (ε, k)-sparse Boolean functions.

Corollary 7. [30] For each(ε, k)-sparse function f , the KM-algorithm given in-
puts k,ε, δ and oracle access to f outputs an O(ε)-approximation of f in time
poly(n, k,1/ε, log(1/δ)).

Mansour [36] showed that each DNF with terms of size at mostd is (ε, k)-
sparse fork = dO(d log(1/ε)). By an argument attributed to Warmuth in [44],



68 68

68 68

BEATCS no 89 THE EATCS COLUMNS

60

every m-term DNF is ε-close to a DNF with terms of size at most log(m/ε)
(by simply ignoring all terms of size larger than log(m/ε)). Hence, anm-term
DNF f is ε-close to a (ε, k)-sparse function fork = (log(m/ε))O(log(m/ε) log(1/ε)) =

(m/ε)O(log log(m/ε) log(1/ε)), which by the triangle inequality implies thatf itself is
(O(ε), k)-sparse.

Corollary 8. [36] The class of m-term DNF formulas is learnable with member-
ship queries in timepoly(n, (m/ε)log log(m/ε) log(1/ε),1/ε, log(1/δ)).

3.3 The Harmonic Sieve

In the last section we described a quasipolynomial-time learning algorithm for
DNF formulas based on the sparseness of these functions. Another property of
the Fourier transform ofm-term DNF is that the∞-norm can be lower bounded
in terms of m [4]. This property provides the basis for Jackson’s celebrated
polynomial-time learning algorithm for DNF formulas which we present in this
section. So, for a Boolean functionf satisfying

‖ f̂ ‖∞ ≥ γ,

assume thatS is a frequency withf̂ (S) ≥ γ. Expressing the coefficient f̂ (S) in
terms of the probability thatf (x) , χS(x),

f̂ (S) = E[ f (x)χS(x)] = 1− 2 Pr[f (x) , χS(x)],

it follows that

Pr[ f (x) , χS(x)] ≤
1− f̂ (S)

2
.

This means that the functionf can be weakly (γ/2)-approximated by a single
parity functionχS or its negation−χS, where we useχS if f̂ (S) is positive, and
its negation otherwise. The corresponding frequencyS can be found by the KM-
algorithm with high probability in time poly(n,1/γ), and the sign off̂ (S) can be
easily determined by estimatinĝf (S) within additive error less thanγ. Thus, for
anyγ > 0 and every Boolean functionf satisfying‖ f̂ ‖∞ ≥ γ we can produce with
high probability a weakΩ(γ)-approximation off in time poly(n,1/γ), provided
that we have access to the oraclef .

This reasoning can be generalized to arbitrary distributionsD by using the
crucial observation that the correlationED[ fχS] betweenf and a parityχS with
respect toD can be expressed as the correlationE[ fD(x)χS(x)] between the real-
valued functionfD(x) = 2nD(x) f (x) andχS with respect to the uniform distribu-
tion. Thus,ED[ f (x)χS(x)] = E[ fD(x)χS(x)] coincides with the Fourier coefficient
f̂D(S) of the functionfD, implying that

Pr
D

[ f (x) , χS(x)] ≤
1− f̂D(S)

2
.
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input: γ, ε > 0 and a weak learning algorithmA
output: a Boolean functionh approximatingf

1. i ← 0;

2. while |Mi | > ε2n do
run A to produce a weak (γ,Di)-approximationhi;
i ← i + 1;

3. return h = sgn(
∑i

j=0 hj(x))

Figure 3: The IHA-boosting algorithm

If we now assume that‖ f̂D‖∞ ≥ γ (rather than‖ f̂ ‖∞ ≥ γ), then f can be weakly
(γ/2,D)-approximated by a single parity functionχS or its negation. Further, on
input γ, the corresponding frequencyS with | f̂D(S)| = Ω(γ) can be found by the
algorithm of Lemma 4 using oracle access tofD.

Lemma 9. There is a randomized algorithm A such that for each distribution
D and Boolean function f satisfying‖ f̂D‖∞ ≥ γ and ‖ fD‖∞ ≤ k, A(k, γ, δ, fD)
outputs with probability1 − δ a weak (Ω(γ),D)-approximation of f in time
poly(n, k,1/γ, log(1/δ)).

Boosting [41] is a well-known technique to transform a weak learner into a
strong learner. The technique can be most easily described in the distribution-
free setting, where we assume that the weak learner produces a weak (γ,D)-
approximation of the targetf for any distributionD. With respect to some fixed
but unknown target distributionD, the boosting algorithm runs the weak learner
several times with respect to different distributionsDi, which forces the weak
learner to perform well on different regions of the instance space. The result-
ing weak (γ,Di)-approximations are then combined in some way to produce a
strong (ε,D)-approximation off . Obviously, the oracle access tof required by
the boosting algorithm depends on how the weak learner accesses the oracle. If
the weak learner asks membership queries, then also the boosting algorithm needs
to ask membership queries. If the weak learner needs only access toEX( f ,Di),
then it is usually possible to apply a filtering technique in order to simulate the
EX( f ,Di) oracle by asking queries toEX( f ,D). This means that each example
(x, f (x)) drawn fromEX( f ,D) is discarded by the boosting algorithm with a cer-
tain probability depending on (x, f (x)) andDi, and only the remaining examples
are passed on to the weak learner.

There are several boosting strategies which mainly differ in how the distribu-
tions Di are defined, and in how the final hypothesis is obtained from the weak
hypotheses. TheIHA-boosting algorithm(see Figure 3) uses a particularly well-
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suited boosting strategy which is based on a construction of a hard-core distribu-
tion due to Impagliazzo [18]. The boosting ability of this construction has been
pointed out by Klivans and Servedio [26]. In order to achieve strong learning with
respect to the uniform target distribution, the IHA-boosting algorithm uses the
following distributionsDi. Suppose that the weak learning algorithm has already
produced the hypothesesh0, . . . ,hi−1 for somei ≥ 0, and leth = sgn(

∑i−1
j=0 hj(x))

denote the majority vote of these hypotheses. First consider themargin

Ni(x) = f (x)
i−1∑
j=0

hj(x),

by whichh agrees with the targetf on an instancex. Note thath disagrees with
f on x only if Ni(x) is negative. Next we define ameasure Mi on the instance
space{0,1}n which assigns weight 0 to the instances with large margin, weight 1
to the instances with negative margin, and intermediate weights to instances with
non-negative but small margin. More precisely,

Mi(x) =


0, Ni(x) ≥ 1/γ,

1, Ni(x) ≤ 0,

1− γNi(x), otherwise.

Notice thatM0(x) = 1 for all x. The distributionDi is now obtained by standard-
izing the measureMi by theweight|Mi | =

∑
x Mi(x) of Mi,

Di(x) =
Mi(x)
|Mi |
.

Whenever the IHA-boosting algorithm is going to run the weak learnerA, it first
checks whether the measureMi satisfies|Mi | ≤ ε2n. Observe that the current
majority voteh disagrees withf on x only if Ni(x) ≥ 0. In this caseMi(x) = 1 and
hence the approximation error ofh can be bounded by

Pr[h(x) , f (x)] ≤ 2−n
∑

x

Mi(x) = 2−n|Mi |.

Thus, the condition|Mi | ≤ ε2n guarantees that the boosting algorithm has found
the desiredε-approximation off .

Impagliazzo [18] showed that the abort condition|Mi | ≤ ε2n is met after at
mostO(1/γ2ε2) runs ofA. Since for allx we have thatDi(x) ≤ 1/|Mi |, the∞-
norm of the distributionsDi is bounded by 1/|Mi | and hence the weak learnerA is
run only on distributionsDi satisfying‖2nDi‖∞ ≤ 1/ε.

An algorithmic difficulty is the computation of the exponentially large sum
|Mi | which is required to check the abort condition. This difficulty can be over-
come by first expressing 2−n|Mi | as the expected valueE[Mi(x)] for a uniformly
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chosenx. Then we only have to observe that a random example (x,Mi(x)) can be
easily obtained from a random example (x, f (x)). Furthermore,Mi(x) takes only
values in the range [0,1]. Hence, with high probability we can get an accurate
estimate for 2−n|Mi | by drawing a small sample fromEX( f ). Now, by using an es-
timate rather than the exact value of 2−n|Mi |, it is easy to adjust the abort condition
so that (1) the outputh is still anε-approximation off and (2) the modified abort
condition can still be met after at mostO(1/γ2ε2) runs ofA with distributionsDi,
where (3) eachDi still satisfies‖2nDi‖∞ = O(1/ε).

Now suppose thatf is a Boolean function satisfying forall distributionsD the
bound

‖ f̂D‖∞ ≥ γ.

TheHarmonic Sievefor learning f , as suggested in [26], runs the IHA-boosting
algorithm1 based on the weak learnerA provided by Lemma 9. Recall thatA
produces with sufficiently high probability a weak (Ω(γ),Di)-approximation of the
target f in time poly(n, k,1/γ, log(1/δ)), provided thatA gets an upper boundk on
the∞-norm of fDi and has access to the oraclefDi . Further, recall thatfDi is defined
as fDi (x) = 2nDi(x) f (x) and each distributionDi satisfies‖2nDi‖∞ = O(1/ε).
Hence,‖ fDi‖∞ = O(1/ε) and we can easily provideA with the required boundk.
The resulting running time ofA becomes poly(n,1/γ,1/ε, log(1/δ)).

The remaining obstacle is the fact that the boosting algorithm cannot provide
the weak learner with the exact values offDi (x). However, it can compute an
accurate approximation offDi (x) = 2nMi(x)/|Mi | by using the already calculated
estimate for 2−n|Mi | together with the valueMi(x). Note that the latter value can
be exactly computed fromf (x) by using a single membership query tof . It can
be shown that using a sufficiently accurate approximation offDi does not have a
significant impact on the learning ability ofA (cf. [19]). Thus, with high proba-
bility, A indeed produces in each iteration a weak (Ω(γ),Di)-approximation off
which can be used by the boosting algorithm to produce anε-approximation. The
running time of the Harmonic Sieve is roughlyO(1/γ2ε2) times the time required
for each simulation ofA which is poly(n,1/γ,1/ε, log(1/δ)). Thus, the Harmonic
Sieve achieves the following performance.

Theorem 10. (cf. [19]) For each Boolean function f satisfying for all distribu-
tions D the bound‖ f̂D‖∞ ≥ γ, the Harmonic Sieve on inputsε, γ, δ and oracle
access to f outputs with probability1 − δ an O(ε)-approximation of f in time
poly(n,1/ε,1/γ, log(1/δ)).

Jackson [19] showed that for everym-term DNF f and for all distributions
D on {0,1}n it holds that‖ f̂D‖∞ = maxS |ED[ fχS]| ≥ 1/(2m + 1). Hence, the

1In [19], Jackson used the F1 boosting algorithm of Freund [13].
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Harmonic Sieve can be used to efficiently learn DNF formulas with membership
queries.

Corollary 11. [19] The class of m-term DNF formulas is learnable with member-
ship queries in timepoly(n,m,1/ε, log(1/δ)).

We notice that in therandom walk model[1], the need for membership queries
can be avoided by using theBounded Sieveof Bshouty and Feldman [7]. The ran-
dom walk model is a variant of the PAC model where the examples are generated
by performing a random walk on the cube (hence, they are not independent). The
idea is to search for large coefficients by performing a breadth-first search on the
Boolean hypercube rather than a depth-first search on the binary tree. Using the
crucial property that the Fourier spectrum of a DNF provides a large coefficient
within the low-order spectrum, Bshouty et al. [8] showed that the Bounded Sieve
can be used to efficiently learn DNF formulas in the random walk model. This
property of DNF formulas will also play an important role in the next subsection.

3.4 Exhaustive Search

The main drawback of the Harmonic Sieve is its need for membership queries
which are used by the underlying KM-algorithm to guide the search for large
coefficients. The expensive use of membership queries can be avoided, if the low-
order spectrum of the target contains a large coefficient. More precisely, letf be
a Boolean function satisfying for each distributionD the bound

max
|S|≤t
| f̂D(S)| ≥ γ.

Then f can be weakly (γ/2,D)-approximated by a single parity functionχS or its
negation where|S| ≤ t. Hence, it suffices to perform an exhaustive search over all
frequenciesS with |S| ≤ t; similar to the low-degree algorithm. This immediately
yields the following weak learning result.

Lemma 12. [20] There is a randomized algorithm A such that for each distribu-
tion D and Boolean function f satisfyingmax|S|≤t | f̂D(S)| ≥ γ, A(t, γ, δ,EX( f ,D))
outputs with probability1 − δ a weak (Ω(γ),D)-approximation of f in time
poly(nt,1/γ, log(1/δ)).

Applying the IHA boosting algorithm to the weak learning algorithm of
Lemma 12, we can exploit the fact that the boosting algorithm only uses dis-
tributionsDi with ‖2nDi‖∞ = O(1/ε). This yields the following strong learning
resultwithoutmembership queries.
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Theorem 13. [20] There is a randomized algorithm A such that for each Boolean
function f satisfying for all distributions D with‖2nD‖∞ = O(1/ε) the bound
max|S|≤t | f̂D(S)| ≥ γ, A(t, γ, ε, δ,EX( f )) outputs with probability1 − δ an ε-
approximation of f in timepoly(nt,1/ε,1/γ, log(1/δ)).

An MAC0 circuit consists of a majority-gate over a polynomial number of
AC0 circuits. Jackson et al. [20] showed that for every distributionD and for
every Boolean functionf computable by an MAC0 circuit of sizeM and depthd
it holds that

max
|S|≤t
| f̂D(S)| = Ω(1/Mnt),

where t = O(log(M‖2nD‖∞))d−1. In particular, t = O(log(M/ε))d−1 for every
distributionD satisfying‖2nD‖∞ ≤ 1/ε. Thus we get the following improvement
of Corollary 2.

Corollary 14. [20] The class ofMAC0 circuits of size M and depth d is learnable
in time

poly(nO(log(M/ε))d−1
, log(1/δ)).

By Corollary 14 it immediately follows thatm-term DNF formulas are learn-
able in time poly(nO(log(m/ε)), log(1/δ)) without membership queries. Let us remark
that a similar result already has been obtained by Verbeurgt [44], though by using
a different approach.

An algorithm similar to the one in Theorem 13 can also be applied in the
model ofstatistical queries[23]. In this model it is possible to obtain̂f (S) within
additive errorτ by asking a single statistical query. The parameterτ is called the
toleranceof the query. It can be shown thatm-term DNF formulas are learnable
with nO(log(m/ε)) statistical queries, provided thatτ−1 = poly(m/ε) [28]. This has
been improved toτ−1 = O(m/ε) in [31]. Interestingly, learningm-term DNF
formulasrequires nΩ(log(m)) statistical queries as long as the tolerance is sufficiently
large [4].

3.5 Problems

Let us close this section by highlighting some important problems and sugges-
tions for further research concerning the learnability of DNF formulas without
membership queries. For the sake of clarity of exposition we omit the reference
to the parametersε andδ.

Clearly, the ultimate goal is to achieve the analogue of Jackson’s learnability
result for DNF formulas without using membership queries.

Problem 15. Are m-term DNF formulas learnable in timepoly(n,m)?
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Less ambiguous, but still a major break-through would be a polynomial-time
learning algorithm for DNF formulas with a non-constant numberm(n) of terms.
In Section 4.3 we will present an algorithm which achieves this goal for the
subclass of monotone DNF formulas with running-time poly(n, (mlogn)ϕ(m)) for
ϕ(m) =

√
mlog(m).

Problem 16. Is the class of m-term DNF formulas learnable in time
poly(n, (mlogn)ϕ(m)), whereϕ does not depend on n?

In Section 3.4 we saw thatm-term DNF formulas are learnable in time
poly(nlogm). This is the best known learning result for generalm-term DNF with-
out membership queries. So even an improvement to poly(n(logm)α) for someα < 1
would be very interesting.

As a first step towards solving Problem 16, one might attack the easier problem
of learning decision trees instead of DNF formulas.

Problem 17. Is the class of decision trees with m nodes learnable in time
poly(n, (mlogn)ϕ(m)), whereϕ does not depend on n?

As we will see in section 4.4, the subclass of monotone decision trees withm
nodes is learnable in time poly(n,m).

4 Monotone functions and influence

The sensitivity of a Boolean functionf is a measure of how stronglyf (x) reacts
to a change of its variables. It is closely related to the notion of influence of single
variables on the value off . Interestingly, the sensitivity (as well as the influence)
can be expressed in terms of the Fourier coefficients of f yielding good approxi-
mations for functions having low sensitivity. This approach works especially well
for monotone functions, since in this case, the influence values of the individual
variablesx1, . . . , xn constitute the Fourier spectrum on the singleton frequencies
{x1}, . . . , {xn}.

In this section we review some important learning results for monotone
Boolean functions that are based on sensitivity arguments, including Bshouty and
Tamon’s [9] work on monotone functions, Servedio’s learnability result for mono-
tone DNF [40], and the very recent learning algorithm of O’Donnell and Servedio
for monotone decision trees [39]. We start with a discussion of the influence and
sensitivity of a Boolean functionf .

Influence and sensitivity

The concept of influence of a variable on a Boolean function was introduced by
Ben-Or and Linial [3]. Letf be a Boolean function onn variablesx1, . . . , xn. The
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influence Ij( f ) of xj on f is defined as the probability that flipping thej-th bit in a
uniformly at random chosen assignmentx = (x1, . . . , xn) changes the value off .
More formally,

I j( f ) = Pr[ f (x) , f (x⊕ ej)],

wherex is uniformly at random chosen from{0,1}n andej denotes the assignment
0j−110n− j−1. The total influenceof f is defined asI ( f ) =

∑
j I j( f ). It is easy to

see thatI ( f ) equals the average sensitivity off on all assignmentsx ∈ {0,1}n,
where thesensitivityof f on x = (x1, . . . , xn) is defined as the number of bits inx
whose flipping causesf to change its value. Note thatI ( f ) further coincides with
the fraction of edges in the Boolean hypercube that connect assignmentsx and
x′ having different values underf . Let us consider the influence of some basic
functions.

• The dictatorship functionχi maps (x1, . . . , xn) 7→ (−1)xi . Clearly,I j(χi) = 1
if i = j, andI j(χi) = 0 otherwise. Hence, the dictatorship function has total
influenceI (χi) = 1.

• The influence of a single variablexj on the parity functionχ[n] is I j(χ[n]) = 1
and hence the total influenceI (χ[n]) sums up ton.

• The influence ofxj on the majority function MAJn is

I j(MAJn) =
(

n−1
bn/2c

) /
2n−1 ,

implying that I (MAJn) <
√

2n/π for n ≥ 2. In fact, it is not hard to show
(e.g., see [15]) that for any monotonen-ary Boolean functionf , I ( f ) ≤
I (MAJn) implying I ( f ) <

√
2n/π. We will prove a slightly weaker bound in

Proposition 20.

• The influence of ak-junta, i.e., of a functionf depending only on a fixed set
R of at mostk variables, is clearly bounded byI ( f ) ≤ k, since all variables
xj with j < Rhave influenceI j( f ) = 0.

As has been observed in [22], the influence ofxj on a Boolean functionf
coincides with the weight of the Fourier spectrum on all frequencies containing
j. In fact, sincef̂⊕y(S) = χS(y) f̂ (S) (cf. Equation (2) in Section 2), the function
f j = ( f − f⊕ej )/2 has the coefficients

f̂ j(S) =
f̂ (S) − f̂⊕ej (S)

2
=

f̂ (S) − χS(ej) f̂ (S)

2
=

 f̂ (S), j ∈ S

0, otherwise.
(5)

From Parseval’s identity it follows that

I j( f ) = E[| f j |] = E[ f 2
j ] = 2−n

∑
x

f j(x)2 =
∑

S

f̂ j(S)2 =
∑

S : j∈S

f̂ (S)2.
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Proposition 18. For any Boolean function f ,

I j( f ) = ‖ f j‖
2 =
∑

S : j∈S

f̂ (S)2.

Hence, the total influence is I( f ) =
∑

S |S| f̂ (S)2.

For monotonef , the influenceI j( f ) coincides with the Fourier coefficient f̂ ( j).
Here we adopt the convention thatf is calledmonotone, if flipping any 0-bit in
x to 1 does not change the value off (x) from true to false (recall thattrue is
represented by the number−1 andfalse by 1). For a bitb ∈ {0,1} we usef j,b to
denote the Boolean functionf j,b(x) = f (x1, . . . , xj−1,b, xj+1, . . . ,n). Now it is easy
to see that

| f − f⊕ej | = ( f j,0 − f j,1) = ( f − f⊕ej )χ j ,

and hence, using (5), the influence ofxj evaluates to

I j( f ) = E

[
| f − f⊕ej |

2

]
=

E[ fχ j − f⊕ejχ j]

2
=

f̂ ( j) − f̂⊕ej ( j)

2
= f̂ j( j) = f̂ ( j).

Proposition 19. For any monotone Boolean function f ,

I j( f ) = f̂ ( j).

Hence, the total influence is I( f ) =
∑

j f̂ ( j).

Letting R = { j ∈ [n] | I j( f ) > 0} be the set of relevant variables off and
denoting the number of relevant variables byk, it follows from Cauchy-Schwarz’s
inequality and Parseval’s identity that

I ( f )2 =
(∑

j∈R

I j( f )
)2
≤ k
∑
j∈R

I j( f )2 = k
∑
j∈R

f̂ ( j)2 ≤ k.

Hence the total influence of a monotone function can be bounded as follows.

Proposition 20. For any monotone k-junta f ,

I ( f ) ≤
√

k.

4.1 Monotone Boolean functions

As we have seen, the low-degree algorithm succeeds on all targets having small
weight on the high frequencies of their Fourier spectrum. As we will see in the
proof of following proposition, the high frequency weight can be bounded in terms
of the influence. Thus, a small bound on the influence guarantees a good perfor-
mance of the low-degree algorithm.
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Proposition 21. Let f be a Boolean function satisfying I( f ) ≤ l. Then∑
|S|≥l/ε

f̂ (S)2 ≤ ε.

Proof. We can bound the high frequency weight for any boundt as follows.∑
|S|≥t

f̂ (S)2 ≤
∑
|S|≥t

|S| f̂ (S)2/t ≤
∑

S

|S| f̂ (S)2/t = I ( f )/t.

Hence, the claim follows by choosingt = l/ε.

By applying the low-degree algorithm, Proposition 21 immediately yields the
following theorem.

Theorem 22. There is a randomized algorithm A such that for each Boolean
function f satisfying I( f ) ≤ l, A(l, ε, δ,EX( f )) outputs with probability1 − δ an
O(ε)-approximation for f in timepoly(nl/ε, log(1/δ)).

By Proposition 20, for a monotone functionf we have the boundI ( f ) ≤
√

n,
which immediately yields the following learning result of Bshouty and Tamon.

Corollary 23. [9] The class of monotone Boolean functions is learnable in time
poly(n

√
n/ε, log(1/δ)).

In Section 4.4 we will present an algorithm for monotone Boolean functions
running in time poly(n,2(l/ε)2

) rather than poly(nl/ε) as in Theorem 22.

4.2 Monotone juntas

By Proposition 20 we know that the influence of a monotonek-junta is bounded by√
k. Hence, the algorithm of Theorem 22 finds a low degreeO(ε)-approximation

g for f in time poly(n
√

k/ε, log(1/δ)). Bshouty and Tamon [9] observed that by ig-
noring variables of sufficiently small influence, the running-time can be improved
to poly(k

√
k/ε, log(1/δ)).

For a boundθ ≥ 0 let

R(θ) = { j ∈ [n] | I j( f ) > θ}

denote the set of variables having influence greater thanθ. Then it is easy to bound
the Fourier weight of ak-junta on the frequencies containing at least one variable
of small influence.



78 78

78 78

BEATCS no 89 THE EATCS COLUMNS

70

Proposition 24. For any k-junta f ,∑
S*R(ε/k)

f̂ (S)2 ≤ ε.

Proof. Since for ak-junta the number|R| of relevant variables is bounded byk and
since each variablexj with j < R(θ) has influenceI j( f ) ≤ θ, it follows that∑

S*R(θ)

f̂ (S)2 ≤
∑
j<R(θ)

∑
S : j∈S

f̂ (S)2 =
∑

j∈R−R(θ)

I j( f ) ≤ θk.

Hence, the claim follows by choosingθ = ε/k.

In the following we will frequently consider the collection of all frequenciesS
of order at mostt containing only variables having influence greater thanθ, which
we denote by

G(θ, t) = {S ⊆ R(θ) | |S| ≤ t}.

The following proposition shows that ak-junta f with influenceI ( f ) ≤ l can be
O(ε)-approximated by taking only the coefficients corresponding to frequencies
insideG(ε/k, l/ε).

Proposition 25. Let f be a k-junta satisfying I( f ) ≤ l. Then∑
S<G(ε/k,l/ε)

f̂ (S)2 ≤ 2ε.

Proof. Using Propositions 21 and 24 it immediately follows that∑
S<G(ε/k,l/ε)

f̂ (S)2 ≤
∑

S*R(ε/k)

f̂ (S)2 +
∑
|S|≥l/ε

f̂ (S)2 ≤ 2ε.

If f is monotone, we can collect all variables having large influence by es-
timating the Fourier coefficients of all singleton frequencies. More precisely, in
order to find all variablesxj having influenceI j( f ) ≥ θ, we compute estimatesaj

for the Fourier coefficients f̂ ( j) by drawing sufficiently many examples from the
oracleEX( f ) and collect all variablesxj with aj ≥ 3θ/4. Then, with high proba-
bility, we get all variablesxj with I j( f ) ≥ θ and no variablesxj with I j( f ) ≤ θ/2.
This algorithm has been calledFind-Variables by Servedio [40].

Proposition 26. For each monotone Boolean function f ,Find-Variables
on inputs θ, δ and access to EX( f ), outputs with probability1 − δ in time
poly(n,1/θ, log(1/δ)) a set R∗ with R(θ) ⊆ R∗ ⊆ R(θ/2).
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In order to compute anε-approximation for a monotonek-junta f , we first use
Find-Variables with θ = ε/k to obtain with high probability a variable setR∗ ⊆
R(ε/2k) containing all variablesxj with I j( f ) ≥ ε/k. SinceR∗ ⊆ R(ε/2k) implies
thatR∗ contains only relevant variables, the size ofG∗ = {S ⊆ R∗ | |S| ≤ l/ε} is
polynomial inkl/ε. Hence, we can apply the generalized low-degree algorithm to
get the following learning result for monotonek-juntas having small influence.

Theorem 27. There is a randomized algorithm A such that for each monotone
k-junta f with I( f ) ≤ l, A(k, l, ε, δ,EX( f )) outputs with probability1− δ an O(ε)-
approximation for f in timepoly(n, kl/ε, log(1/δ)).

Corollary 28. [9] The class of monotone k-juntas is learnable in time

poly(n, k
√

k/ε, log(1/δ)).

4.3 Monotone functions that are close to juntas

By refining the arguments used in the preceding subsection we will now see that
the generalized low-degree algorithm also succeeds on monotone Boolean func-
tions that are sufficiently close to a monotonek-junta [9]. As a consequence,
the generalized low-degree algorithm (in conjunction withFind-Variables) be-
comes applicable to monotonem-term DNF formulas.

We call a functionf an (ε, k)-junta, if f is ε-close to ak-junta. We first show
that for an (ε, k)-junta, the number of variablesxj having influenceI j( f ) ≥ ε is
bounded byk.

Proposition 29. For any(ε, k)-junta, |R(ε)| ≤ k.

Proof. Let h be ak-junta that isε-close tof . Observe that for any variablexj with
I j(h) = 0 it holds that̂h(S) = 0 if j ∈ S. Hence,

I j( f ) =
∑

S : j∈S

f̂ (S)2 =
∑

S : j∈S

( f̂ (S) − ĥ(S))2 ≤ ‖ f − h‖2 ≤ ε.

This shows that any variable inR(ε) must be relevant forh.

In the next proposition we bound the weight of the high order Fourier spectrum
of f under the assumption thatf is close to some functiong with a small weight
on this region.

Proposition 30. For any function f that isε-close to some Boolean function g
with
∑
|S|≥t ĝ(S)2 ≤ ε, ∑

|S|≥t

f̂ (S)2 ≤ 4ε.
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Proof. Using the inequalityf̂ 2 = ( f̂ − ĝ+ ĝ)2 ≤ 2( f̂ − ĝ)2+2ĝ2 (Cauchy-Schwarz)
it follows that∑

|S|≥t

f̂ (S)2 ≤ 2
∑
|S|≥t

( f̂ (S) − ĝ(S))2 + 2
∑
|S|≥t

ĝ(S)2 ≤ 4ε.

Now assume thatf is an (ε/n, k)-junta with the additional property that it is
ε-close to some Boolean functiong whose Fourier weight on the frequenciesS
with |S| ≥ t is bounded byε. Then by using Proposition 24 withk = n as well as
Proposition 30, it follows that the frequency collectionG(ε/n, t) has the property∑

S<G(ε/n,t)

f̂ (S)2 ≤
∑

S*R(ε/n)

f̂ (S)2 +
∑
|S|≥t

f̂ (S)2 = O(ε).

This means thatf can beO(ε)-approximated by using only Fourier coefficients
corresponding to frequencies inG(ε/n, t). Since by Proposition 29 the size of
R(ε/n) is bounded byk, it further follows that the size ofG(ε/n, t) is bounded by
kt. Thus we can use the algorithmFind-Variables to compute a supersetR∗ of
R(ε/2n) containing only variables inR(ε/n) in order to get the following learning
result.

Theorem 31. There is a randomized algorithm A such that for each monotone
(ε/n, k)-junta f that isε-close to some Boolean function g with

∑
|S|≥t ĝ(S)2 ≤ ε,

A(k, t, ε, δ,EX( f )) outputs with probability1 − δ an O(ε)-approximation for f in
timepoly(n, kt, log(1/δ)).

Since by Proposition 21,I (g) ≤ l implies that the Fourier weight ofg on
the frequenciesS with |S| > l/ε is bounded byε, we also obtain the following
corollary.

Corollary 32. There is a randomized algorithm A such that for each monotone
(ε/n, k)-junta f that isε-close to some Boolean function g with influence I(g) ≤ l,
A(k, l, ε, δ,EX( f )) outputs with probability1 − δ an O(ε)-approximation for f in
timepoly(n, kl/ε, log(1/δ)).

Since for anyε > 0, anm-term DNF is an (ε,mlog(m/ε))-junta, Corollary 32
implies the following learning result for monotonem-term DNF, which is in fact
a consequence of a stronger result from [9].

Corollary 33. [9] The class of monotone m-term DNF formulas is learnable in
time

poly(n, (mlog(n/ε))
√

mlog(m/ε)/ε, log(1/δ)).

Hence, for m= O((logn)2/(log logn)3) and constantε, monotone m-term DNF
formulas are learnable in polynomial time.



81 81

81 81

The Bulletin of the EATCS

73

Servedio [40] used a bound of Mansour [36] to show that anym-term
DNF f is ε-close to a Boolean functiong satisfying

∑
|S|>t ĝ(S)2 ≤ ε for t =

O(log(m/ε) log(1/ε)). By Theorem 31, this implies the following exponential im-
provement of Corollary 33.

Corollary 34. [40] The class of monotone m-term DNF formulas is learnable in
time

poly(n, (mlog(n/ε))log(m/ε) log(1/ε), log(1/δ)).

Hence, monotone O(2
√

logn)-term DNF formulas are learnable in polynomial
time.

4.4 Monotone functions with bounded influence

Sincek-juntas have low influence, it is clear that all functions that are sufficiently
close to somek-junta also must have low influence. As shown by Friedgut [14],
also the converse is true: any Boolean functionf having low influence must be
close to ak-junta wherek only depends on the influence and not on the arity of
f . More precisely, ifI ( f ) ≤ l then f is a (ε,2O(ε/l))-junta. Very recently, this
relationship has been used by O’Donnell and Servedio [39] to demonstrate the
applicability of the generalized low-degree algorithm to the class of monotone
decision trees.

The proof of Friedgut’s result yields the following approximability result for
Boolean functions with bounded influence.

Proposition 35. [14] For any Boolean function f with I( f ) ≤ l,∑
S<G(θ,t)

f̂ (S)2 = O(ε),

whereθ = (ε2−l/ε/l)3 and t= l/ε.

Proof. For a givenεwe want to derive a bound onθ such that at most anε fraction
of the weight of the Fourier spectrum off is outside of the collectionG(θ, t). Let
H = {S ⊆ [n] | S * R(θ) ∧ |S| < t} and note thatS < G(θ, t) implies that either
|S| ≥ t or S ∈ H. Now it follows by Proposition 21 that∑

S<G(θ,t)

f̂ (S)2 ≤
∑
|S|≥t

f̂ (S)2 +
∑
S∈H

f̂ (S)2 ≤ ε +
∑
S∈H

f̂ (S)2,

Hence, it suffices to chooseθ small enough such that the Fourier weight off onH
is bounded byO(ε). Using Beckner-Bonami (cf. inequality (4) in Section 2) and
letting H j = {S ⊆ [n] | j ∈ S ∧ |S| < t} it follows for each positionj that∑

S∈H j

2−t f̂ (S)2 ≤
∑

S : j∈S

2−|S| f̂ (S)2 = ‖T1/
√

2 f j‖
2 ≤ (‖ f j‖

2)4/3 = I j( f )4/3,
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implying that
∑

S∈H j
f̂ (S)2 ≤ 2tI j( f )4/3. Note that for eachS ∈ H there is some

j < R(θ) such thatS ∈ H j. Hence, summing up and using the boundsI ( f ) ≤ l and
I j( f ) ≤ θ for all j < R(θ) we get∑

S∈H

f̂ (S)2 ≤
∑
j<R(θ)

∑
S∈H j

f̂ (S)2 ≤
∑
j<R(θ)

2tI j( f )4/3 ≤ 2tθ1/3
∑

j

I j( f ) ≤ 2tθ1/3l.

Thus, choosingθ = (ε2−t/l)3 yields the desired bound. Sincet = l/ε, the size of
R(θ) is bounded byl/θ = l423l/ε/ε3 = 2O(l/ε) and it follows that the size ofG is
bounded by 2O(l/ε)2

.

As an immediate consequence we can state the following learning result.

Theorem 36. There is a randomized algorithm A such that for each monotone
Boolean function f with I( f ) ≤ l, A(l, ε, δ,EX( f )) outputs with probability1 − δ
an O(ε)-approximation for f in timepoly(n,2(l/ε)2

, log(1/δ)).

As shown by O’Donnell and Servedio [39], any Boolean functionf com-
putable by a decision tree of sizem has the property that

∑
i f̂ (i) ≤

√
logm. If f

is monotone, this implies thatI ( f ) =
∑

i f̂ (i) ≤
√

logm.

Corollary 37. [39] The class of monotone decision trees of size m is learnable in
time

poly(n,m(1/ε)2
, log(1/δ)).

Hence, for constantε, monotone decision trees are learnable in polynomial time.

4.5 Problems

Let us conclude with some interesting problems concerning the learnability of
monotone DNF formulas and juntas. As in Section 3.5 we omit the parametersε
andδ for clarity reasons.

Monotone DNF

In the light of O’Donnell and Servedio’s efficient learning algorithm for monotone
decision trees [39] an interesting question to ask is whether this result can be
extended to monotone DNF formulas.

Problem 38. Are monotone m-term DNF formulas learnable in timepoly(n,m)?

It is further shown in [39] that the influence boundI ( f ) ≤
√

logm cannot be
extended to monotonem-term DNF formulas or even to functionsf that are com-
putable bybothanm-term DNF as well as by anm-clause CNF. Thus, Problem 38
cannot be solved by solely relying on Theorem 36.
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The currently best learning algorithm for monotonem-term DNF is the one of
Corollary 34 due to Servedio [40] which runs in time poly(n, (mlogn)ϕ(m)) where
ϕ(m) = logm. It would be very interesting to improve this result to an algorithm
havingfixed parameterized complexityin the sense of Downey and Fellows [11].

Problem 39. Are monotone m-term DNF formulas learnable in time
poly(n, ϕ(m)), whereϕ does not depend on n?

Juntas

As we saw in Section 4.2, the analogue of Problem 39 for monotonek-juntas has
been solved by Bshouty and Tamon [9] by providing an algorithm running in time
poly(n, ϕ(k)) for ϕ(k) = k

√
k (cf. Corollary 28). An immediate question is whether

this can be extended to general juntas.

Problem 40. Are k-juntas learnable in timepoly(n, ϕ(k)), whereϕ does not de-
pend on n?

We want to emphasize that Problem 40 is a very important question whose
answer would have immediate applications to the learnability of DNF formulas (as
every DNF formula is close to a junta) as well as to the important area offeature
selection(cf. [5]). In fact, Mossel et al. [37] consider the problem of learning
juntas as the single most important problem in uniform distribution learning. A
slightly less ambiguous goal is to learnk-juntas in time poly(n, (k logn)ϕ(k)). This
would imply that juntas with a non-constant numberk(n) of relevant variables are
learnable in polynomial time.

The currently best learning algorithm fork-juntas is due to Mossel et al. [37]
and runs in timeO(nαk) for someα < 0.7. So even an improvement to anα < 0.5
would be a significant progress.

Problem 41. Are k-juntas learnable in time O(nαk) for someα < 0.5?

For the special case of symmetric juntas, Mossel et al. [37] used a result of von
zur Gathen and Roche [45] to bound the running-time bynαk for someα < 2/3.
The analogue of Problem 41 for symmetric juntas has been solved by Lipton et
al. [34] by providing an algorithm with running-timeO(nαk) for α = 3/31. This
bound has been subsequently improved toO(nk/ logk) in [29].
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1 Introduction

Timed and hybrid systems. Timed automata are a well-established and widely
used model for representing real-time systems. Since theirdefinition by Alur
& Dill in the 90’s [3], many works have investigated this model, both from a
theoretical and an algorithmic point of view. Several toolshave been developed
for model-checking timed automata [12, 27] and have been used for verifying
industrial case studies.

Hybrid automata can be seen as an extension of timed automata, but they have
in fact been defined and studied roughly at the same time [19].Though most
verification problems for this model are undecidable, many works are devoted to
its study, by providing for instance decidable subclasses or approximation algo-
rithms.

Control of timed and hybrid systems. To deal withopensystems,i.e. systems
interacting with an environment (which is the case for most embedded systems),
model-checking may not be sufficient, and we better need tocontrol (or guide)
the system so that it satisfies the specification, whatever the environment does.
More formally, thecontrol problemasks, given a systemS and a specificationϕ,
whether there exists a controllerC such thatS guided byC satisfiesϕ (see [30,
31] for initial papers on the control of discrete event systems). Since the mid-
90’s, work on the control of real-time systems is flourishing(see all references
mentioned along this paper).

Positioning of this survey. In the literature, several formalisations of the con-
trol problem have been proposed, some of them are based on a two-player game
formulation where the “controller” plays against the “environment”. Mostly, re-
sults in one framework can be translated into another framework, but care needs
however to be taken. In this paper we focus on “control games”, an asymmetric
formulation where the “environment” player is somehow morepowerful than the
“controller” player (the controller has to fix his strategy,and this strategy has to be
winning whatever the environment does). This is a frameworkrelated to the one
considered for instance in [15, 16, 9, 8]. A very close framework based on control
maps is considered also in [4, 21]. In the literature, we can find more “concurrent”
(and thus symmetric) formulations where both players independently choose a de-
lay and an action to be performed after that delay, and actioncorresponding to the
shortest delay is done [1], or a joint play is obtained with these two choices [20].

Outline of the paper. In Section 2, we will present basic notions on timed sys-
tems. In Section 3, we define the problem of control for timed systems we will
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consider, and explain how the basic safety and reachabilitycontrol problems can
be solved for the class of timed automata. We also shortly explain for which other
external specifications languages (like timed automata, temporal logics, etc.) we
can solve the control problem. In the previous section, there is an (implicit) hy-
pothesis that the controller has complete information on the system. This is a
restrictive hypothesis, which we relax in Section 4: under apartial observabil-
ity assumption, the control problem becomes very difficult, and even the simplest
control problems (reachability and safety) become undecidable, except if we re-
strict the resources of the controller. In Section 5, we briefly give some results
concerning the control of two subclasses of hybrid systems,namely rectangular
hybrid automata and o-minimal hybrid automata. We finally give some conclu-
sions and mention some current challenges in Section 6.

2 Timed Automata

2.1 Preliminaries

Timed words. Let R≥0 be the set of non-negative reals andQ≥0 be the set of
non-negative rational numbers. LetΣ be a finite alphabet. Atimed wordover
Σ is a (possibly infinite) sequenceσ = (a1, τ1)(a2, τ2) . . . overΣ × R≥0 such that
τi ≤ τi+1 for every 1≤ i < |σ| (where|σ| denotes the (possibly infinite) length of
σ). If σ is infinite, it isnon-Zenoif the sequence{τi}i∈N is unbounded.

Clocks, operations on clocks. We consider a finite setX of variables, called
clocks. A valuationoverX is a mappingv : X→ R≥0 which assigns to each clock
a time value inR≥0. We noteVX (or V when it is clear from the context) the
set of valuations overX. We use~0 to denote the valuation which sets each clock
x ∈ X to 0. If t ∈ R≥0, the valuationv+ t is defined as (v+ t)(x) = v(x) + t for all
x ∈ X. If Y is a subset ofX, the valuationv[Y ← 0] is defined as: for each clock
x, (v[Y← 0])(x) = 0 if x ∈ Y and (v[Y← 0])(x) = v(x) otherwise.

The set of(clock) constraints(or guards) over a set of clocksX, denotedG(X),
is given by the syntax “g ::= x ∼ c | g∧ g” where x ∈ X, c ∈ Q≥0 and∼ is one
of the comparison operators<, ≤, =, ≥, or >. We writev |= g if the valuationv
satisfies the clock constraintg, and is given byv |= x ∼ c if v(x) ∼ c andv |= g1∧g2

if v |= g1 andv |= g2. The set of valuations overX which satisfy a guardg ∈ G(X)
is denoted by~g�X, or simply~g� whenX is clear from the context.

Timed automata [2, 3]. A timed automaton(TA for short) is a 6-tupleA =
(Σ,X,Q, q0,−→, Inv) whereΣ is a finite alphabet of actions,X is a finite set of
clocks,Q is a finite set of states,q0 ∈ Q is the initial state,−→ ⊆ Q × G(X) ×
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Σ × 2X × Q is a finite set of transitions, andInv : Q → G(X) assigns an in-
variant to every state. The timed automatonA is said to bedeterministicif
(q, g1, a,Y1, q1), (q, g2, a,Y2, q2) ∈ −→ implies ~g1� ∩ ~g2� = ∅. The class of
deterministic timed automata is denoted DTA.

A configuration ofA is a pair (q, v) whereq ∈ Q andv si a valuation over the
set of clocksX. The timed automatonA defines a timed transition system, made
of timed and discrete transitions. Atimed transitioninA is a transition of the form
(q, v)

t
−→ (q, v+t) where for every 0≤ t′ ≤ t, v+t′ |= Inv(q). A discrete transitionin

A is a transition of the form (q, v)
a
−→ (q′, v′) when there exists (q, g, a,Y, q′) ∈ −→

such thatv |= g∧ Inv(q), v′ = v[Y← 0], andv′ |= Inv(q′).
A run of A starting in (q1, v1) is a finite or infinite sequence of transitions

ρ = (q1, v1)
t1
−→ (q′1, v

′
1)

a1
−→ (q2, v2)

t2
−→ · · · , which alternates between timed and

discrete transitions. We will sometimes equivalently write it ρ = (q1, v1)
a1,t1
−−−→

(q2, v2)
a2,t2
−−−→ · · · . We write tw(ρ) the timed word associated to the runρ, that is

the finite or infinite sequence (a1, t1)(a2, t2) · · · . If ρ is finite and ends in (qn, vn)
we writeLast(ρ) = (qn, vn). We writeRuns(A) (resp.Runsf(A)) the set of runs
(resp. finite runs) inA. We say thata ∈ Σ is enabledin (q, v) if there exists (q′, v′)
such that (q, v)

a
−→ (q′, v′). We say thatλ (a symbol used to express time elapsing)

is enabled in (q, v) if there exists (q′, v′) andt > 0 such that (q, v)
t
−→ (q′, v′). We

write Enabled((q, v)) the subset ofΣ ∪ {λ} of actions orλ enabled in (q, v).
The scrupulous reader may have noticed that we did not include an accept-

ing condition to timed automata. This is for simplicity, butwhen necessary (for
instance in Subsection 3.3), we will assume that there is an accepting condition
in timed automata, for instance a setF of accepting states for finite words, or a
set ofR of repeated states for defining a Büchi condition for infinitewords (and
we could consider more general accepting conditions like Muller, Rabin or parity
conditions). Acceptance of a timed word is defined classically and we writeL(A)
the set of timed words accepted byA.

2.2 Region automaton

Theregion automatonR(A) of a timed automatonA is a finite automaton, which
abstracts timed behaviours of a timed automaton into (untimed) behaviours. This
abstraction has been proposed by Alur & Dill in [2, 3] for deciding language
emptiness of timed automata. Indeed, each state of the region automaton is a class1

of an equivalence relation≡A (of finite index) over configurations which is atime-
abstract bisimulation: if (q1, v1) ≡A (q2, v2) and (q1, v1)

a
−→ (q′1, v

′
1) with a ∈ Σ,

then there exists (q2, v2)
a
−→ (q′2, v

′
2) such that (q′1, v

′
1) ≡A (q′2, v

′
2); if (q1, v1) ≡A

1called aregion.
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(q2, v2) and (q1, v1)
t1
−→ (q′1, v

′
1) for somet1 > 0, then there existst2 > 0 such that

(q2, v2)
t2
−→ (q′2, v

′
2) and (q′1, v

′
1) ≡A (q′2, v

′
2). We will not enter into more details

and better refer to [3] for the description of the region automaton construction.
However it is worth mentioning that this construction is thecore of numerous
decidability results for the model of timed automata.

3 Control of Timed Automata

3.1 The control problem

Several formulations of the control problem can be found in the literature. It is
sometimes defined as a game between acontrollerand a (possibly nasty)environ-
ment. The formulation we consider in this paper is an asymmetric game where the
environment is more powerful than the controller.

We define the control problem for a timed system given as a timed automaton,
but it could be easily generalized to other kinds of systems.A plant is a timed
automatonA = (Σ,X,Q, q0,−→, Inv) where the alphabetΣ is partitioned into two
subsetsΣc andΣu corresponding respectively to controllable and uncontrollable
actions. Intuitively, the controller will be able to perform controllable actions,
whereas the environment will be able to perform uncontrollable actions.

A controller strategy(or simply astrategy) is a partial functionf from the
setRunsf(A) to 2Σc∪{λ} such that for every finite runρ such thatf (ρ) is defined,
f (ρ) ⊆ Enabled(Last(ρ)) and f (ρ) , ∅. The strategyf tells precisely what the
controller has to do: iff (ρ) ⊆ Σc, then a discrete controllable action off (ρ) has
to be done, whereas ifλ ∈ f (ρ), then it is possible to delay (or a discrete action
of f (ρ) can be done as well). Note that a strategy is not deterministic as it may
propose a set of actions inΣc ∪ {λ}. In the literature, several other notions of
strategies can be found.

A run ρ = (q1, v1)
a1,t1
−−−→ (q2, v2)

a2,t2
−−−→ · · · is saidcompatible with a strategy

f if for all i, writing ρi = (q1, v1)
a1,t1
−−−→ · · ·

ai−1,ti−1
−−−−−→ (qi , vi) we have that for all

0 ≤ t′ ≤ ti, λ ∈ f (ρi
t′
−→ (qi, vi + t′)), and if ai ∈ Σc, ai ∈ f (ρi

ti
−→ (qi , vi + ti)). A

maximal run w.r.t a strategy f(or simplymaximal runwhen f is clear from the

context) is either an infinite run or a run which satisfies: forall t ≥ 0, if ρ
t
−→ (q, v)

thenλ ∈ f (ρ
t
−→ (q, v)).

A strategyf is saidrealizableif for every finite runρ such thatλ ∈ f (ρ), there

existsδ > 0 such that for all 0≤ t < δ if ρ
t
−→ (q, v) thenλ ∈ f (ρ

t
−→ (q, v)). This

notion of realizability has been defined in [8] to avoid strategies which have no
compatible run, but is relevant for most control problems.
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Given a plantA, a specificationS for A is a subset ofRuns(A). Intuitively
it corresponds to the desired behaviours of the plant. In thefollowing, we will
consider special cases of specifications such as reachability objectives, safety ob-
jectives, or external specifications.

If A is a plant andS a specification forA, a strategyf is winning from a
configuration (q,v)if all maximal runs starting in (q, v) compatible withf are in
the setS. A configuration (q, v) is saidwinning if there is a realizable winning
strategy from (q, v).

We can now formally define the control problem:

Problem (Control problem). Given a plantA, a specificationS and an initial
configuration (q, v), determine if there is a realizable winning strategy from (q, v).

A natural further question is to (effectively) construct winning strategies, if
one exists. In the rest of the paper, we will not devote much time to that subject,
though it is sometimes a non-trivial one.

3.2 Reachability and safety control

In this subsection, we consider two natural types of specifications: reachability
and safety properties. Intuitively, for a reachability specification, the goal for the
controller is to reach a set of good states, whereas for a safety specification, the
controller has to avoid a set of bad states.

LetA = (Σ,X,Q, q0,−→, Inv) be a plant, and letGoodandBad be two subsets
of Q, we define the two following specifications:















SGood = {ρ = (q1, v1)
a1,t1
−−−→ (q2, v2)

a2,t2
−−−→ · · · | ∃i qi ∈ Good}

SBad = {ρ = (q1, v1)
a1,t1
−−−→ (q2, v2)

a2,t2
−−−→ · · · | ∀i qi < Bad}

Problem (Reachability control problem). Given a plantA, a set of statesGood
and an initial configuration (q, v), determine if there is a realizable winning strat-
egy from (q, v) for the specificationSGood.

Problem (Safety control problem). Given a plantA, a set of statesBad and an
initial configuration (q, v), determine if there is a realizable winning strategy from
(q, v) for the specificationSBad.

We now explain how to solve reachability and safety control problems in the
timed framework [4]. A way of computing winning states for these specifications
is to compute theattractor of goal states by iterating acontrollable predecessor
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operator. This is a classical method in the theory of classical (untimed) games for
computing winning states [18].

LetA be a plant. We define the controllable and uncontrollable discrete pre-
decessors of a set of configurationsA ⊆ Q×V as follows:

cPred(A) =























(q, v) ∈ Q×V

|
|
|
|
|

∃c ∈ Σc, c is enabled in (q, v),
and∀(q′, v′) ∈ Q×V,

(q, v)
c
−→ (q′, v′)⇒ (q′, v′) ∈ A























uPred(A) =

{

(q, v) ∈ Q×V
|
|
|

∃u ∈ Σu, ∃(q′, v′) ∈ Q×V s.t.

(q, v)
u
−→ (q′, v′) and (q′, v′) ∈ A

}

The setcPred(A) is the set of configurations from which we can enforce a
configuration ofA by doing a controllable action. The setuPred(A) is the set
of configurations from which the environment can do an uncontrollable action
which leads to a configuration inA. In the untimed (finite-state) framework, these
two operators are sufficient to define the set of configurations from which we can
enforce the setA in one step, this isπ(A) = cPred(A) \ uPred(A). Then, starting
from the set of configurations which are good, and iterating the operatorπ, we
can compute the set of configurations from which we can enforce the set of states
Good. Similarly (or dually), we can also compute the set of configurations from
which we can avoid the set of statesBad. Note that in the untimed framework,
these two problems are dual.

In the timed framework, these two discrete controllable anduncontrollable
predecessors are not sufficient, and we need to define a time controllable prede-
cessor operator of a setA of configurations: a state (q, v) is in π(A) if and only if
(1) it is possible to lett time units elapse for somet ≥ 0 and use a controllable
action to reachA and no uncontrollable action played before or att leads outside
A; or (2) A can be reached by just letting time elapse and no uncontrollable action
leads outsideA. Formally the operatorπ is defined as follows:

π(A) =



































(q, v) ∈ Q×V

|
|
|
|
|

∃t (q, v)
t
−→ (q′, v′), (q′, v′) ∈ cPred(A),

andPost[0,t](q, v) ∩ uPred(A) = ∅;
or ∃t Post[t,+∞)(q, v) ⊆ A,

andPost[0,+∞)(q, v) ∩ uPred(A) = ∅



































wherePostI (q, v) = {(q, v+ t) ∈ Inv(q) | t ∈ I } with I interval ofR≥0.

We now contruct an increasing and a decreasing version ofπ to solve respec-
tively reachability and safety control:πreach(A) = A∪π(A) andπsafe(A) = A∩π(A).
We noteπ∗reach(Good) = lim

k→+∞
πk

reach(Good) andπ∗safe(Bad) = lim
k→+∞
πk

safe(Bad).
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Proposition 1 ([4]). LetA be a plant, letGood (resp. Bad) a set of good (resp.
bad) states. The set of winning states for the reachability specificationSGood is
π∗reach(Good), whereas the set of winning states for the safety specificationSBad is
π∗safe(Bad).

From this characterization of the set of winning states, we can deduce an al-
gorithm for computing the set of winning states for reachability and safety spec-
ifications: indeed it is easy to show that whenA is a union of regions (see Sub-
section 2.2), thenπ(A) is a union of region and can be effectively computed. So
the fixed pointsπ∗reach(Good) andπ∗safe(Bad) of πreachandπsafe respectively can be
computed after a finite number of iterations: the set of winning states can thus be
effectively computed.

Example.We develop a short example to illustrate how the controllable predeces-
sor operator acts. We assumeΣc = {c}, Σu = {u}, and the following plant with
Good= {q3}:

q0 q1 q3

q2

c, y := 0

y > 2, u

x > 2, c

y > 1, u

Figure 1: A plant to control

The computation of the fixed point is the following (we noteG the set of good
configurations we want to enforce,i.e. G= {(q3, (x, y)) | x ≥ 0 andy ≥ 0}):



















πreach(G) = G ∪ {(q1, (x, y)) | y ≤ 1 andx− y > 1}
π2

reach(G) = πreach(G) ∪ {(q0, (x, y)) | y ≤ 2 andy− x < 1}
π∗reach(G) = π2

reach(G)

The set of states from which the controller can enforce stateq3 is thusπ∗reach(G),
as described above. Thus, the initial configuration (q0, ~0) is winning. �

From the above fixed point computation, we can extract winning strategies
(like in the untimed framework [18]). However, strategies which are extracted
that way may not be realizable: this is for instance the case in the previous ex-
ample where the extracted strategy says “λ” on (q1, (x = 2, y)) (with y < 1) and
“c” on (q1, (x > 2, y)) (with y ≤ 1). It is then necessary to make the strategy
realizable [8].2

2Note that the new realizable strategy might not be expressible as a timed automaton, even if
the former was definable as a timed automaton.
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Moreover by adapting the PSPACE-hardness proof of the reachability prob-
lem in timed automata, one can show that reachability and safety control of timed
automata are EXPTIME-hard [21]. As the above-mentioned fixed points can be
computed in exponential time (because there is an exponential number of re-
gions [3]), we have the following theorem:

Theorem 2. Reachability and safety control problems in timed automataare
EXPTIME-complete.

3.3 External specifications

In the previous subsection we have investigated the controlof timed automata
for reachability and safety specifications; these are internal specifications as the
winning condition is given on states of the plant itself. Thecontrol problem for
various external specifications has also been considered.

External specifications given as timed automata. A natural external specifica-
tion is one given by a timed automaton. LetA be a plant andB a timed automaton
with an accepting condition for infinite words. We can seeB as a specification for
the plantA by definingSB = {ρ ∈ Runs(A) | tw(ρ) ∈ L(B)}.3

For this kind of specifications, the following decidabilityresults have been
proved:

Theorem 3 ([15]). The control problem for specifications given as timed automata
over infinite words is undecidable. The control problem for specifications given as
deterministic timed automata over infinite words is decidable and can be solved
in 2EXPTIME.

The control problem for specifications given as (non-deterministic) timed au-
tomata is undecidable as inclusion of timed automata can be reduced to that prob-
lem. However a natural assumption when synthesizing timed systems is to restrict
the power of the controller by looking for a controller whichis a timed automaton
using a fixed number of clocks and a fixed set of constants. In that case, we say
that we fix thegranularityof the controller. This assumption is done for instance
for solving the satisfiability problem of the logicLν [26] or for various control
problems [15, 9, 6].

A granularity is a tripleµ = (k,m,K) wherek,m,K are integers. A timed
automaton is said of granularityµ if it usesk clocks and constants mentioned in
its constraints are of the formi

m with 0 ≤ i ≤ K. LetA be a plant, a strategyf for

3Note that negative specifications likeS−
B
= {ρ ∈ Runs(A) | tw(ρ) < L(B)} have also been

considered in [15].
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A is saidµ-granular if it can be represented by a deterministic timed automaton
B of granularityµ. Formally if ρ is a run ofA compatible with strategyf andρ′

is the unique corresponding run inB then f (ρ) = Enabled(Last(ρ′)) ∩ (Σc ∪ {λ}).
The DTAµ-control problem for a specification given as a timed automaton over

infinite words then asks, given a plantA, a granularityµ, a timed automata over
infinite wordsB and an initial configuration (q, v), whether there is aµ-granular
realizable winning strategy from (q, v) for the specificationSB.

Theorem 4 ([15]). The DTAµ-control problem for specifications given as timed
automata over infinite words is 2EXPTIME-complete.

This result can be proved by reducing this control problem toa parity game
over a finite automaton (this automaton is obtained using some region construc-
tion).

External specifications given as formulas of (timed) temporal logics. Vari-
ous (timed) temporal logics have been used as specification languages for control
problems. We first focus on linear-time (timed) temporal logics. If φ is a for-
mula of some linear-time (timed) temporal logic, we writeSφ = {ρ ∈ Runs(A) |
tw(ρ) ∈ L(φ)} for the specification defined byφ (whereL(φ) is the set of models
of φ).

We assume the reader is familiar with the linear-time temporal logic LTL, and
better refer to [29] for the definition of this logic. The control problem for speci-
fications given asLTL formulas has been studied in [16]:

Theorem 5 ([16]). The control problem over timed automata for specifications
given asLTL formulas is 2EXPTIME-complete.

The technique used to prove this result relies on the construction of a tree
automaton (based on regions) which accepts all winning strategies.

The logic MTL [23] is a timed extension ofLTL with time constraints on
modalities. For instance, in this logic, we can write bounded response time prop-
erties like�(p→ ^≤5q) which says that every timep holds,q has to hold within a
time window of 5 time units. Similarly to specifications given as timed automata,
the control problem is undecidable for specifications givenasMTL formulas but
becomes decidable if we restrict toµ-granular strategies. However in this case the
complexity is much higher:

Theorem 6 ([6]). The control problem forMTL-specifications is undecidable. The
DTAµ-control problem forMTL-specifications is decidable and has non-primitive
recursive complexity.
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It is worth reminding that already model-checking ofMTL is non-primitive
recursive [28], and that the halting problem of a lossy-channel system can be
simulated by anMTL model-checking problem. Roughly, using the power of the
controller, we can simulate with a control problem the halting problem of a perfect
channel system, which leads to undecidability. The decidability when fixing the
granularity of the controller is not based on regions, but ona better-quasi-order.

Branching-time (timed) logics have also been considered inthe literature. For
lack of space, and because it does not perfectly fit our definition of specifications„
we do not enter into details and better point out the corresponding references: [16,
17]. Finally, games for specifications given as formulas of the µ-calculus have
been studied in the rather different framework of symmetric timed games [1].

4 Partial Observability

In the previous section we have supposed that the controllerhas perfect informa-
tion on the plant: at any time, the controller knows in which state the plant is. In
this section, we consider the more general problem of control under partial ob-
servability: the controller has only partial information about the plant and should
control it whatever is the behaviour (observable or not) of the environment.

In this section we suppose thatΣu is partionned into two subsetsΣobs
u andΣunobs

u .
The actions ofΣobs

u are uncontrollable but observable, whereas the actions ofΣ
unobs
u

are not observable (and thus not controllable). The controllable actions ofΣc

remains observable.
We define a consistent strategy for the controller as a strategy which depends

only on observations of actions inΣc andΣobs
u . Let πobs be the projection of timed

words onΣc ∪ Σ
obs
u (which is defined in a natural way by erasing actions inΣunobs

u

and their corresponding dates), a strategy is saidconsistentif for all runs ρ and
ρ′ such thatπobs(tw(ρ)) = πobs(tw(ρ′)), then f (ρ) and f (ρ′) are simultaneously
(un-)defined, and when they are defined,f (ρ) = f (ρ′).

The control problem under partial observability is thus thefollowing:

Problem (Control problem under partial observability). Given a plantA, a
specificationS and an initial configuration (q, v), determine if there is a consistent
realizable winning strategy from (q, v).

If we consider specifications given as timed automata, the control under par-
tial observability is undecidable even for deterministic specifications. On the other
side, the decidability proof for the DTAµ control problem can be extended to par-
tial observability:

Theorem 7 ([9]). The control problem under partial observability for specifi-
cations given as deterministic timed automata over infinitewords is undecid-
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able. The control problem under partial observability for specifications given
as deterministic timed automata over infinite words is decidable and 2EXPTIME-
complete.

Indeed, techniques used in [9] can be easily extended to showthat reachability
control under partial observability is undecidable. However it cannot be applied to
safety control under partial observability. We present here an original construction
which shows that safety control under partial observability is undecidable when
we consider non-Zeno controllers,i.e. controllers which generate only non-Zeno
behaviours (the fact that the controller has to be non-Zeno will be encoded in the
specification).

Given a plantA and a setBad of bad states we consider the specification
S¬Zeno

Bad = SBad ∩ {ρ | tw(ρ) is non-Zeno}.4 The safety control problem under
partial observability for non-Zeno controllers is given a plantA, a set of states
Bad and an initial configuration (q, v), determine if there is a realizable winning
strategy from (q, v) for the specificationS¬Zeno

Bad .

Theorem 8. The safety control problem under partial observability fornon-Zeno
controllers is undecidable.

The proof consists in reducing the halting problem of a 2-counter machine and
uses roughly the same encoding as the undecidability of the universality of timed
automata [3]. A configuration of a 2-counter machine withn states is encoded
by a timed word over the alphabet{b1, · · · , bn, a1, a2, a3}. We will encode the
first configuration of the 2-counter machine within the time interval [0, 1[, and
the time interval [i, i + 1[ will contain the encoding of thei th configuration of the
execution of the 2-counter machine. If the 2-counter machine is in statej and
counter values arec andd then the corresponding timed word should contain the
actionsb jac

1a
d
2a

e
3 between timei and i + 1 (the use ofa3 is explained later). To

express for example that the value of counter 1 does not change between thei th

and the (i + 1)th configurations we require that everya1 of the interval [i, i + 1[ has
a matchinga1 one time unit later and that there is noa1 in [i + 1, i + 2[ without a
matchinga1 one time unit earlier. Similarly, to express that the first counter has
decreased by one, we check that alla1’s apart the last one in the interval [i, i + 1[
has a matching one time unit later in [i + 1, i + 2[, and everya1 in the interval
[i + 1, i + 2[ is matched one time unit before by anothera1.

The use of actiona3 is as follows: we require that the first configuration is
encoded byb1ae

3 for somee ∈ N; then, after each configuration the number ofa3

must be decreased by one.
The plantA is the universal timed automaton. The set of controllable actions

isΣc = {b1, · · · , bn, a1, a2, a3}: the controller will play an encoding of the execution

4recall thatSBad is the set of runs which avoidBad.
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of the 2-counter machine freely. We use a single unobservable action (we take
Σ

obs
u = ∅ andΣunobs

u = {u}) which can be used by the environment to check whether
the encoding played by the controller is correct. Non-deterministically and in an
unobservable way, the environment launches atestto check that the controller has
simulated the 2-counter machine correctly (that is it checks that all actions are
matched correctly one time unit later or earlier, as explained above).

If the environment discovers that the encoding is incorrectit goes to a bad
state and the controller loses. So the controller has to playa correct encoding for
winning. Moreover if the number ofa3 played during an interval [i, i + 1[ is null
and the goal state of the 2-counter machine has not been reached, then the plant
also goes into a bad state. So to control the plant properly, during the first time
unit the controller must play at leastn a3 wheren is the number of steps needed to
reachq. Then it just has to play a correct encoding leading toq to win the control
game.

Bad

x = 0,u

Σ\{a1}
a1, x := 0

x = 1, a1

x > 1,Σ

x < 1,Σ

Σ

Σ

Figure 2: Environment checking that everya1 is matched one t.u. later by ana1

On Figure 2, we give an example of how the environment can check that every
a1 is matched one time unit later by anothera1. Note that this construction works
only becauseu is not observable: as the controller cannot know when it is played
it has to always simulate correctly the 2-counter machine.

Note that this proof shows that both control by general strategies and control
by strategies defined by DTA (with non-fixed granularity) areundecidable. In
fact to show that control under partial observability by general strategies a slighty
simpler proof not involvinga3 actions can be done.

Recently, another framework for control under partial observability has been
developed [14], where observations are based on the visitedstates. Until now,
this work applies only to finite-state automata, and discrete-time timed (and even
hybrid) automata.
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5 Control of Hybrid Systems

Hybrid automata are an extension of timed automata in which variables are not
clocks but are more general: they can for instance follow rules given by differen-
tial equations. This model, though immediately undecidable, is widely used and
studied (this is the topic of the conference HSCC which takesplace every year
since 1998). The literature on that subject is substantial,we can thus not give
an overview of all results on that subject, we thus select twokinds of models for
which decidability results can be obtained.

5.1 Rectangular hybrid automata

The model of rectangular hybrid automata is an extension of the model of timed
automata. It thus extends finite automata with real-valued variables, the enabling
condition for each discrete move is a cartesian product of intervals, and the first
derivative of each continuous variable is bounded by constants from below and
above. Checking reachability properties in that model is undecidable unless we
assume that they are initialized [22], which means that every transition changing
the slope of a variable has to reset it.

In that context, the control problem for safety specifications is undecidable for
rectangular timed automata [22]. Several simpler control problems have thus been
considered.

Sampling control. In this framework, the controller performs actions every time
unit (or everyδ if δ is the sampling rate of the controller). When the sampling rate
is known in advance, the safety sampling control problem forrectangular hybrid
automata is decidable [21]. When the sampling rate is not known a priori, the
problems becomes undecidable [11]. Recently a new notion ofsampling has been
proposed [24], and it would be interesting to check whether the control problem
can become decidable in this (more natural) framework.

Time-abstract restriction. In these games, when the strategy is to wait, it is not
possible to bound the time which is waited, and the environment chooses when the
next discrete action happens. In this framework, the strategy to wait is viewed as a
discrete action, and this somehow “untimes” the system. Under this time-abstract
restriction, rectangular hybrid games are decidable [13],even for specifications
given asLTL formulas [20].
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5.2 O-minimal hybrid automata

O-minimal systems [25] are hybrid systems which have very rich continuous dy-
namics (for instance polynomial and exponential functionscan be used), but have
limited discrete behaviours (at each discrete step, all variables have to be reset).

The control of such systems is not always decidable as o-minimal structures
(and thus reachability) are not necessarily decidable. However if we restrict to
decidable structures the (safety and reachability) control of o-minimal hybrid sys-
tems is decidable [7].

The technique of the proof is standard as it uses a computation of controllable
predecessors over a symbolic representation of the state-space. However there is
a major difference with the case of timed automata: in o-minimal hybrid systems,
time-abstract bisimulation is not the right tool to computethe set of winning states.
A finer bisimulation calledsuffix-partition has to be used to prove decidability.
Moreover if the system is controllable, a strategy can be defined in the underlying
structure.

6 Conclusion

The control of timed and hybrid has been the core of much research these last
ten years. In this paper, we have focused on a formulation of the control problem
which is an asymmetric two-player game between the controller and the environ-
ment. We have given several results concerning the control problem, from the
simplest reachability and safety control problems of timedautomata to more in-
volved control problems like the control for external specifications, under partial
observability, or for more general systems like subclassesof hybrid automata.

These last years, an extension of timed automata with costs has been studied,
which can be used for modeling resource consumption in timedsystems. These
automata are simple linear hybrid automata with a single hybrid variable (which is
an “observer” variable), and can used in a formulation of timed games with an op-
timization criterion on the cost. Those kinds of games have direct applications for
modeling for instance scheduling problems, and have been recently much studied.
We refer to [5] for a recent survey on this model.

In 2005, the tool Uppaal TiGA has been developed, which solves the safety
control problems of timed automata, symbolically and in a forward manner [10].
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Abstract

Consider a distributed information network with harmful procedures
calledattackers(e.g., viruses); each attacker uses a probability distribution
to choose a node of the network to damage. Opponent to the attackers is
thesystem protectorscanning and cleaning from attackers some part of the
network (e.g., an edge or a simple path), which it chooses independently
using another probability distribution. Each attacker wishes to maximize
the probability of escaping its cleaning by the system protector; towards a
conflicting objective, the system protector aims at maximizing the expected
number of cleaned attackers. In [8, 9], we model this network scenario as a
non-cooperative strategic game on graphs. We focus on two basic cases for
the protector; where it may choose a single edge or a simple path of the net-
work. The two games obtained are called as thePathand theEdgemodel,
respectively. For these games, we are interested in the associatedNash equi-
libria, where no network entity can unilaterally improve its local objective.
For the Edge model we obtain the following results:

∗This work was partially supported by the IST Programs of the European Union under contract
numbers IST-2001-33116 (FLAGS) and IST-2004-001907 (DELIS).



106 106

106 106

BEATCS no 89 THE EATCS COLUMNS

98

• No instance of the model possesses a pure Nash equilibrium.

• Every mixed Nash equilibrium enjoys a graph-theoretic structure,
which enables a (typically exponential) algorithm to compute it.

• We coin a natural subclass of mixed Nash equilibria, which we call
matching Nash equilibria,for this game on graphs. Matching Nash
equilibria are defined using structural parameters of graphs

– We derive a characterization of graphs possessing matching Nash
equilibria. The characterization enables a linear time algorithm
to compute a matching Nash equilibrium on any such graph.

– Bipartite graphs and trees are shown to satisfy the characteriza-
tion; we derive polynomial time algorithms that compute match-
ing Nash equilibria on corresponding instances of the game.

• We proceed with other graph families. Utilizing graph-theoretic ar-
guments and the characterization of mixed NE proved before, we
compute, in polynomial time, mixed Nash equilibria on correspond-
ing graph instances. The graph families considered are regular graphs,
graphs with, polynomial time computable,r-regular factors and graphs
with perfect matchings.

• We define thesocial costof the game to be the expected number of
attackers catch by the protector. We prove that the correspondingPrice
of Anarchyin any mixed Nash equilibria of the Edge model is upper
and lower bounded by a linear function of the number of vertices of
the graph.

Finally, we consider the more generalized variation of the problem con-
sidered, captured by the Path model. We prove that the problem of existence
of a pure Nash equilibrium isNP-complete for this model.

1 Introduction

Motivation and Framework. Although Network Security has been always
considered to be a critical issue in networks, the recent huge growth of public
networks (e.g. the Internet) made it even more very important [15]. This work
considers a dimension of this area, related to the protection of a system from
harmful entities (e.g. viruses, worms, trojan horses, eavesdroppers [4]). Consider
an information network where the nodes of the network are insecure and vulner-
able to infection byattackerssuch as, viruses, Trojan horses, eavesdroppers. In
particular, at any time, a number of harmful entities is known (or an upper bound
of this number) to be present in the network. Aprotector, i.e. system security
software, is available in the system but it can guarantee security only to a limited
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part of the network, such as a simple path or a single link of it, which it may
choose using a probability distribution. Such limitations result from money and
system performance costs caused in order to purchase a global security software
or by the reduced efficiency or usability of a protected node. Each harmful entity
targets a location (i.e. a node) of the network via a probability distribution; the
node is damaged unless it is cleaned by the system security software. Apparently,
the harmful entities and the system security software have conflicting objectives.
The system security software seeks to protect the network as much as possible,
while the harmful entities wish to avoid being caught by the software so that they
be able to damage the network. Thus, the system security software seeks to max-
imize the expected number of viruses it catches, while each harmful entity seeks
to maximize the probability it escapes from the system security software.

Naturally, we model this scenario as a non-cooperative multi-player strategic
game played on a graph with two kinds of players: thevertex playersrepresenting
the harmful entities, and theedge or thepath playerrepresenting each one of the
above two cases for the system security software considered; where it can choose
a simple path or a single edge of the network, respectively. The corresponding
games are called thePath and theEdgemodel, respectively. In both cases, the
Individual Cost of each player is the quantity to be maximized by the correspond-
ing entity. We are interested in theNash equilibria[11, 12] associated with these
games, where no player can unilaterally improve its Individual Cost by switching
to a more advantageous probability distribution.

Summary of Results. Here we overview the most important results of [8, 9].
Our study is mainly focus on the Edge model where our results are summarized
as follows:

• We prove that the model posses no pure Nash equilibrium (Theorem 3.1).

• We then proceed to study mixed Nash equilibria (mixed NE) of the Edge
model. We provide a graph-theoretic characterization of mixed NE (Theo-
rem 3.2). Roughly speaking, the characterization yields that the support of
the edge player and the vertex players are an edge cover and a vertex cover
of the graph and a subgraph of the graph, respectively. Given the supports,
the characterization provides a system of equalities and inequalities to be
satisfied by the probabilities of the players. Unfortunately, this characteri-
zation only implies an exponential time algorithm for the general case.

• We introducematchingNash equilibria, which are a natural subclass of
mixed Nash equilibria with a graph-theoretic definition (Definition 4.1).
Roughly speaking, the supports of vertex players in a matching Nash equi-
librium form together an independent set of the graph, while each vertex
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in the supports of the vertex players is incident to only one edge from the
support of the edge player.

• We provide a characterization of graphs admitting amatchingNash equi-
librium (Theorem 4.4). We prove that amatchingNash equilibrium can be
computed in linear time for any graph satisfying the characterization once a
suitableindependent set is given for the graph.

• We consider bipartite graphs for which we show that they satisfy the char-
acterization ofmatchingNash equilibria; hence, they always have one (The-
orem 5.4). More importantly, we prove that amatchingNash equilibrium
can be computed in polynomial time for bipartite graphs (Theorem 5.5).

• Next, we proceed with other families of graphs. Combining the characteri-
zation of mixed Nash equilibria proved before with suitable graph-theoretic
properties of each class addressed, we compute polynomial time mixed NE
for each of them. These graph families include, trees, regular graphs, graphs
that can be partitioned into vertex disjoint regular subgraphs, graphs with
perfect matchings (Theorems 6.5, 6.6, 6.7, 6.9, respectively). Note that
trees are also bipartite graphs. Thus, the algorithm for bipartite graphs can
apply on them as well. However, the algorithm for trees provided, computes
matched Nash equilibria in in significantly less time that the algorithm of
bipartite graphs. This is achieved via suitable exploration of the special
structure of a tree.

• We measure the system performance with respect to the problem considered
utilizing the notion of thesocial cost[6]. Here, it is defined to be the number
of attackers catch by the protector. We compute upper and lower bounds of
the social cost in any mixed Nash equilibria of the Edge model. Using
these bounds, we show that the corresponding Price of Anarchy is upper
and lower bounded by a linear function of the number of vertices of the
graph (Theorem 7.2).

Finally, we consider a more generalized case of the problem considered, rep-
resented by the Path model. We prove that the problem of existence of pure Nash
equilibria in this model isNP-complete (Theorem 8.2). This result opposes in-
terestingly with the corresponding non-existence result of the Edge model, proved
before and indicates some fascinating dimensions of the yet unexplored research
area considered here.

Significance and Related Work. Our work joins the booming area ofAlgorith-
mic Game Theory. At the same time, it contributes in the subfield ofNetwork
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Security, related to the protection of a network from harmful entities (e.g. viruses,
worms, malicious procedures, or eavesdroppers [4]). This work is thefirst work
(with an exception of [2]) to modelnetwork security problemsas strategic game
and study its associated Nash equilibria. In particular, [2] is a part of a relevant
research line related onInterdependent Securitygames [5]. In such a game, a
large number of players must make individual investment decisions related to se-
curity, in which the ultimate safety of each participant may depend in a complex
way on the actions of the entire population. Another related work is that of [4],
studying the feasibility and computational complexity of two privacy tasks in dis-
tributed environments withmobile eavesdroppers; of distributed database main-
tenance and message transmission. A mobile eavesdropper is a computationally
unbounded adversary that move its bugging equipment within the system.

This work is one of the only few works highlighting a fruitful interaction be-
tweenGame TheoryandGraph Theory. In [2], the authors consider inoculation
strategies for victims of viruses and establishes connections with variants of the
Graph Partition problem. In [1], the authors study a two-players game on a graph,
establish connections with thek-server problem and provide an approximate so-
lution for the simple network design problem.

Our results contribute towards answering the general question of Papadim-
itriou [14] about the complexity of Nash equilibria for our special game. We
believe that ourmatchingNash equilibria (and/or extensions of them) will find
further applications in other network games and establish themselves as a candi-
date Nash equilibrium for polynomial time computation in other settings as well.

2 Framework

Throughout, we consider an undirected graphG(V,E), with |V(G)| = n and|E(G)|
= m. Given a set of verticesX ⊆ V, the graphG\X is obtained by removing from
G all vertices ofX and their incident edges. A graphH, is aninducedsubgraph
of G, if V(H) ⊆ V(G) and (u, v) ∈ E(H), whenever (u, v) ∈ E(G). For any vertex
v ∈ V(G), denoteNeigh(v) = {u : (u, v) ∈ E(G)}, the set of neighboring vertices
of v. For a set of verticesX ⊆ V, denoteNeigh(X) = {u < X : (u, v) ∈ E(G)
for somev ∈ X}. Denote∆(v) = |Neigh(v)| the degree of vertexv in G and
∆(G) = maxv∈V |Neigh(v)| the maximum degree ofG. A simplepath,P, is a path
of G with no repeated vertices, i.e.P = {v1, · · · , vi · · · , vk}, where 1≤ i ≤ k ≤ n,
vi ∈ V, (vi , vi+1) ∈ E(G) and eachvi ∈ V appears at most once inP. DenoteP(G)
the set of all possible paths inG. For a tree graphT denoteroot ∈ V, the root of
the tree andleaves(T) the leaves of the treeT. For anyv ∈ V(T), denoteparent(v)
the parent ofv in the tree andchildren(v) its children in the treeT. For anyA ⊆ V,
let parents(A) := {u ∈ V : u = parent(v), v ∈ A}. For all above properties of a
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graphG, when there is no confusion, we omitG.

2.1 The model

Definition 2.1. An information network is represented as an undirected graph
G(V,E). The vertices represent the network hosts and the edges represent the
communication links. ForM = {P,E}, we define a non-cooperative gameΠM(G) =
〈N , {Si}i∈N , {IC}i∈N〉 as follows:

• The set of players isN = Nvp ∪ Np, whereNvp is a finite set ofvertex
players vpi, i ≥ 1, p = {pp,ep} andNp is a singleton set of a player p
which is either (i) thepath player and p= pp or (ii) theedge player and
p = ep, in the case whereM = P or M = E, respectively.

• The strategy set Si of each player vpi, i ∈ Nvp, is V; the strategy set Sp of
the player p is either (i) the set of paths of G,P(G) or (i) E, whenM = P or

M = E, respectively. Thus, the strategy setS of the game is
(
×

i ∈ Nvp
Si

)
× Sp

and equals to|V||Nvp| × |P(G)| or |V||Nvp| × |E|, whenM = P or M = E,
respectively.

• Take anystrategy profile~s= 〈s1, . . . , s|Nvp|, sp〉 ∈ S, also called aconfigura-
tion.

– TheIndividual Costof vertex player vpi is a functionICi : S → {0,1}

such thatICi(~s) =
{

0, si ∈ sp

1, si < sp
; intuitively, vpi receives1 if it is not

caught by the player p, and0 otherwise.

– The Individual Costof the player p is a functionICp : S → N such
that ICp(~s) = |{si : si ∈ sp}|.

We call the games obtained as thePath or theEdge model, for the case where
M = P or M = E, respectively.

The configuration~s is apure Nash equilibrium[11, 12] (abbreviated aspure
NE) if for each playeri ∈ N , it maximizesICi over all configurations~t that differ
from~s only with respect to the strategy of playeri.

We considermixed strategiesfor the Edge model. In the rest of the paper,
unless explicitly mentioned, when referring to mixed strategies, these apply on
the Edge model. Amixed strategyfor player i ∈ N is a probability distribution
over its strategy setSi; thus, a mixed strategy for a vertex player (resp., edge
player) is a probability distribution over vertices (resp., over edges) ofG. A mixed
strategy profile~s is a collection of mixed strategies, one for each player. Denote
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P~s(ep,e) the probability that edge playerep chooses edgee ∈ E(G) in ~s; de-
note P~s(vpi , v) the probability that playervpi chooses vertexv ∈ V in ~s. Note∑

v∈V P~s(vpi , v) = 1 for each playervpi; similarly,
∑

e∈E P~s(ep,e) = 1. Denote
P~s(vp, v) =

∑
i∈Nvp

P~s(vpi , v) the probability that vertexv is chosen by some vertex
player in~s.

Thesupportof a playeri ∈ N in the configuration~s, denotedD~s(i), is the set
of pure strategies in its strategy set to whichi assigns strictly positive probability
in ~s. DenoteD~s(vp) =

⋃
i∈Nvp

D~s(i); so, D~s(vp) contains all pure strategies (that
is, vertices) to which some vertex player assigns strictly positive probability. Let
alsoENeigh~s(v) = {(u, v) ∈ E : (u, v) ∈ D~s(ep)}; that isENeigh~s(v) contains all
edges incident tov that are included in the support of the edge player in~s. Given a
mixed strategy profile~s, we denote (~s−x, [y]) a configuration obtained by~s, where
all but playerx play as in~s and playerx plays the pure strategyy.

A mixed strategic profile~s induces anExpected Individual CostICi for each
player i ∈ N , which is the expectation, according to~s, of its corresponding In-
dividual Cost (defined previously for pure strategy profiles). The mixed strategy
profile~s is a mixed Nash equilibrium[11, 12] (abbreviated as mixed NE) if for
each playeri ∈ N , it maximizesICi over all configurations~t that differ from~sonly
with respect to the mixed strategy of playeri. We denote such a strategy profile as
~s ∗. DenoteBR~s(x) the set ofbest response (pure) strategiesof playerx in a mixed
strategy profile~s, that is,ICx(~s−x, y) ≥ ICx(~s−x, y′), ∀ y ∈ BR~s(x) andy′ < BR~s(x),
y′ ∈ Sx, whereSx is the strategy set of playerx (see also [13], chapter 3). Afully
mixed strategy profile is one in which each player plays with positive probability
all strategies of its strategy set.

For the rest of this section, fix a mixed strategy profile~s. For each vertex
v ∈ V, denoteHit(v) the event that the edge player hits vertexv. So, the proba-
bility (according to~s) of Hit(v) is P~s(Hit(v)) =

∑
e∈ENeigh(v) P~s(ep,e). Define the

minimum hitting probabilityP~s as minv P~s(Hit(v)). For each vertexv ∈ V, denote
m~s(v) the expected number of vertex players choosingv (according to~s). For each
edgee= (u, v) ∈ E, denotem~s(e) the expected number of vertex players choosing
eitheru or v; so,m~s(e) = m~s(u)+m~s(v). It is easy to see that for each vertexv ∈ V,
m~s(v) =

∑
i∈Nvp

P~s(vpi , v). Define the maximum expected number of vertex players
choosinge in ~s as maxe m~s(e).

We proceed to calculate the Expected Individual Cost. Clearly, for the vertex
playervpi ∈ Nvp,

ICi(~s) =
∑

v∈V(G)

P~s(vpi , v) · (1− P~s(Hit(v))

=
∑

v∈V(G)

P~s(vpi , v) · (1−
∑

e∈ENeigh(v)

P~s(ep,e)

 (1)
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For the edge playerep,

ICep(~s) =
∑

e=(u,v)∈E(G)

P~s(ep,e) · (m~s(u) +m~s(v))

=
∑

e=(u,v)∈E(G)

P~s(ep,e) · (
∑
i∈Nvp

P~s(vpi ,u) + P~s(vpi , v))

 (2)

Social Cost and Price of Anarchy. We utilize the notion ofsocial cost[6] for
evaluating the system performance related to the problem considered. A natural
such measurement is the number of attackers catch by the system protector; a
maximization of this quantity maximizes system’s performance with respect to its
safety from harmful entities. We therefore define,

Definition 2.2. For modelM, M = {P,E}, we define thesocial costof configuration
~s on instanceΠM(G), SC(ΠM(G),~s), to be the sum of vertex players ofΠM(G)
arrested in~s. That is,SC(ΠM(G),~s) = ICp(~s), where p= pp or p = ep when
M = P or M = E, respectively. The system wishes to maximize the social cost.

Definition 2.3. For modelM, M = {P,E}, we define theprice of anarchy, r(M) to
be,

r(M) = max
ΠM(G),~s ∗

max~s∈S SC(ΠM(G),~s)
SC(ΠM(G), ~s ∗)

2.2 Background from Graph Theory

Throughout this section, we consider the (undirected) graphG = G(V,E).
G(V,E) is bipartite if its vertex setV can be partitioned asV = V1 ∪ V2 such that
each edgee = (u, v) ∈ E has one of its vertices inV1 and the other inV2. Such
a graph is often referred to as aV1,V2-bigraph. Fix a set of verticesS ⊆ V. The
graphG is anS -expanderif for every setX ⊆ S, |X| ≤ |NeighG(X)|. For an integer
r, graphG is r-regular if ∆(v) = r, ∀v ∈ V.

A factor of a graphG is a sugraphGr , G such thatV(Gr) = V(G). An r-
regular factorof G is a factor of it (not necessarily connected) which is also an
r-regular graph. Ahamiltonian path of a graphG is a simple path containing
all vertices ofG. A set M ⊆ E is amatchingof G if no two edges inM share a
vertex. Given a matchingM, say that setS ⊆ V is matched into V\S in M if for
every vertexv ∈ S, there is an edge (v,u) ∈ M andu ∈ V\S. A vertex coverof
G is a setV′ ⊆ V such that for every edge (u, v) ∈ E eitheru ∈ V′ or v ∈ V′. An
edge coverof G is a setE′ ⊆ E such that for every vertexv ∈ V, there is an edge
(v,u) ∈ E′. Say that an edge (u, v) ∈ E (resp., a vertexv ∈ V) is covered by the
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vertex coverV′ (resp., the edge coverE′) if eitheru ∈ V′ or v ∈ V′ (resp., if there
is an edge (u, v) ∈ E′). A set IS ⊆ V is anindependent setof G if for all vertices
u, v ∈ IS, (u, v) < E. Clearly,IS ⊆ V is an independent set ofG if and only if the
setVC = V\IS is a vertex cover ofG.

We will use the consequence of Hall’s Theorem [3, Chapter 6] on the marriage
problem.

Proposition 2.4 (Marriage’s Theorem). A graph G has a matching M in which
set X ⊆ V is matched into V\X in M if and only if for each subset S⊆ X,
|Neigh(S)| ≥ |S|.

Note that the problem of finding a perfect matching of a graph (if there exists
one) is equivalent to the problem of finding an 1-regular factor of the graph. The
problem of finding a maximum matching of any graph can be solved in polynomial
time [10]. Furthermore, a 2-regular factor of a graph (if there exists one) can
be computed in polynomial time, via Tutte’s reduction [16]; see also [7] for a
survey in cycle covers problems of various sizes. By the above observations we
get that there exists an exponential number of graphs that have polynomial time
computabler-regular factors.

3 Nash Equilibria

All following sections, except the last one, are devoted to the Edge model. For
pure Nash equilibria of the Edge model, in [8] we prove:

Theorem 3.1. If G contains more than one edges, thenΠE(G) has no pure Nash
Equilibrium.

Proof. Consider any graphG with at least two edges and any configuration~s of
ΠE(G). Let e the edge selected by the edge player in~s. SinceG contains more
than one edges, there exists ane′ ∈ E) not selected by the edge player in~s, such
thate ande′ contain at least one different endpoint, assumeu. If there is at least
one vertex player located one, it will prefer to alternate tou so that not to get
arrested by the edge player and gain more. Thus, this case can not be a pure NE.
Otherwise, no vertex player is located on edgee. This implies an individual cost
of 0 for the edge player which the player can unilaterally improve by selecting any
edge containing at least one vertex player. Thus, this case also can not be a pure
NE for the instance, concluding that~s is not a pure NE.

Characterization of Mixed Nash Equilibria. Next we present a characteriza-
tion of mixed Nash equilibria of the Edge model, proved in [8].
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Theorem 3.2. (Characterization of Mixed NE) A mixed strategy profile~s is a
Nash equilibrium for anyΠE(G) if and only if:

1. D~s(ep) is an edge coverof G and D~s(vp) is a vertex coverof the graph
obtained by D~s(ep).

2. The probability distribution of the edge player over E, is such that, (a)
P~s(Hit(v)) = P~s(Hit(u)) = minv P~s(Hit(v)), ∀ u, v ∈ D~s(vp) and (b)

∑
e∈D~s(ep)

P~s(ep,e) = 1.

3. The probability distributions of the vertex players over V are such that, (a)
m~s(e1) = m~s(e2) = maxe m~s(e), ∀ e1,e2 ∈ D~s(ep) and
(b)
∑

v∈V(D~s(ep)) m~s(v) = ν.

Remark 3.3. Note that the characterization does not implies a polynomial time
algorithm for computing a mixed Nash equilibrium, since it involves solving a
mixed integer programming problem.

In [9], we also provide an estimation on the payoffs of the vertex players in
any Nash equilibrium of the Edge model.

Claim 3.4. For anyΠE(G), a mixed NE,~s ∗, satisfiesICi(~s ∗) = IC j(~s ∗) and
1− 2

|D~s ∗ (vp)| ≤ ICi(~s ∗) ≤ 1− 1
|D~s ∗ (vp)| , ∀i, j ∈ Nvp.

4 Matching Nash Equilibria

In [8] we introduce a family of configurations of the Edge model, calledmatching.
Such configurations are shown to lead to mixed NE, calledmatchingmixed NE.
First, we provide a characterization for the existence of amatching mixed NE,
shown in [8]. Using this characterization, we provide a polynomial time algo-
rithm for the computation ofmatchingNash equilibria for any instanceΠE(G) of
the problem, where the graphG satisfies the characterization. We remark applica-
bility of the algorithm for a quite broad family of graphs, that ofbipartite graphs
(section 5).

Intuition behind Matching Nash equilibria. The obvious difficulty of solving
the system of Theorem 3.2 directs us in trying to investigate the existence of some
polynomially computable solutions of the system, corresponding to mixed NE of
the game. To which configuration should we consider aseasy to compute, we
utilized the following way of thinking. A first observation is that finding a config-
uration that satisfies condition2 of Theorem 3.2 seems the most difficult constrain
(among the three conditions) to be fulfilled. This is so because it contains the
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largest number of variables (P~s(ep,e), ∀ e ∈ E) among the three conditions and
each equation of it might involve up to∆(G) such variables. Thus, let us consider
the subtask of the system of computing functionP~s(·), ∀e ∈ E. Consider the case
where the equations of condition2.(a)areindependent, that is for each variablee,
P~s(ep,e) appears in only one equation of condition2.(a). Obviously, in this case
the task becomes less difficult. Note that in such case,D~s(vp) constitutes an inde-
pendent set ofG. Moreover, when furthermore, each vertex ofD~s(vp) is incident
only in one edge ofD~s(ep), then each equation of condition2.(a) contains only
one variable, making the satisfaction of the condition even less difficult. Based on
these thoughts, in [8], we define the following family of configurations which, as
we show, can lead to mixed NE for the game. In the sequel, we investigate their
existence and their polynomial time computation.

Definition 4.1. A matching configuration~s of ΠE(G) satisfies:(1) D~s(vp) is an
independent set of G and(2) each vertex v of D~s(vp) is incident to only one edge
of D~s(ep).

Claim 4.2. [8] For any graph G, if inΠE(G) there exists amatchingconfiguration
which additionally satisfies condition1 of Theorem 3.2, then there exists probabil-
ity distributions for the vertex players and the edge player such that the resulting
configuration is a mixed Nash equilibrium forΠE(G). These distributions can be
computed in polynomial time.

In the proof of the Claim, in [8], we consider any configuration~s as stated by
the Claim (assuming that there exists one) and the following probability distribu-
tions of the vertex players and the edge player on~s:

∀e ∈ D~s(ep), P~s(ep,e) := 1/|D~s(ep)|,
∀e′ ∈ E, e′ < D~s(ep), P~s(ep,e′) := 0

(3)

∀ i ∈ Nvp, ∀ v ∈ D~s(vp), P~s(vpi , v) := 1
|D~s(vp)| ,

∀u ∈ V, u < D~s(vp), P~s(vpi ,u) := 0
(4)

Then, it is shown that~s satisfies all conditions of Theorem 3.2, thus it is a mixed
NE.

Definition 4.3. A matchingconfiguration which additionally satisfies condition1
of Theorem 3.2 is called amatching mixed NE.

Furthermore, in [8], we characterize graphs that admitmatchingNash equilib-
ria.

Theorem 4.4. For any graph G,ΠE(G) contains amatchingmixed Nash equilib-
rium if and only if the vertices of the graph G can be partitioned into two sets IS ,
VC (VC∪ IS = V and VC∩ IS = ∅), such that IS is an independent set of G
(equivalently, VC is a vertex cover of the graph) and G is a VC-expander graph.
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Proof. We first prove that if G has an independent set IS and the graph G is a
VC-expander graph, where VC= V\IS , thenΠE(G) contains amatchingmixed
NE. By the definition of aVC-expander graph, it holds thatNeigh(VC′) ≥ VC′,
for all VC′ ⊆ VC. Thus, by the Marriage’s Theorem 2.4,G has a matchingM
such that each vertexu ∈ VC is matched intoV\VC in M; that is there exists
an edgee = (u, v) ∈ M, wherev ∈ V\VC = IS. Partition IS into two sets
IS1, IS2, where setIS1 consists of verticesv ∈ IS for which there exists an
e = (u, v) ∈ M and u ∈ VC. Let IS2 the remaining vertices of the set, i.e.
IS2 = {v ∈ IS : ∀ u ∈ VC, (u, v) < M}.

Now, recall that there is no edge between any two vertices of setIS, since
it is independent set, by assumption. Henceforth, sinceG is a connected graph,
∀ u ∈ IS2 ⊆ IS, there existse = (u, v) ∈ E and moreoverv ∈ V\IS = VC.
Now, construct setM1 ⊆ E consisting of all those edges. That is, initially set
M := ∅ and then for eachv ∈ IS2, add one edge (u, v) ∈ E in M1. Note that, by
the construction of the setM1, each edge of it is incident to only one vertex of
IS2. Next, construct the following configuration~s of ΠE(G): SetD~s(vp) := IS
andD~s(ep) := M ∪ M1.

We first show that that~s is amatchingconfiguration. Condition (1) of a match-
ing configuration is fulfilled becauseD~s(vp)(= IS) is an independent set. We show
that condition (2) of amatchingconfiguration is fulfilled. Each vertex of setIS
belongs either toIS1 or to IS2. By definition, each vertex ofIS1 is incident to
only one edge ofM and each vertex ofIS2 is incident to no edge inM. More-
over, by the construction of setM1, each vertex ofIS2 is incident to exactly one
edge ofM1. Thus, each vertexv ∈ D~s(vp)(= IS) is incident to only one edge of
D~s(ep)(= M ∪ M1), i.e. condition (2) holds as well. Henceforth,~s is amatching
configuration.

We next show that condition1 of Theorem 3.2 is satisfied by~s. We first show
thatD~s(ep) is an edge cover ofG. This is true because (i) setM ⊆ D~s(ep) covers
all vertices of setVC andIS1, by its construction and (ii) setM1 ⊆ D~s(ep) covers
all vertices of setIS2, which are the remaining vertices ofG not covered by set
M, also by its construction. We next show thatD~s(vp) is a vertex cover of the
subgraph ofG obtained by setD~s(ep). By the definition of setsIS1, IS2 ⊆ IS,
any edgee ∈ M is covered by a vertex of setIS1 and each edgee ∈ M1 is covered
by a vertex of setIS2. SinceD~s(ep) = M ∪M1, we get that all edges of the set are
covered byD~s(vp) = IS1 ∪ IS2. This result combined with the above observation
onD~s(ep) concludes that condition1 of Theorem 3.2 is satisfied by~s. Henceforth,
by Claim 4.2, it can lead to amatching mixed NE ofΠE(G).

We proceed to show that if G contains amatchingmixed NE, assume~s, then
G has an independent set IS and the graph G is a VC-expander graph, where
VC = V\IS . Define setsIS = D~s(vp) andVC = V\IS. We show that these sets
satisfy the above requirements forG. Note first that, setIS is an independent of



117 117

117 117

The Bulletin of the EATCS

109

G sinceD~s(vp) is an independent set ofG by condition (1) of the definition of a
matchingconfiguration.

We next showG contains a matchingM such that each vertex ofVC is matched
into V\VC in M. SinceD~s(ep) is an edge cover ofG (condition1 of a mixed NE
of Theorem 3.2), for eachv ∈ VC, there exists an edge (u, v) ∈ D~s(ep). Note that
for edge (u, v), it holds thatv ∈ IS, since otherwiseIS would not be a vertex cover
of D~s(ep) (Condition1 of a mixed NE). Now, construct a setM ⊆ E consisting of
all those edges. That is, That is, initially setM := ∅ and then for eachv ∈ VC, add
one edge (u, v) ∈ D~s(ep) in M. By the construction of setM and condition (2) of a
matchingmixed NE, we get thatM is a matching ofG and that each vertex ofVC
is matched intoV\VC in M. Thus, by the Marriage’s Theorem 2.4, we get that
Neigh(VC′) ≥ VC′, for all VC′ ⊆ VC and soG is aVC-expander and condition
(2) of a matching configuration also holds in~s.

An example of a graphG with a matchingmixed NE~s is illustrated in Figure
1. SetD~s(ep) is denoted by bold edges and setD~s(vp)(= IS) (as in Theorem 4.4)
by vertices with an asterisk,∗. We remark thatnot all graphs have amatching
mixed NE; any odd cycle is such graph; this is so because for every edge cover
EC of the graph (corresponding toD~s(ep)), there is no setVC ⊆ V (corresponding
to D~s(vp)) such thatVC is a vertex cover of the graph induced byEC andVC is
also an independent set ofG. See Figure 1(b) for an example.

C5

(b)

G
IS

edges 
between  
vertices 
of VC

(a)

No edges

Edges between 
vertices of IS and VC

VC

Figure 1: Examples of graphs (a) with and (b) withoutmatchingmixed Nash
equilibrium.
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4.1 A Polynomial Time Algorithm

The previous Theorems and Lemmas enabled us to develop a polynomial time al-
gorithm for findingmatchingmixed NE for anyΠE(G), whereG is a graph satis-
fying the requirements of Theorem 4.4. The algorithm is described in pseudocode
in Figure 2.

Theorem 4.5. [8] Algorithm A(ΠE(G), IS,VC) computes amatchingmixed Nash
equilibrium forΠE(G) in linear time O(n).

5 Bipartite Graphs

In this section we overview the basic results of [8] on the investigation the ex-
istence and polynomial time computation ofmatchingmixed Nash equilibria for
anyΠE(G), for whichG is a bipartite graph. We first provide some useful Lemmas
and Theorems on important properties of bipartite graphs.

Lemma 5.1. [8] In any bipartite graph G there exists a matching M and a vertex
cover VC such that(1) every edge in M contains exactly one vertex of VC and(2)
every vertex in VC is contained in exactly one edge of M.

Remark 5.2. The statement of the Lemma does not hold for all graphs; any odd
cycle graph is an example of its falseness (See Figure 1(b)). The falseness of the
Lemma in a general graph consists in that the statement (∗1) in its proof is false;
condition (ii) required for proving∗1 is not true.

By the above Lemma 5.1, we can prove that,

Lemma 5.3. [8] Any X,Y-bigraph graph G can be partitioned into two sets IS ,
VC (IS ∪ VC = V and IS∩ VC = ∅) such that VC is a vertex cover of G
(equivalently, IS is an independent set of G) and G is a VC-expander graph.

Lemma 5.3 and Theorem 4.4 imply:

Theorem 5.4.[8] AnyΠE(G) for which G is a connected bipartite graph, contains
a matchingmixed Nash equilibrium.

On the light of above results it is not difficult to show that,

Theorem 5.5. [8] For any ΠE(G), for which G is a bipartite graph, amatch-
ing mixed Nash equilibrium ofΠE(G) can be computed in polynomial time,
max{O(m

√
n), O(n2.5/

√
logn)}, using Algorithm A.
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6 Mixed Nash Equilibria in Various Graphs

Here, we overview on polynomial computable Nash equilibria of the Edge model
on some practical families of graphs, such as trees, regular graphs, graphs that can
be partitioned into vertex disjoint regular subgraphs, graphs with perfect match-
ings, showed in [9].

6.1 Trees

In Figure 3 we present in pseudocode an algorithm, calledTrees(ΠE(T)), for com-
puting mixed NE for trees graph instances. The analysis following shows that the
algorithm computes amatchedNE of the instance in linear timeO(n). Observe
that trees are bipartite graphs, thus by Theorem 5.5 a matched mixed NE ofΠE(T)
can be computed in timeO(n2.5/

√
logn) via algorithmA(ΠE(G), IS,VC) (sec-

tion 4). Thus, algorithmTrees(ΠE(T)) presented next consists a more efficient
algorithm thatA for computing matched NE for the case where the graph of the
instance is a tree.

The proof of correctness of the Algorithm is obtained via a series of Claims
proved in [9].

Claim 6.1. Set VC, computed by AlgorithmTrees(ΠE(T)), is an independent set
of T .

Claim 6.2. Set EC is an edge cover of T and VC is a vertex cover of the graph
obtained by set EC.

Claim 6.3. Each vertex of IS is incident to exactly one edge of EC.

By Claims 6.1 and 6.3 we prove,

Lemma 6.4. Configuration~s t computed by algorithmTrees(ΠE(T)) is a match-
ing mixed NE.

By the previous Lemma, combined with Claim 4.2, in the same work it is
shown that,

Theorem 6.5. For anyΠE(T), where T is a tree graph, algorithmTrees(ΠE(T))
computes a mixed NE in polynomial time O(n).

6.2 Regular and Polynomially Computabler-factor graphs

Theorem 6.6. [9] For any ΠE(G) for which G is an r-regular graph, a mixed NE
can be computed in constant time O(1).
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In the proof of the Theorem, the following configuration~s r onΠE(G) is con-
structed:

For any i ∈ Nvp, P~s r (vpi , v) := 1
n, ∀v ∈ V(G) and then set, ~s r

j := ~s r
i ,

∀ j , i, j ∈ Nvp . Set P~s r (ep,e) := 1
m, ∀e ∈ E.

(5)

Then, its is shown that~s r is a mixed NE forΠE(G).
The above result can be extended to graphs containing polynomially com-

putabler-regular factors subgraphs.

Corollary 6.7. For anyΠE(G) for which G is contains an r-regular factor sub-
graph, a mixed NE can be computed in polynomial time O(T(G)), where O(T(G))
is the time needed for the computation of Gr from G.

Observation 6.8.For anyΠE(G) for which G is a2-regular factorgraph, a mixed
NE can be computed in polynomial time, O(T(G)), where O(T(G)) is the (polyno-
mial) time needed for computing G2.

6.3 Perfect Graphs

Theorem 6.9. [9] For any ΠE(G) for which G has a perfect matching, a mixed
NE can be computed in linear time, O(

√
n ·m).

In the proof of the Theorem, first, a perfect matchingM of G is computed.
Then, the following configuration~s p onΠE(G) is constructed:

For any i ∈ Nvp, P~s p(vpi , v) := 1
n, ∀v ∈ V(G) and set~s p

j := ~s p
i ,

∀ j , i, j ∈ Nvp . SetP~s p(ep,e) := 1
|M| , ∀e ∈ E.

(6)

Then, it is shown, that both kinds of players, the vertex players and the edge player
are satisfied in~s p. Thus it is a mixed NE forΠE(G).

7 The Price of Anarchy

In this section we overview on the basic results of [9] on the Social Cost and Price
of Anarchy of the Edge model.

Lemma 7.1. For any ΠE(G) and an associated mixed NE~s ∗, the social cost
SC(ΠE(G), ~s ∗) is upper and lower bounded as follows:

max

{
ν

|D~s ∗(ep)|
,

ν

|V(D~s ∗(vp))|

}
≤ SC(ΠE(G), ~s ∗) ≤

∆(D~s ∗(ep)) · ν
|D~s ∗(ep)|

(7)

These bounds are tight.

Theorem 7.2.The Price of Anarchy for the Edge model isn
2 ≤ r(E) ≤ n.
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8 The Path Model

In the last section, we take a glimpse on the Path model. In [9], we provide the
following characterization of pure Nash Equilibria in the Path model.

Theorem 8.1.For any graph G,ΠP(G) has a pure NE if and only if G contains a
hamiltonian path.

This characterization implies the following result regarding the existence of
pure NE.

Corollary 8.2. The problem of deciding whether there exists a pure NE for any
ΠP(G) isNP-complete.
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Algorithm A(ΠE(G), IS,VC)

I: A gameΠE(G) and a partition ofV(G) into setsIS, VC = V\IS,
such thatIS is an independent set ofG andG is aVC-expander graph.
O: A mixed NE~s for ΠE(G).

1. Compute a set M ⊆ E as follows:

(a) Initialization: Set M := ∅, Matched := ∅ (currently
matched vertices in M), Unmatched:= VC (currently un-
matched vertices of VC in M), Unused := IS, i := 1,
Gi := G and M1 := ∅.

(b) While Unmatched, ∅ Do:

i. Consider a u ∈ Unmatched.

ii. Find a v ∈ Unusedsuch that (u, v) ∈ Ei. Set M :=
M ∪ (u, v), Unused:= Unused\{v}.

iii. Prepare next iteration: Set i := i + 1, Matched :=
Matched∪ {u}, Unmatched:= Unmatched\{u}, Gi :=
Gi−1\u\v.

2. Partition set IS into two sets IS1, IS2 as follows: IS1 := {u ∈
IS : ∃ (u, v) ∈ M} and IS2 := IS\IS1. Note that IS2 := {u ∈
IS : ∀v ∈ VC, @ (u, v) ∈ M}.
Compute set M1 as follows: ∀ u ∈ IS2, set M1 := M1 ∪ (u, v),
for any (u, v) ∈ E, v ∈ VC.

3. Define a configuration ~s with the following support: D~s(vp) :=
IS, D~s(ep) := M ∪ M1.

4. Determine the probabilities distributions of the vertex players
and the e.p. of configuration ~s′ using equations (3) and (4) of
Claim 4.2.

Figure 2: AlgorithmA(ΠE(G), IS,VC).
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Algorithm Trees(ΠE(T))

1. Initialization: VC := ∅, EC := ∅, r := 1, Tr := T.

2. Repeat until Tr == ∅

(a) Find the leaves of the tree Tr , leaves(Tr).

(b) Set VC := VC∪ leaves(Tr).

(c) For each v ∈ leaves(Tr) do:

If parentTr (v) , ∅, then EC := EC∪{(v, parentTr (v)))},
else EC := EC∪ {(v,u)}, for any u ∈ childrenT(v).

(d) Update tree: Tr+1 := Tr\leaves(Tr)\parents(leaves(Tr)).
Set r := r + 1.

3. Define a configuration ~s t with the following support:
For any i ∈ Nvp, set D~s t(vpi) := VC and D~s t(ep) := EC. Then
set D~s t(vpj) := D~s t(vpi), ∀ j , i, j ∈ Nvp.

4. Determine the probabilities distributions of players in ~s t as
follows:
ep : ∀ e ∈ D~s t(ep), set P~s t(ep,e) := 1/|EC|. Also, ∀ e′ ∈ E(T),
e′ < D~s t(ep), set P~s t(ep,e′) := 0.

For any vpi, i ∈ Nvp : ∀ v ∈ D~s t(vpi), set P~s t(vpi , v) := 1
|VC| .

Also, ∀ u < D~s t(vpi), set P~s t(vpi ,u) := 0. Then set~s t
j = ~s

t
i ,

∀ j , i, j ∈ Nvp.

Figure 3: AlgorithmTrees(ΠE(T)).
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Abstract

We survey recent results on the enumeration of formal languages. In
particular, we consider enumeration of regular languages accepted by de-
terministic and nondeterministic finite automata withn states, regular lan-
guages generated by regular expressions of a fixed length, andω-regular
languages accepted by Müller automata. We also survey the uncomputabil-
ity of enumeration of context-free languages and more general structures.

1 Introduction

Given a set of objects, enumeration asks “how many distinct objects are there?”
Easy examples of enumeration problems are “how many binary sequences of
length n are there?” (2n) and “how many distinct subsets of sizem can we
take from a set ofn elements?” (

(
n
m

)
). A sampling of other classical topics
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for enumeration familiar to computer scientists include graphs (“how many non-
isomorphic graphs onn vertices are there?”), trees, primitive and Lyndon words
[33, A000031], and monotone Boolean functions (this enumeration problem is
known as Dedekind’s problem [33, A000372]). With over 100 000 sequences, the
Encyclopedia of Integer Sequences [33] contains a wealth of examples related to
enumeration.

The enumeration of structures in formal language theory is a topic that has
been considered for almost fifty years, and the objects in formal language theory
yield many interesting enumeration problems. In this survey, we consider recent
results on the enumeration of formal languages. Many of these results concern
enumeration of finite automata, but we also consider enumeration of regular ex-
pressions, context-free languages, and more general results.

Why enumeration? There are several compelling reasons for studying the enu-
meration of formal languages beyond the intrinsic research challenge. In particu-
lar, research on enumeration is closely linked to problems of random generation
of automata [3], average case complexity [27] and establishing lower bounds by
counting arguments (see, e.g., Domaratzkiet al. [11, Thm. 2.5] for an example
from formal language theory). Results on enumeration are useful in varied loca-
tions when, for one reason or another, the number of regular languages of a given
size is required. A recent example is given Gramlich and Schnitger [14], who use
bounds on the number of regular languages accepted by NFAs withn states in
proving inapproximability results for finding minimal NFAs for a given DFA.

2 Enumeration and Formal Language Theory

Given an infinite set of objectsS, enumeration asks the question “how many dis-
tinct objects are there inS of size n”? The goal of enumeration is to express
this quantity exactly as a function ofn, typically in a closed form. Asymptotics
for these functions are typically also of interest to researchers, for comparative
purposes.

There are some important assumptions in enumeration problems. The two
most crucial—especially in relation to formal language enumeration—are the
measurementand the idea ofequivalence. First, we must have a measure onS
such that the number of objects of sizen is finite for alln. Clearly, without a mea-
sure satisfying these requirements, asking enumeration questions doesn’t make
sense. When enumerating structures in formal language theory, there are often
several different descriptional complexity measures available. This gives many,
often unique research questions for the same structure, as we see in this survey.
Secondly, our enumeration problem asks about the number ofdistinct objects of
sizen. Thus, we must have a concept of which objects are and are not equivalent.
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Typically, in classical areas like graph theory, the notion of equivalence means
isomorphic: two directed graphs are equivalent if they are isomorphic. In for-
mal language theory, we still use the notion of isomorphic—when discussing the
uniqueness of minimal DFAs, for instance. However, when dealing with devices
which generate or accept languages, our primary notion of equivalence is usually
equality of the languages they generate or accept. Thus, we focus on this concept
of equivalence in this survey: two language devices are equivalent if they accept
or generate the same language.

3 Preliminaries

We assume the reader is familiar with the basic notions of formal language theory,
in particular, the concepts of deterministic and nondeterministic finite automata
(DFAs and NFAs), regular expressions, regular languages, context-free grammars
(CFGs) and context-free languages (CFLs). See, for example, Rozenberg and
Salomaa [32] for an introduction to concepts used in this survey.

We will employ a few descriptional complexity measures of regular languages
below. The (deterministic) state complexity of a regular languageL is the minimal
number of states in any DFA acceptingL. See Yu [36, 37] for surveys of results on
state complexity. The nondeterministic state complexity [17] of a regular language
L is, as expected, the minimal number of states in any NFA acceptingL.

4 Early Results

Since nearly the inception of the study of formal languages, there has been in-
terest in enumeration problems relating to automata. For a list of references and
background, we refer the reader to Domaratzkiet al. [9], where it is noted that
the problem was considered at least as early as 1959, and in 1960, Harary listed
enumeration of automata as an unsolved problem in graph enumeration. Harrison
[16] wrote “A census of finite automata” in 1965, which provided enumeration
results using group-theoretic means. Many other papers also attacked the enumer-
ation of automata, including strongly-connected, initially-connected1 and minimal
automata. Much research was independently conducted in the Soviet Union and
in the West.

Most early research focuses on enumerating automata by considering them to
be distinct if they are non-isomorphic, and little attention is given to the languages

1Recall that a DFA isinitially-connectedif, for each stateq, there is a wordw such that
δ(q0,w) = q, and similarly for an NFA. Initially-connected automata are also calledaccessible
in the literature.
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accepted by the automata. Some of the work on enumeration of minimal automata
does begin to address the number of languages accepted by DFAs. To see this, let
fk(n) be the number of pairwise non-isomorphic minimal DFAs withn states over
a k-letter alphabet andgk(n) be the number of distinct regular languages accepted
by DFAs withn states over ak-letter alphabet. Then we note thatgk(n) =

∑n
i=1 fk(i)

[9, Prop. 1]. Thus, in what follows, we are generally looking for bounds ongk(n),
but it will be sufficient to obtain bounds onfk(n).

For research on enumeration of minimal finite automata, we mention here
in particular the less well-known work of Narushima [24, 25, 26], who devel-
oped new methods, namely inclusion-exclusion properties on semi-lattices, for
enumeration of minimal automata. These techniques appear to have never been
exploited to enumerate formal languages (in particular, the relationship between
Narushima’s methods and methods for enumerating initially-connected automata
does not appear to have been studied) and the inclusion-exclusion principles do
not appear to have ever been employed to give any asymptotic analysis of the
number of minimal automata withn states.

There is also other work on minimal automata which we do not cover in this
survey. The work of Korshunov [18, 19] (a survey in Russian is also available
[20]) enumerates minimal automata. However, as noted in Domaratzkiet al. [9],
the automata studied by Korshunov lack a distinguished initial state. Korshunov
also studies initially-connected automata (in which an initial state is given [20, Ch.
4]), however, it does not appear that the work was broadened to study initially-
connected minimal automata.

5 Enumeration by State Complexity

Renewed interest in the enumeration of formal languages can be traced to the
work of Nicaud which investigated average state complexity of operations on reg-
ular languages [27]. In order to examine the average case complexity of these
operations, an exact characterization of all distinct automata withn states is re-
quired. Nicaud gives such a characterization for unary regular languages and, as a
by-product, also gives an asymptotic enumeration of unary regular languages. Re-
call that fk(n) denotes the number of pairwise non-isomorphic minimal DFAs with
n states over ak-letter alphabet andgk(n) denotes the number of distinct regular
languages accepted by DFAs withn states over ak-letter alphabet. The following
result is due to Nicaud [27]:

Theorem 1. The function f1(n) satisfies f1(n) ∼ n2n−1.

This result of Nicaud was considered by Domaratzkiet al. [9]. In particular,
the asymptotic bound onf1(n) can be further refined, and an asymptotic bound on
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g1(n) can also be given [9]:

Corollary 2. The following asymptotic bound holds: g1(n) = 2n(n−α+O(n2−n/2))
whereα is a constant with approximate value1.382714455402.

The value ofα in Theorem 2 is given by a sum involving the Möbius function
[9]. Domaratzkiet al. also examine the behaviour of the functionfk(n) for k ≥
2. These results depend on the following theorem due to Liskovets [23] and,
independently, Robinson [31]. LetCk(n) be the number of initially-connected
DFAs (without final states) onn states over an alphabet of sizek.

Theorem 3. Let n, k ≥ 2. The function Ck(n) satisfies the following recurrence:

Ck(n) = nnk −

n−1∑
i=1

(
n− 1
i − 1

)
Ck(i)n

(n−i)k. (1)

The asymptotics ofCk(n) are are given by Robinson [31]:

Ck(n) = nknγn(1+o(1))
k , (2)

whereγk is a constant depending only onk, the size of the alphabet. Korshunov
[20, p. 50] also gives precise results in this area. Using Theorem 3, Domaratzkiet
al. [9] give asymptotic bounds onfk(n) for k ≥ 2:

Theorem 4. The function fk(n) is bounded below by a function which is asymp-
totically (k− o(1))n2n−1n(k−1)n and bounded above by2nCk(n)/(n− 1)!.

Thus, considering the estimates of (2), the upper and lower bounds in Theo-
rem 4 differ by a factor of (γke)n. Fork = 2 this is approximately 2.27n [9].

Reiset al. [30] have also considered enumeration of automata and in particu-
lar, initially-connected DFAs. By proposing a canonical, compact string represen-
tation for initially-connected DFAs, Reiset al.give an alternate formula forCk(n)
[30].

Theorem 5. The function Ck(n) satisfies the following formula:

Ck(n) =
k∑

b1=1

2k−b1∑
b2=1

3k−b1−b2∑
b3=1

· · ·

k(n−1)−
∑n−2
`=1 b`∑

bn−1=1

n∏
j=1

jb j−1. (3)

Finally, we consider the recent work by Bassino and Nicaud [1], who also
study the enumeration of non-isomorphic initially-connected DFAs. Recall that
the Stirling numbers of the second kind, denoted here byS2(n,m), are defined by
S2(0,0) = 1, S2(n,0) = 0 for all n ≥ 1 and, for alln,m≥ 1,

S2(n,m) = mS2(n− 1,m) + S2(n− 1,m− 1).

The main enumerative result of Bassino and Nicaud gives bounds onCk(n) [1]:
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Theorem 6. Let n, k ≥ 1. The following asymptotic bound holds:

Ck(n) ∈ Θ (nS2(kn,n)) . (4)

We note that Theorem 6 is obtained from exact bounds onCk(n). Bassino
and Nicaud also reinterpret a result of Korshunov using Stirling numbers of the
second kind. Note that Theorems 3, 5 and 6 all do not account for the choices of
final states. Thus, each of these quantities can be multiplied by a factor of 2n, as
is done in the upper bound of Theorem 4.

5.1 Enumeration by Nondeterministic State Complexity

Despite the long history of enumeration of finite automata, and the central im-
portance of nondeterminism in automata theory, there does not appear to have
been any consideration of the enumeration of nondeterministic finite automata
or of regular languages by their nondeterministic state complexity until very re-
cently. Estimates of this quantity have appeared in at least one instance (in 1997
by Pomeranceet al. [29], which we note below), but the first study of the enu-
meration problem appears to be by Domaratzkiet al. [9]. Let Gk(n) denote the
number of distinct regular languages accepted by NFAs withn states over ak-
letter alphabet. We first consider the unary case [9]:

Theorem 7. The function G1(n) satisfies the inequality G1(n) ≥ 2n+(2.295−o(1))
√

n
logn .

Theorem 7 is given by languages which are accepted by NFAs in Chrobak
normal form [4]. A non-trivial upper bound onG1(n) is given by Pomeranceet
al. [29]:

Theorem 8. There are O(n/(logn))n distinct unary languages accepted by NFAs
with n states.

For larger alphabets, the following bounds are known [9]:

Theorem 9. For k ≥ 2, we have n2(k−1)n2
≤ Gk(n) ≤ (2n− 1)2kn2

+ 1.

One fact worth noting is that the upper bound in Theorem 9 does not en-
force that the NFAs are initially-connected. In fact, it can be shown that there are
asymptotically 2kn2

initially-connected NFAs onn states over ak-letter alphabet
with a fixed initial state and no final states [9, Thm. 12]. This result is derived
from analyzing the recurrence analogous to (2) for NFAs.
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5.2 Enumeration of Finite Languages by State Complexity

We now turn to enumeration of finite languages. Recently, finite languages have
received an increasing amount of attention. The state complexity of language
operations acting on finite languages is almost as well-studied as that of regular
languages (the survey of Yu [37] also covers the case where the languages are
finite). Further, the relationship between the state complexity and the longest
word in a finite language has been recently studied [2].

Let f ′k(n) denote the number of pairwise non-isomorphic DFAs withn states
over ak-letter alphabet which accept finite languages. For finite unary languages,
enumeration is trivial: the number of finite unary languages accepted by a DFA
with n states is exactly 2n−1. For larger alphabets, the problem has been studied
by Domaratzkiet al. [9], Domaratzki [7] and Liskovets [22].

For arbitrary alphabets, a lower bound may be given by an explicit construc-
tion [9, Thm. 15]:

Theorem 10. For k,n ≥ 2, f ′k(n) ≥ 2n−2((n− 1)!)k−1.

Domaratzki [7] gives an improved lower bound on the number of finite lan-
guages accepted by DFAs withn states over a binary alphabet. In particular, the
following bound is given by explicitly constructing large sets of finite languages
all accepted by DFAs withn states [7]:

Theorem 11. For all n ≥ 5, f ′2(n) ≥ (2n−3)!
(n−2)! cn−2

1 for some constant c1 ' 1.0669467.

An upper bound on the number of finite languages accepted by DFAs with
n states over a binary alphabet is possible by giving another combinatorial in-
terpretation to the classical Genocchi numbers. The Genocchi numbersG2n for
n ≥ 1 can be defined in terms of the following generating function (see Sloane
[33, A001469] for further references):

2t
et + 1

= t +
∑
n≥1

(−1)nG2n
t2n

(2n)!
.

In particular, we have the following result [6]:

Theorem 12. For all n ≥ 2, f ′2(n) ≤ 2n−2G2n.

Theorem 12 can be extended to alphabets of sizek using an generalization of
the Genocchi numbers due to Han [15].

Enumeration of finite languages has also been considered by Liskovets [22]
by enumerating acyclic unlabelled DFAs. Using two approaches previously de-
veloped, Liskovets gives an exact enumeration of unlabelled DFAs accepting finite
languages.
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Let ak(n, r) be the recurrence defined by

ak(n, r) =
n−1∑
t=0

(
n
t

)
(−1)n−t−1(t + r)k(n−t)ak(t, r)

for n, r ≥ 1 andak(0, r) = 1 for all r ≥ 0. The recurrenceak(n, r) enumerates
DFAs which are calledquasi-acyclicby Liskovets, but is primarily an auxiliary
recurrence for the following result [22]:

Theorem 13. Let ck(n) be the function defined by ck(1) = 1 and

n∑
t=1

(
n− 1
t − 1

)
ak(n− t, t + 1) · ck(t) = ak(n,1)

for n ≥ 2. Then ck(n) gives the number of labelled, initially-connected acyclic
DFAs on n states over a k-letter alphabet.

As Liskovets notes, the number ofunlabelledinitially connected acyclic DFAs
is given by the quantityck(n)/(n−1)!. The above bounds can be further improved
by considering only DFAs with a unique so-called pre-dead state (the pre-dead
state is the state for which all of its transitions enter the dead state). Though
Liskovets does not give asymptotics forck(n), numerical evidence suggests it gives
a good upper bound on the number of finite languages accepted by DFAs with at
mostn states.

5.3 Enumeration of Finite Languages by Nondeterministic
State Complexity

For enumeration of finite languages by nondeterministic state complexity, let
G′k(n) denote the number of finite languages over ak-letter alphabet with non-
deterministic state complexityn. We have the following result [9].

Theorem 14. We have G′1(n) = 2n, and for all k≥ 2 and n≥ 2,

2(k−1)n(n−1)/2 ≤ G′k(n) ≤ 2n−1+kn(n−1)/2.

5.4 Enumeration by⊕-State Complexity

Recently, van Zijl [35] has considered enumeration problems for⊕-DFAs and⊕-
NFAs. A symmetric difference NFA(or ⊕-NFA) is a 5-tupleM = (Q,Σ, δ,q0, F),
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where each component is the same as a traditional NFA. However, we extendδ to
a functionδ : Q× Σ∗ → 2Q as follows:

δ(q, ε) = {q} ∀q ∈ Q

δ(q,aw) =
⊕

q′∈δ(q,a)

δ(q′,w) ∀q ∈ Q,w ∈ Σ∗,a ∈ Σ.

Here,⊕ is the symmetric difference operation on sets:X1⊕X2 = (X1\X2)∪(X2\X1).
Thus,⊕-NFAs are obtained from traditional NFAs by extending the transition
function to words by using symmetric difference instead of union. A⊕-DFA is
any DFA obtained by applying the subset construction to a⊕-NFA.

van Zijl considers enumeration of regular languages by the number of states
in the⊕-NFA and⊕-DFA simultaneously. This problem has been considered for
traditional NFAs and DFAs by Domaratzkiet al. [9]. Let ϕ be the Euler totient
function. We have the following result [35, Thm. 10]:

Theorem 15.For all n ≥ 1, there are at least2
n

n ϕ(2
n−1)distinct regular languages

over a binary alphabet such that each is accepted by an n-state⊕-NFA, and the
minimal⊕-DFA for each has2n − 1 states.

6 Enumeration by Regular Expression Size

Lee and Shallit have recently investigated the enumeration of regular languages by
regular expression size [21]. This follows previous work, most recently by Ellulet
al. [13], on the study of regular expression size as a descriptional complexity mea-
sure for regular languages. The work of Ellulet al. [13] includes investigations
of trade-offs between regular expression size and automata size and the effect of
operations on regular expression size.

The study of the descriptional complexity of regular expressions requires us to
be precise about our measure of the length of a regular expression. For instance,
Lee and Shallit [21] and Ellulet al. [13] consider the following three measures:

(a) Theordinary lengthof a regular expression, that is, the number of symbols
in the regular expression, including parentheses,ε and∅.

(b) Thereverse polishlength, which is the length of the equivalent expression
written in reverse polish (postfix) notation.

(c) Thealphabetic length, which counts only letters from the alphabetΣ, and
ignores all operators, occurrences ofε and∅, and parentheses.
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Ellul et al. [13] note that each of these lengths is linearly related to each other,
provided the expressions do not contain some basic forms of redundancy (such
redundancy-avoiding expressions are calledirreducibleby Ellul et al. [13], where
we refer the reader for more details).

The techniques of Lee and Shallit are themselves worth mentioning. The first
step is constructing a CFGG such thatL(G) generates the language of all valid
regular expressions over an alphabetΣ (i.e., L(G) consists of words over the al-
phabetΣ ∪ {(, ), ∅, ε,+, ∗}, each of which is a valid regular expression). Using
the Chomsky-Shützenberger Theorem,G can be translated to a system of linear
equations which (implicitly) give the number of regular expressions of a given
length. Lee and Shallit then use Gröbner bases to obtain a generating function
for the number of regular expressions of lengthn. This technique enumerates all
valid regular expressions, which treats regular expressions as being distinct if they
differ as words generated by the grammarG.

In the following, Sk(n) denotes the number of valid regular expressions of
ordinary lengthn over ak-letter alphabet. The following result is due to Lee and
Shallit [21]:

Theorem 16. The function Sk(n) satisfies Sk(n) ∼ ckα
n
kn
−3/2, for some constant

ck, whereα1 = 6.1552665andα2 = 7.2700161767.

Clearly,Sk(n) is an upper bound on the number of distinct regular languages
generated by a regular expression of lengthn over ak-letter alphabet, denoted by
Rk(n). By further refining the grammars used to generate regular expressions to
reduce the number of repeated regular expressions, Lee and Shallit give improved
upper bounds onRk(n):

Theorem 17. The function Rk(n) satisfies the upper bounds in Table 1, where the
length of the regular expressions is ordinary length.

k 1 2 3 4 5 6
Rk(n) O(2.9090n) O(4.2198n) O(5.3182n) O(6.4068n) O(7.4736n) O(8.5261n)

Table 1: Upper bounds onRk(n) for 1 ≤ k ≤ 6.

Lee and Shallit also give upper bounds forRk(n) using reverse polish and al-
phabetic length, as well as establish lower bounds onRk(n) [21]:

Theorem 18. The function Rk(n) satisfies the lower bounds in Table 2, where the
length of the regular expressions is ordinary length.
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k 1 2 3 4 5 6
Rk(n) Ω(1.3247n) Ω(2.7799n) Ω(3.9582n) Ω(5.0629n) Ω(6.1319n) Ω(7.1804n)

Table 2: Lower bounds onRk(n) for 1 ≤ k ≤ 6.

Again, lower bounds for reverse polish and alphabetic length are also given.
The bounds in Table 2 are obtained by explicitly constructing large sets of dis-
tinct regular expressions of the given length. We note that Lee and Shallit also
give bounds on the number of star-free and finite languages accepted by regular
expressions of a given length.

7 Enumeration ofω-regular Languages

Finite automata recognizing infinite words are a classic model of study in the field
of formal language theory. For an introduction to automata on infinite words see,
e.g., Pin and Perrin [28] or Thomas [34]. A one-way infinite wordw over the
alphabetΣ is a mappingw : N → Σ. Denotewi = w(i). We vieww as a word
which has a starting pointw1 and proceeds to the rightw = w1w2w3w4 · · · . The
set of all one-way infinite words is denotedΣω.

One model for accepting theω-regular languages (i.e., the sets of one-way
infinite words recognized by a regular expression involving the operatorXω) are
Müller automata. A (deterministic) Müller automatonM is given by a 5-tuple
M = (Q,Σ, δ,q0,F ) whereQ is a finite set of states,Σ is the alphabet,δ : Q×Σ→
Q is the transition function,q0 ∈ Q is the initial state andF ⊆ 2Q is the acceptance
table. For any infinite wordw ∈ Σω, w is accepted by a Müller automatonM if,
when starting in the initial state, the set of states visited byw infinitely often is
an element ofF . As usual, the language accepted byM is the set of all words
accepted byM.

Let f (ω)
k (n) be the number of distinctω-regular languages accepted by a deter-

ministic Müller automata withn states over ak-letter alphabet. Domaratzki [5]
has given upper and lower bounds on the number ofω-regular languages accepted
by Müller automata:

Theorem 19. For all k ≥ 2, there exists a constantγk depending only on k such
that for all n≥ 3, the following bound hold:

f (ω)
k (n) ≤

nknγn(1+o(1))
k 22n−n−1

(n− 1)!
·

k∑
m=0

(
n
m

)
.

Further, for all n> k ≥ 2,

f (ω)
k (n) ≥ 22n−bn/kc−1−1.
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Note that the constantγk in Theorem 19 is the same as the constant in (2). The
upper bound of Theorem 19 is interesting, since it relies on the fact that some of
the 22n

possible acceptance tables, calledstrongly inadmissibleacceptance tables,
are not valid for any possible assignment of transition functions [5].

8 Enumeration of Context-Free Languages

Domaratzki et al. [10] have recently considered enumeration questions for
context-free languages. The main stumbling block to counting the number of
context-free languages of a given size is the fact that deciding if two context-free
grammars are equivalent (i.e., generate the same language) is undecidable. How-
ever, this does not preclude that the enumeration of context-free languages of size
n is computable as a function ofn. But in fact, it does turn out that the function
counting the number of CFLs of a given size is uncomputable.

In the following theorem [10], we restrict our attention to descriptional com-
plexity measures that arewell-behaved. By well-behaved, we mean that the total
number of CFGs of any given size is finite. We note that, for instance, the minimal
number of nonterminals in any CFG generating a CFL is not a well-behaved de-
scriptional complexity measure, since all finite CFLs are generated by CFGs with
one nonterminal.

Theorem 20. If c(n) is the number of CFLs of size n (for any well-behaved, com-
putable descriptional complexity measure), then c(n) is uncomputable.

However, despite the fact that the number of CFLs of sizen is uncomputable,
we can still approximate this quantity. For instance, it can be shown that the
number of CFLs generated by a CFG in Chomsky Normal Form with at mostn
nonterminals over a fixed sized alphabet is 2Θ(n3) [10, Thm. 7].

8.1 Related Enumeration Results

Theorem 20 can be extended to give a general result on the uncomputability of
enumerative functions. In what follows, letX be a recursive language,d be a
computable and well-behaved descriptional complexity measure,R be an equiv-
alence relation onX andgR(n) denote the number of equivalence classes on the
elements of measuren in X. Let Σk,∆k be levels in the arithmetic hierarchy. We
have the following result [10]:

Theorem 21. For any equivalence relation R on X that is complete forΣk or for
∆k, the corresponding function gR(n) is not computable.
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For instance, Domaratzkiet al. [10] note the following applications of Theo-
rem 21:

• The number of distinct rational relations defined by nondeterministic finite
transducers withn states is uncomputable.

• The number of distinct recursively enumerable languages recognized by
Turing machines of sizen is uncomputable.

However, not all equivalence relations are captured by Theorem 21. We mention
some interesting open problems in this area in Section 9.

9 Open Problems

Enumeration of formal languages has several areas of investigation which are
open. We mention some open problems which seem particularly interesting.

We first note some asymptotic bounds that we think might be easily improved.
Enumeration of regular languages by nondeterministic state complexity is a very
natural problem that has not received much attention. The bounds for many of
these problems are likely to be able to be improved. We mention in particu-
lar the number of unary regular languages accepted by NFAs withn states as
one such open problem. The current best known upper bound is logarithmi-
cally n log(cn)− n log log(n) while the best known lower bound is logarithmically

n+ (c− o(1))
√

n
logn.

Enumeration of automata acceptingω-regular languages is an interesting area
which has received only minimal attention. The unique mode of acceptance for
Müller automata presents an interesting enumeration problem, and some results
have been obtained by Domaratzki [5]. However, tight bounds have not been
obtained, and enumeration of Büchi automata has not been considered. The ac-
ceptance mode of Büchi automata yield a distinct notion of equivalence and it
would be interesting to give asymptotics for the number ofω-regular languages
accepted by Büchi automata withn states.

Theorem 21 gives a general result for proving that several enumerative func-
tions are uncomputable. However, the result is not applicable in all cases. For
instance, the following problem is open [10]: Is the number of regular languages
generated by CFGs of a fixed size computable?

Recently, measuring the descriptional complexity of regular languages by the
minimal number of transitions required by an NFA to recognize a language has
received increased attention. This raises the natural question: how many regular
languages can be accepted by NFAs with at mostn transitions? Gramlich and
Schnitger give an upper bound on the number of binary regular languages accepted
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by an NFA withn transitions: they show that this quantity is at mostn8n+2 [14]. We
can also adapt the result of Liskovets [23] and Robinson [31] of Theorem 3 (see
also Domaratzkiet al. [9] for the case of NFAs) for enumerating the number of
labelled, initially-connected NFAs overn states withm transitions. In particular, if
Tk(n,m) is the number of initially-connected NFAs withn states andm transitions
over ak-letter alphabet (without final states), we can easily show thatTk(n,m)
satisfies the following recurrence:

Tk(1,1) = k,

Tk(n,m) = 0 if n ≥ m+ 2 and

Tk(n,m) =

(
kn2

m

)
−

(
kn(n− 1)

m

)
−

n−1∑
i=1

m∑
j=1

(
n− 1
i − 1

)
Tk(i, j)

(
kn(n− i)
(m− j)

)
.

However, tight asymptotic bounds for enumerating regular languages by the num-
ber of transitions are unknown.

Enumeration by other descriptional complexity measures is also an area for fu-
ture research. For instance, the measure of radius [12, 8] has been implicitly stud-
ied in relation to the enumeration of finite languages [7] and as descriptional com-
plexity measure [2]. Further, simultaneous enumeration by several descriptional
complexity measures has only received some attention in the literature [9, 35]. We
feel that there are many interesting avenues of research in the area of enumeration
of formal languages.

Finally, we note that explicitly computing values of the functions described
here is often challenging for even small values ofn. As an example, we note that
the values ofG1(n) (the number of unary regular languages accepted by NFAs
with n states) is known only for values ofn ≤ 6.

10 Conclusions

Enumeration problems in formal language theory have many applications, and
also presents interesting challenges relating to our understanding of the structure
of language devices, especially distinctness and minimality. The recent work sur-
veyed here shows that results in enumeration of formal languages often yield en-
lightening results that further our knowledge of the theory of formal languages
in general. Though these fundamental questions have been examined for many
years, interesting challenges still remain.
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Category Theory is a well-known powerful mathematical modeling language
with a wide area of applications in mathematics and computer science, including
especially the semantical foundations of topics in software science and develop-
ment. Since about 30 years there have been workshops including these topics.
More recently, the ACCAT group established by J. Pfalzgraf at Linz and Salzburg
has begun to study interesting applications of category theory in Geometry, Neu-
robiology, Cognitive Sciences, and Artificial Intelligence. It is the intention of this
ACCAT workshop to bring together leading researchers in these areas with those
in Software Science and Development in order to transfer categorical concepts
and theories in both directions. The ACCAT 2006 workshop was organized by
Jochen Pfalzgraf and Hartmut Ehrig and took place on March 26, 2006 as satel-
lite of ETAPS 2006 at the Vienna University of Technology. The organizers are
representatives of categorical methods for several areas like Geometry, Neurobio-
logy, Cognitive Sciences, and Artificial Intelligence on one hand and Software
Science and Development on the other hand. Categorical methods are already
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well-established for the semantical foundation of type theory (Cartesian closed
categories), data type specification frameworks (institutions) and graph transfor-
mation (adhesive high level replacement categories), which are most relevant for
ETAPS. The organizers have invited leading senior and promising junior resear-
chers for giving invited lectures at the ACCAT workshop which promises to lead
to interesting discussions concerning transfer of categorical methods between the
areas mentioned above.

After a short opening statement by the organizers Jochen Pfalzgraf continued
with an interesting overview of the ACCAT origins. Julia Padberg reported about
the integration of two important categorical frameworks, the generic component
concept for system modelling and adhesive HLR systems, which is the subject
of her habilitation thesis completed recently. After the presentation of a functio-
nal framework for constraint normal logic programming by Fernando Orejas we
learned about a category theory in Brazil from Ciara Aparecida dos Santos Leal,
especially a categorical view of structural complexity.

Andrzej Tarlecki and Till Mossakowski gave a very nice overview about insti-
tutions, abstract model theory, heterogeneous specification and the heterogeneous
tool set. Motivated by homotopy theory in topology J. Rosicky reported about
factorization systems and classification problems. Jose Meseguer discussed in his
presentation different aspects of theory morphisms in membership equational lo-
gic.

The new topic of adhesive categories and adhesive high-level replacement sy-
stems was used by Ulrike Prange to present general constructions and properties
of such categories and Andres Corradini discussed how to use this framework for
a categorical semantics of concurrency generalizing that of graph transformation
systems in the double pushout approach. Since Jiri Adamek and D. Dubois could
not attend ACCAT we had enough time for long discussions of the presentations.

ACCAT will be continued next year as satellite workshop of ETAPS 2007 in
Braga, Portugal.
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Abstract

In this paper, we study the game-theoretic and computational repercus-
sions of Henkin’s partially ordered quantifiers [19]. After defining a game-
theoretic semantics for these objects, we observe that tuning the parameter
of absentmindedness gives rise to quantifier prefixes studied in [28]. In the
interest of computation, we characterize the complexity class PNP

q in terms
of partially ordered quantifiers, by means of a proof different from Gottlob’s
[17]. We conclude with some research questions at the interface of logic,
game theory, and complexity theory.

∗We gratefully acknowledge Johan van Benthem, Peter van Emde Boas, Yuri Gurevich, Marcin
Mostowski, Eric Pacuit, Gabriel Sandu, Tero Tulenheimo, and the anonymous reviewer. This
paper was finalized at Stanford University, whom we thank for hosting us as a visiting scholar.
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1 Setting the stage

Henkin’s partially ordered quantifier prefixes were initially introduced as a math-
ematical exercise [19], but have ever since been the subject of lively discussion
in various disciplines. In linguistics, Hintikka [20] and Barwise [4] argued that
partially ordered orbranchingquantifiers should be added to the linguist’s tool-
box to give certain natural language expressions their correct logical form. Sandu
and Hintikka [21, 23, 33] imported the idea of a partial dependence relation be-
tween quantifiers in first-order logic, resulting inIndependence Friendly logic.
Independence Friendly logic has congenially been given a semantics in terms of
games with imperfect information. The partiality of information—i.e., imperfect
information—present in these games can be seen to reflect the partial ordering of
the quantifiers.

In this paper we aim to show some of the repercussions of Henkin’s exercise
from a game-theoretic and (finite) model-theoretic angle. Game theory has pene-
trated logic successfully, providing an interactive and goal-oriented viewpoint on
concepts in logic. The game-theoretic viewpoint allows us to compare logics in
terms of the interaction, goals and knowledge.

In Section 2, we introduce logics with Henkin quantifiers and recall their
model-theoretic behavior.

In Section 3, we show that Henkin quantifiers are played by agents with a
limited number of memory cells, whereas first-order logic is played by Eloise
enjoying an infallible faculty of memory.

In Section 4, we give a finite model-theoretic account of Henkin quantifiers.
Finite model theory is the model-theoretic face of complexity theory, and provides
a neat algorithmic view on Henkin quantifiers.

Section 5 concludes the paper.

2 Logic

Henkin’s novelty in the theory of quantification is nowadays known under the
header ofHenkin quantifier. A Henkin quantifier is a two-dimensional object of
the form 

∀x11 . . . ∀x1k ∃y1
...

. . .
...

...
∀xn1 . . . ∀xnk ∃yn

 , (1)

wherexi = xi1, . . . , xik. Henceforth, a string of variables is referred to by using the
obvious symbol boldfaced.

With every Henkin quantifier (1) is associated itsdimensions nandk. In the
interest of space, we abbreviate the Henkin quantifier (1) asHk

nxy. If no con-
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fusion threatens, we may also skip the variables and the integers indicating the
dimensions, and simply writeHk

n andH. To identify a Henkin quantifier without
referring to its dimensions, we writeH(i).

The two-dimensional way of representation aims to convey that the variable
yi depends onxi and onxi only. This is formalized by means of the notion of
Skolem function, that underlies its semantics. Let|= be the satisfaction relation
properly defined for the formulaφ(x, y) on the structureA. Then,|= is extended in
the following way:A |= Hk

n φ(x, y) iff there existk-ary functionsf1, . . . , fn on the
universe ofA such that

A |= ∀x1 . . .∀xn φ(x1, . . . , xn, f1(x1), . . . , fn(xn)).

Note that the quantifierH0
1x has the same semantics as the quantifier∃x, and that

H0
i is elementary definable for everyi ≥ 1.

In this paper, we are interested in two logics featuring Henkin quantifiers. The
first one, denotedH, contains all strings of the formHk

n ψ, whereψ is first-order
andn andk are arbitrary integers. The second logic’s formulae are generated by
the following grammar:

φ ::= ψ | ¬φ | φ ∨ φ | ∃x φ | Hk
n φ,

whereψ is first-order andn andk are arbitrary integers. Let us refer to the latter
logic byH∗.

For a thorough introduction to the logicsH andH∗ and their model-theoretic
behavior, we refer the reader to [27].

The set of free variablesFree(φ) in theH∗-formulaφ is inductively defined by
the clauses that define the set of free variablesFree(ψ), for first-orderψ, plus the
clause

Free
(
Hk

nx11 . . . xnky1 . . . yn φ
)
= Free(φ) − {x11, . . . , xnk, y1, . . . , yn}.

An H∗-formula without free variables is called asentence. The satisfaction rela-
tion for formulae with free variables is defined in the standard way using assign-
ments.

As an illustration of the expressive power ofH, consider the following sen-
tence:

ζ =

(
∀x1 ∃y1

∀x2 ∃y2

)
∃z1∃z2∃z3 (φ1 ∧ φ2 ∧ φ3),

where

φ1 = (x1 = x2)→ (y1 = y2)

φ2 = R(x1, x2)→ (y1 , y2)

φ3 =
∧

i∈{1,2}

∨
j∈{1,2,3}

(yi = zj).
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LetG be a graph whose edges interpretR. Then by definition,G |= ζ iff for two
unary functionsf1 and f2 on the universe ofG, (1) f1 and f2 are the same; (2)
if x1 and x2 are joined by an edge, thenf1(x1) , f2(x2); and (3) the range off1
and f2 is restricted toz1, z2, z3. All in all, we see thatf1 (or f2 for that matter) is a
witness ofG |= ζ iff it is a3-coloringof G.

The semantics for Henkin quantifiers overtly mentions functions, that reflect
the (in)dependence relation between the universal and existential quantifiers car-
ried by the Henkin quantifier. Bearing this in mind, it is quite straightforward to
show that the truth condition of any sentence fromH can be expressed in second-
order, existential logic, symbolicallyΣ1

1. It is a milestone result in the theory of
partially ordered quantification that the converse holds as well: When it comes to
expressive power,H andΣ1

1 are equivalent, cf. [10, 44]. It was shown [10] that
everyH∗-sentence is equivalent to a sentence inΣ1

2 and a sentence inΠ1
2. This

finding rendersH∗ translatable into∆1
2. Mostowski [29] showed that the converse

does not hold: there is a sentence in∆1
2 that has no equivalent inH∗. These results

invariably apply to structures of arbitrary cardinality. In case one restricts oneself
to finite ordered structures, a very nice computational characterization ofH∗ can
be given, see [17] and also Section 4 of the current publication.

3 Games

There is a respectable tradition in logic to give game-theoretic accounts of con-
cepts in logic. An early case in point are Lorenzen-styledialogue games. They are
typically two-player games between Proponent and Opponent. Dialogue games
aim to give a game-theoretic underpinning of the concept of proof. That is, a for-
mulaφ is provable in a logical system if, and only if, the Proponent has a way of
playing the dialogue game ofφ for the logical system at hand that wins against
every way of playing by Opponent. In the game-theorist’s parlance, we say that
Proponent has awinning strategy.

So-calledgame-theoretic semanticswas introduced by Hintikka giving a
game-theoretic account of truth. For instance, consider a toy fragment of first-
order logic, containing only strings of the form

Q1x1 . . .Qnxn R(x),

whereQi ∈ {∃,∀}. Being a fragment of first-order logic, Tarski-semantics is
properly defined for this toy language. But the Tarskian satisfaction relation can
also be given a game-theoretic face, yielding games between Eloise and Abelard.
To this end, letA be a structure that interprets the predicateRand let thesemantic
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gamefor a formulaφ from the toy language onA start from the position〈φ,A〉.
The proceedings of this game are determined by the following game rules:

• If the position is〈∃xi φ,A〉, Eloise picks an objectai from the universe of
A, and the game continues as〈φ,A〉.

• If the position is〈∀xi φ,A〉, Abelard picks an objectai from the universe of
A, and the game continues as〈φ,A〉.

• If the position is〈R(x1, . . . , xn),A〉, the game ends. Eloise wins if the tuple
〈a1, . . . ,an〉 that was built up during the game stands in theR-relation inA;
otherwise Abelard wins.

The adequacy of the semantic games for the toy language, is typically cast
as follows. For every formulaφ and suitable structureA, A |= φ iff Eloise has a
winning strategyin the semantic game ofφ onA. As the reader acknowledges if
we extend the toy language with connectives, negations, one also has to extend
the set of game rules (and possibly tweak the current one) to maintain adequacy
of the game-theoretic semantics with respect to the new logical system.

By this token it becomes clear that classes of semantic games should not be
conceived of as objects floating in limbo. Just as one can compare the properties
of two logical systems by means of model-theoretic means, one can compare the
semantic games they give rise to. Again, Lorenzen’s dialogue games are a case in
point. A lively debate was held about the viability of the dialogue games for first-
order logic in contradistinction to the dialogue games for Brouwer’s intuitionistic
logic. Some held the conviction that dialogue games for intuitionistic logic are
‘more natural’ than the ones for first-order logic, and took this as an argument in
favor of Brouwer’s system, cf. [41].

From the same viewpoint, the move from first-order logic to Independence
Friendly logic can be appreciated. From a purely game-theoretic angle, Hintikka
and Sandu [21, 23, 33] generalized the semantic games for first-order logic so as to
incorporate imperfect information. In our view, this very argument may count as
a motivation for Independence Friendly logic in itself. What exactly is the influx
of the imperfect information in semantic games for Independence Friendly logic
is a hard question, and definitely a topic for future research. As we pointed out,
the idea of partial dependence relation over quantifiers in Independence Friendly
logic has its precursor in Henkin’s work. So from this angle alone it is worthwhile
to develop at least some understanding of the game-theoretic face of Henkin quan-
tifiers, involving imperfect information.

For the sake of simplicity let us restrict ourselves toH-formulae in which the
first-order part is atomic. On this assumption, the game rules for the semantic
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game of theH-sentence

Hk
nx11 . . . xnky1 . . . yn R(x, y)

are simply the ones for the semantic game for

∀x11 . . .∀x1k∃y1 . . .∀xn1 . . .∀xnk∃yn R(x, y).

But as the latter sentence is a sentence from our toy language, the game seems to
have become a game with perfect information as before.

How can this be?
On second thought, it turns out that we have been a bit careless when introduc-

ing the semantic games for the toy language. Surely we gave the players eloquent
names, but omitted to specify the players are such that the semantic games in
which they participate would actually be modeled as games withperfect infor-
mation. It would have made little sense, for instance, to declare that we think
of Eloise as a cauliflower. It’s not that cauliflowers cannot be regarded as game-
theoretic agents, witness the literature on evolutionary game theory. Rather, had
we done so modeling the semantic game of a formula from the toy language as a
game with perfect information would be counterintuitive, to say the least.

To be on the safe side, we’d better postulate that Eloise has an infallible faculty
of memory.

The imperfect information in semantic games forH-sentencesHk
n R(x) can be

seen to be brought into being by assuming that each agent has exactlyk memory
cells. Henceforth, we shall assume that agents govern these memory cells in a
first in first outmanner. In unison, these assumption imply that when the agent is
deciding on an object foryi, it knows only the objects picked up over thek previous
rounds, that is, the objects assigned toxi1, . . . , xik. Furthermore, I postulate that
this agent is notabsentminded, that is, it knows in which round of the game it
is. This postulate implies that when choosing an object to assign toyi the agent
knows that the object selected will be assigned toyi and not to, say,yi+1 or yi−1.

In this manner, everyH-sentenceφ = Hk
n R(x) and structureA give rise to a se-

mantic game that would be modeled as anextensive game with imperfect informa-
tion, call it Sem-gameH(φ,A). An extensive game with imperfect information is a
rigorous mathematical object〈N,H,P, 〈Ii〉i∈N,W〉, well-known from game theory
[30]. N is the set ofplayers. H is the set ofhistories—all permissible sequences
of actions in the game.P is theplayer functiondeciding which playerP(h) ∈ N is
to move at historyh. Ii is a partition of the histories in which playeri is to move,
modeling the imperfect information.W is thewin function, that decides who has
won when the game has come to an end.

In the context ofφ andA, the setH equals⋃
0≤i≤((n·k)+n)

Ai ,



150 150

150 150

BEATCS no 89 THE EATCS COLUMNS

142

whereA is the universe ofA. With every historyh ∈ H of length ((n·k) + n)—i.e.,
terminal history—we straightforwardly associate an assignment functionah to the
variablesx11, . . . , xnk, y1, . . . , yn.

Sem-gameH(φ,A) can be regarded as a tree structure—agame tree—defined
by the prefix relation onH. The game tree is decorated byP.

The setIi contains all sets of histories that are indistinguishable for ourk-
cell, non-absentminded agent (first in first out, remember). The particulars of
the agent at hand uniquely determineIi. That is, h,h′ ∈ I ∈ Ii if, and only
if, h and h′ are equally long (non-absentmindedness) and the lastk elements
of h and h′ coincide (k-cell and first in first out). Clearly,W(h) = Eloise iff
〈ah(x11), . . . ,ah(xnk),ah(y1), . . . ,ah(yn)〉 is anR-tuple inA.

Any functionS : Ii → A is a strategy for playeri in Sem-gameH(φ,A). Say
that a strategy for playeri is winning, if i following the strategy at each ofi’s
moves only results in terminal historiesh such thatW(h) = i,

Let φ = Hk
n R(x) and letA be a structure interpretingR. Let Sem-gameH(φ,A)

be the extensive game with imperfect information modeling the semantic game of
φ onA played by ak-memory cell agent.

Proposition 1. For everyH-sentenceφ = Hk
n R(x) and structureA interpreting

R, a non-absentminded agent with k memory cells has a winning strategy in the
semantic game Sem-gameH(φ,A) iff A |= φ.

Proof. The proof is straightforward once one notices that a series of Skolem func-
tions f1, . . . , fn witnessingA |= φ encodes a winning strategy inSem-gameH(φ,A),
and vice versa. �

It was observed in [27, pg. 223] that manyH-sentences appearing in the liter-
ature express the existence ofonesingle function on the universe. The sentence
ζ that expresses 3-colorability of graphs we discussed earlier is a case in point.
In the same vein many other interestingH-sentences sit in a certain fragment of
H, that was studied in [28]. This particular fragment is defined by thefunction
quantifierFk

n, that binds the variablesx11, . . . , xnk, y1, . . . , yn, just like the Henkin
quantifier with dimensionsn andk. (We will adhere to the same notational con-
ventions as with Henkin quantifiers.) The logicF is defined to be the language
containing all strings (sentences) of the form

Fk
n x1 . . . xny1 . . . yn R(x1, . . . , xn, y1, . . . , yn), (2)

wherexi = xi1, . . . , xik as before andR is an atom. As regards its semantics, any
formula (2) is true on a structureA interpretingR iff there existsone single k-ary
function f on the universe ofA such that

A |= ∀x R(x1, . . . , xn, f (x1), . . . , f (xn)).
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Henkin quantifiers differ from function quantifiers in that the former allow for
multiple functions f1, . . . , fn, whereas function quantifiers allow for only one.
For a model-theoretic comparison of logics with Henkin quantifiers and function
quantifiers see [18, 28].

From a game-theoretic point of view, we show that the move from Henkin
quantifiers to function quantifiers resembles to imposing absentmindedness on
our k-cell agent playing according to the game rules of the semantic game of
∀x1∃y1 . . .∀xn∃yn R(x, y) onA. So in particular the game rules for the sentence

ψ =

(
∀x1 ∃y1

∀x2 ∃y2

)
R(x, y),

where

R(x, y) = (x1 = x2→ y1 = y2) ∧ (y1 = x2→ y2 = x1) ∧ (x1 , y1).

on the structureB would be equal to the ones for∀x1∃y1∀x2∃y2 R(x, y). (The sen-
tenceψ characterizes the finite structures whose universes have even cardinality,
see [35].) Considering an absentminded 1-cell agent, we see that during neither of
his rounds it knows whether the object it choses will be assigned toy1 or y2; it is
aware of the last action though. So in particular ifa,b, c are three different objects
from the universe ofB, it cannot tell apart the histories〈a,b, c〉 and〈c〉. On the
other hand it can distinguish〈c〉 from 〈a〉 and〈c,b,a〉.

Just as we had withH, if φ is anF-sentence letSem-gameF(φ,A) be the ex-
tensive game with imperfect information that models an absentminded agent with
k memory cells in the latter game. In particular inSem-gameF(ψ,B) there is an
information partition containing both〈a,b, c〉 and 〈c〉, but not 〈a〉 and 〈c,b,a〉.
Generally speaking, in these extensive games with imperfect information forF,
two historiesh andh′ sit in the same information partition, if the lastk elements
in h andh′ coincide. However as we saw before,h andh′ need not be of equal
length.

Proposition 2. For everyF-sentenceφ = Fk
n R(x) and structureA interpreting R,

an absentminded agent with k memory cells has a winning strategy in the semantic
game Sem-gameF(φ,A) iff A |= φ.

The reader may wonder, what’s next? Well, in the same vein one may restrict
the agent’s powers to an even greater extent and supply it with a fixed array of
actions. Recall that in the semantic games forH andF the agents pick up their
actions from the universe of the structure at hand, that has unbounded cardinality.
If we consider the agent to be non-absentminded and in possession of a fixed
and finite number of actions, it is capable of ‘playing Henkin quantifiers with
restricted quantifiers’, see [5, 34, 35]. To the best of my knowledge the logic that
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is played by absentminded agents with a limited number of memory cells and a
fixed number of actions has not been studied.

In semantic games forH, thek-cell agent is supposed to recall only the lastk
variables. This undoubtedly is an assumption without theoretical backing. Hin-
tikka and Sandu [21, 23, 33] overcome this needless restriction by introducing the
/ item in first-order logic, to indicate knowledge of a variable or absence thereof.
The resulting system is the Independence Friendly logic we spoke of earlier. In
this logic, the sentence

∀x1(∃y1/{x1})∀x2(∃y2/{x2}) R(x, y)

gives rise to games in which Eloise does not knowx1 when deciding fory1; but she
recollects it when she is to decide fory2. Given the syntactic formation rules of In-
dependence Friendly logic, one infers rather straightforwardly that everypattern
of ignoranceconcerning objects previously played can be accounted for. That
is, if we have a first-order formulaφ in whose semantic games the occurrence
of ∃x triggers a move for Eloise informed aboutx1, . . . , xn, then the/ item al-
lows one to limit the knowledge of Eloise to any subset of{x1, . . . , xn}. From this
game-theoretic perspective Independence Friendly logic truly is the imperfect in-
formation generalization of first-order logic. But note that some sentences from
Independence Friendly logic give rise to games that are hard to actually play, as
they violateperfect recall, cf. [8, 40, 41]. A perfect information approach to
Independence Friendly logic was pursued in [38].

Even more delicate flows of information were studied in thePartial Informa-
tion logic by Parikh and Väänänen [32] whose formulae give rise to imperfect
information games in which Eloise may be partially informed about the previous
actions. In semantic games for the first-order formula∀x∃y R(x, y), for instance,
Eloise knows the object assigned tox. In Partial Information logic, the formula
∀x(∃y// f (x)) R(x, y) typically gives rise to a semantic game in which Eloise is not
aware ofx, but she is cognizant off (x). So in case the functionf maps every
object onx itself Eloise is aware ofx after all. But f may just as well return
1 if x is even and 0 otherwise. In this manner, ifP is a predicate, the formula
χ = ∀x(∃y//P(x)) (x , y) gives rise to games in which Eloise does not knowx, but
she knows whether Abelard chose aP-object. The formulaχ can thus be seen true
on any structure in which there is aP-object and a non-P-object. Under specific
conditions on the nature of the functions appearing at the right-hand side of the//

device, Partial Information logic is a decidable fragment of first-order logic.
It has been pointed out by various authors [22, 24, 41] that we are not really

interested in the actual game playing of semantic games. To the ends we employ
them it is very much indifferent what strategy is used, for instance, and whether
the game is actually played in a platonic universe. Instead we are interested in the
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statements we can truthfully makeaboutthese games, in particular in the existence
of winning strategies. There is one viewpoint from which this difference becomes
clear, that we will highlight. There is a discrepancy between the complexity of
the players and the complexity of the statements we make about them, or—more
precisely—the expressive power of the logic required to express the winning con-
ditions of Eloise. We saw that Eloise enjoys an infallible faculty of memory in the
semantic games for first-order logic, or the toy fragment thereof. Yet, ipse facto,
it takes the first-order sentenceφ to express whether Eloise has a winning strategy
in the semantic game ofφ on any structure. On the other hand, we hired an agent
with a limited number of memory cells to play the semantic games forH. As was
pointed out in [10, 44], here we have to resort to the expressive power of fullΣ1

1!
Note that such a discrepancy does not always occur. For instance, limit at-

tention to 0-cell agents, i.e., agents that don’t see any of their opponent’s actions.
Then, Henkin quantifiers that are playable by such an agent look like

∃y1
...
∃yn

 ,
and are clearly defined by the first-order prefix∃y1 . . .∃yn.

There is no a priori reason to stick to expressive power as the single measure of
complexity. Van Benthem [39] takes up the axiomatization of game models with
imperfect information, and needsextraaxioms to enforce perfect information. Yet
the axiom system seems to get more simple whenk-cell agents are considered.

4 Computation

Fagin [11] gave birth to the area of descriptive complexity, revealing an intimate
connection between model theory and the theory of computation. Descriptive
complexity concerns itself with connecting up logical languages and complexity
classes. This enterprise departs from the insight that with every logical sentence
there is a computational cost associated to verifying its semantic value on an arbi-
trary finite structure; and the other way around, that the particulars of a computing
device can be described in logic. The hope is that hard questions from complexity
theory (think of P versus NP and NP versus coNP) can be solved by separating
the logics they are associated with, see also Section 5.

In this section we will take up the descriptive complexity analysis ofH∗. This
will give us an algorithmic view on Henkin quantifiers. Furthermore it gives some
insight in the way partially ordered quantifiers manifest themselves in the theory
of computation. A more general variant of Theorem 7 from this section appeared
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in an excellent paper by Gottlob [17]. The references we use do not build on any
of Gottlob’s results nor on his main references.1 An independent proof, that is.
The descriptive complexity ofH∗ was raised as an open problem in [5].

First we give a recap of the basics of finite model theory and descriptive
complexity.

Letσ be a finite set of relation symbols—avocabulary—each of which comes
with an integer, itsarity. Every vocabulary contains the binary relation symbol=.

Let aσ-structureA be an object of the form〈A, 〈RA〉R∈σ〉, whereA is the uni-
verse ofA andRA ⊆ Aa, for a the arity ofR. The symbol= is rigidly evaluated
as the identity relation. If< ∈ σ, then<A shall be a linear order onA, andA is
called alinear ordered structure. If A is finite,A is called afinite structure. Here
and henceforth, all discussion will be restricted to finite structures unless indicated
otherwise.

Sometimes when we writeA we actually meanthe binary encoding ofA. We
refer the reader to Immerman’s textbook [26], in which a detailed account is given
of how one can encode structures in binary. For our ends, it suffices to take notice
of the fact that the length of the binary encoding of aσ-structureA, symbolically
‖A‖, is of sizeAc, for some constantc depending onσ.

Let K be a class ofσ-structures. ApropertyΠ overK is a function assigning
a truth valueΠ(A) ∈ {false, true} to every structureA from K. Let L be a logic,
i.e., a set of sentences, for which the satisfaction relation|= is defined. Every
L -sentenceφ defines a propertyΠφ onK, where

Πφ(A) = true iff A |= φ,

for everyA ∈ K. We say thatφ andL expressΠφ. So the sentenceζ expresses the
graph-property of 3-colorability.

Let L andL ′ be two languages over the same vocabulary. Then, writeL ≤K L ′

to indicate that every property overK expressible inL is expressible inL ′. Define
=K and<K in the standard way.

Let C be a complexity class [14, 31]. We say thatL captures at leastC over
K, if each C-decidable property overK can be expressed by a sentence fromL in
the vocabulary ofσ. We say that thequery complexityof L overK is in C, if for
every sentenceφ in L in the vocabularyσ, the propertyΠφ overK is decidable in
C. Here it should be borne in mind, that the size ofφ is constant. The complexity
of Πφ is measured solely by the size of the structures. Finally, say thatL captures
C overK, if L captures at least C overK and the query complexity ofL overK
is in C.

1Following the reviewer’s suggestion we tag presented proofs of already published results, that
differ from the ones given in the literature, with our name.
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Descriptive complexity began withFagin’s Theorem, in which the complexity
class NP is captured.

Theorem 3 ([11]). Over graphs,Σ1
1 capturesNP.

The result can be extended so as to hold for arbitrary structures, cf. [26].
Blass and Gurevich [5] drew upon the connection with Henkin quantifiers and
obtained thatH captures NP. This result is readily obtained in virtue of the fact
that H = Σ1

1, due to [10, 44]. The remainder of this section is dedicated to the
descriptive complexity ofH∗.

For future reference, we lay down an easy Prenex normal form result.

Proposition 4. EveryH∗-sentenceφ is equivalent to anH∗-sentence of the fol-
lowing form:

±1H(1)x1 . . . ±n H(n)xn ψ,

where±i ∈ {¬,¬¬} andψ is first-order.

Proof. A standard inductive proof suffices, the only non-trivial case being the
conjunction. ButH(1)x φ1(x) ∧ H(2)y φ2(y) is easily seen to be equivalent to
H(1)xH(2)z (φ1(x)∧ φ2(z)), wherez is a string of variables none of which appear in
x. �

Our main observation concerns the computational complexity ofH∗, that is
associated with the complexity class PNP

q .2 This denotes the class of properties
decidable in deterministic polynomial time with the help of an NP-oracle that can
be asked a polynomial number of queries in parallel only once. The action of
querying the oracle takes only one time step. Further, PNP contains those prob-
lems decidable in deterministic polynomial time with an NP-oracle. Some grasp
a complexity class best by its complete problems, that is, its problems to which
every problem in the complexity class can be reduced (by means of a polynomial
time, many one reduction). Wagner [42] showed that the graph-property of having
an odd chromatic number is PNP

q -complete. Denote the class of graphs with an odd
chromatic number by O-.

Theorem 5 ([17]). The query complexity ofH∗ is in PNP
q .

Proof (M. Sevenster).It suffices to show that for anH∗-sentenceφ in the vocab-
ularyσ, deciding whetherφ is true on a finiteσ-structureA can be done in PNP

q .

2Gottlob’s [17] theorem is cast in terms of LOGSPACENP, that is, the class of problems decid-
able in logarithmic space with an NP-oracle. Recall that LOGSPACENP = PNP

q , due to [43].
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First we describe an algorithm that computes whetherφ is true onA. There-
after we observe that this algorithm can be implemented on a Turing machine that
works in PNP

q .
As for the algorithm, due to Proposition 4 we may assume without loss of

generality thatφ has the form:

±1H(1)x1 . . . ±n H(n)xn ψ(x),

whereψ is a first-order formula over the variablesx = x1, . . . , xn. Let the al-
gorithm start off by writing down all variable assignments inAx, and label every
such assignmenta with true if 〈A,a〉 |= ψ(x), andfalseotherwise. Note that conse-
quentlyψ’s truth conditions onA are completely spelled out. Sinceψ is first-order
this can be done in LOGSPACE.

Put i = n andχi+1 = φ. For everyi from n through 1, proceed as follows for
±iH(i)xi in φ:

• Write down all assignments inAx1,...,xi−1.

• For every assignmenta ∈ Ax1,...,xi−1 ask the oracle whether〈A,a〉 |=
H(i)xi χi+1.

• Labela with true if the answer of the oracle was positive and±i = ¬¬ or
the answer was negative and±i = ¬; otherwise label itfalse.

• Erase all labeled assignments fromAx1,...,xi and let the current list of assign-
ments fully specify the truth conditions ofχi(x1, . . . , xi−1); that is, letχi be
the formula that holds of an assignmenta on A if and only if a is labeled
true.

Finally, upon arriving atn = 0, if the empty assignment is labeledtrue the algo-
rithm accepts the input; otherwise, it rejects it.

By means of an elementary inductive argument this algorithm can be shown
correct.

Apart from consulting the oracle, this algorithm runs in polynomial determin-
istic time: enumerating all assignments overn iterations takes at mostn· |Ax| steps,
which is clearly polynomial in the size of the input,‖A‖, because the number of
variables inx is constant. SinceH captures NP it is sufficient (and necessary)
to employ an NP-oracle. This renders the algorithm in PNP, since the number of
queries are bounded by the polynomially many different assignments. Yet, this re-
sult can be improved, since per iteration the oracle can harmlessly be consulted in
parallel. So the algorithm needs a constant number ofn parallel queries to the NP-
oracle. (Recall that the size ofφ is constant.) In [6] it was shown that a constant
number of rounds of polynomially many queries to an NP-oracle is equivalent to
one round of parallel queries. Therefore, the algorithm sits in PNP

q . �
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Let H+ be thefirst-order closureof H. That is, the closure ofH under boolean
operations and existential quantification (but not under application of Henkin
quantifiers). More formally,H+ is generated by the following grammar:

φ ::= ψ | ¬φ | φ ∨ φ | ∃x φ,

whereψ ranges over theH-formulae. The first-order closure of (fragments of)
Σ1

1 was taken up in [2]. In this publication, the authors observe that the first-
order closure ofΣ1

1 captures PNP
q , on linear ordered structures. SinceH = Σ1

1, the
following result follows directly.

Proposition 6. Over linear ordered structures,H+ capturesPNP
q .

It is readily observed from the languages’ grammars that every sentence inH+

is a sentence inH∗ as well. Therefore, for every class of structuresK, H+ ≤K H∗.
This is actually the last step we have to make to establish the main result.

Theorem 7 ([17]). Over linear ordered structures,H∗ capturesPNP
q .

Proof (M. Sevenster).Let L denote the class of linear ordered structures. By The-
orem 5 we have thatH∗’s query complexity is in PNP

q , also overL. It remains to
be proved therefore thatH∗ captures at least PNP

q . To this end, letΠ be an arbitrary
PNP
q -decidable property overL. In virtue of Proposition 6, we obtain that there

is a sentenceφ from H+ that expressesΠ overL. As we concluded right before
this theorem, for every class of structuresK, H+ ≤K H∗. So in particular it is
the case thatH+ ≤L H∗. Whence,Π is expressible inH∗ as well, and the claim
follows. �

We wish to warn the reader who is about to jump to conclusions about paral-
lel computation and partially ordered quantification. Admittedly, the complexity
class PNP

q is based on parallel Turing machines and it is captured byH∗, on linear
ordered structures. However, this does not mean that verifying a singleH-formula
Hx φ can be done by parallel means, as this requires ‘simply’ an NP-machine. The
parallel way of computing comes in effect only when we compute the semantic
value of severalH-formulae at the same moment in time. For instance, ifHx φ(y)
is anH-formula with one free variabley, then verifying all of

〈A,a1〉 |= Hx φ(y) . . . 〈A,am〉 |= Hx φ(y)

for objectsa1, . . . ,am ∈ A, can be done in one round ofm parallel queries to an
NP-oracle. It is this principle that underlies the fact thatH∗’s query complexity is
in PNP

q .
On the other hand, it is noteworthy that the very fact that a polynomial number

of parallel queries suffice is due to the fact thatH∗-formulae do only contain
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first-order variables. This, namely, makes it sufficient to spell out all variable as-
signments, simply being tuples of objects, and to compute the formula’s semantic
value with respect to this list. By contrast, if one wishes to verify a second-order
formula like∃X∀Y∃Z φ on a structure, spelling out variable assignments amounts
to checking triples ofsubsetsof tuples of objects. Interestingly, full second-order
logic captures thePolynomial Hierarchy, whereasH∗ ‘gets stuck’ at PNP

q . In this
sense Theorem 5 provides the computational upper-bound of partially ordered,
yet first-order, quantification.

One way to appreciate the fact that the logicsH+ andH∗ coincide on linear
ordered structures is by means of theHenkin depthof H∗-formulae:

hd(φ) = 0, for first-orderφ

hd(¬φ) = hd(φ)

hd(φ ∨ ψ) = max{hd(φ),hd(ψ)}

hd(∃x φ) = hd(φ)

hd(Hk
nx φ) = hd(φ) + 1,

readingH0
nx1 . . . xn as∃x1 . . .∃xn.

Clearly everyH+-sentence has a Henkin depth of at most one. Therefore,
by Theorem 7 we get that for everyH∗-sentenceφ there exists anH+-sentence
ψ, such thathd(ψ) ≤ 1 and on the class of linear ordered structuresφ andψ
define the same property. Put differently, on linearly ordered structures granting
Henkin quantifiers to nest does not yield greater expressive power. Gottlob proves
an even stronger normal form forH∗ on linear ordered structures. In Gottlob’s
terminology, anH∗-sentenceφ is in Stewart normal form, if it is of the form

∃x
(
H(1)y φ1(x, y) ∧ ¬H(2)z φ2(x, z)

)
,

whereφ1 and φ2 are first-order. This normal form is inspired by the work of
Stewart [36, 37], hence the name. Clearly the Henkin depth of every formula in
Stewart normal form is at most one. Gottlob proves that on the class of linear or-
dered structures for everyH∗-sentenceφ there exists anH∗-sentenceψ in Stewart
normal form, that expresses the same property.

This result cries out for an effective translation procedure fromH∗ into H+ of
course, but unfortunately we cannot provide it. The translation hinges on finding
a way of reducing the number of Henkin prefixes in a quantifier block. It gives
some insight in the problem to show that(

∀u1 ∃v1

∀u2 ∃v2

) (
∀x1 ∃y1

∀x2 ∃y2

)
φ (3)
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is equivalent to 
∀u1 ∃v1

∀u2 ∃v2

∀u1 ∀u2 ∀x1 ∃y1

∀u1 ∀u2 ∀x2 ∃y2

 φ, (4)

see also [5]. But the real challenge is to find a way to handle negations appearing
in between Henkin prefixes, making use of the finiteness of the structure and its
linear order.

Dawar, Gottlob, and Hella [7] raise the question whetherH∗ captures PNP
q over

unorderedstructures. Surprisingly, it turns out thatH∗ does not capture PNP
q in the

absence of a linear order, unless theExponential Boolean Hierarchycollapses,
amongst other hierarchies. In complexity theory the collapse of this hierarchy is
considered to be highly unlikely.

Further still, a study by Hyttinen and Sandu [25] implies that essentially one
has to make use of the finiteness of the structures. Consider the logical languages

H+1 = H

H′k = first-order closure ofH+k
H+k+1 = {Hx φ | φ ∈ H′k}.

Clearly the Henkin depth of any sentence fromH+k is k, and
⋃

k H+k = H∗. The
authors prove that on the standard model of arithmetic the languageH+k+1 has
strictly stronger expressive power thanH+k , for everyk ≥ 1.

For the sake of concreteness, consider the property O- over graphs.
By Theorem 7, the similar property over linear ordered graphs is expressible in
H∗ (andH+). A linear ordered graphG is a structure〈G,RG, <G〉 such that〈G,RG〉
is a graph and<G is a linear order onG. We claim thatξ expresses O- on
linear ordered graphs, whereξ is

∃x1∃x2 (EVEN(x2) ∧ SUC(x1, x2) ∧ COLOR(x2) ∧ ¬COLOR(x1)).

In ξ, EVEN is the predicate that holds for exactly those objects that are even with
respect to<, andSUC holds for every pair of objectsx1, x2 such thatx2 is the
immediate<-successor ofx1. EVEN andSUCare clearly expressible inΣ1

1 and
consequently inH. Intuitively, COLORholds for all objectsx such that the graph
at hand isn-colorable, wheren is the number of objects<-precedingx. Formally,
we defineCOLOR(x) as follows:(
∀y1 ∃z1

∀y2 ∃z2

)
(y1 = y2)→(z1 = z2) ∧ R(y1, y2)→(z1 , z2) ∧ (z1 < x) ∧ (z2 < x),
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in spirit akin to ζ. We leave it for the reader to check thatξ indeed expresses
O-. It is readily observed thatξ can be cast as aH+-sentence, that is not in
Stewart normal form. Yet by the Prenex normal form result, Proposition 4, we can
extract the Henkin quantifiers fromEVEN(x2), SUC(x1, x2) andCOLOR(x2), and
obtain an equivalent formula of the formH(1)xH(2)yH(3)z . . .. By merging these, as
we got from (3) to (4), we get an equivalent formula with one Henkin quantifier
H(4)u . . .. The formula that results after replacingH(4)u . . . in ξ is in Stewart normal
form.

5 Concluding remarks

As we hoped to have shown, Henkin’s idea has exciting manifestations in game
theory, model theory, and computational complexity. Each of these manifestations
shows a different face of the Henkin quantifier: interaction in the absence of full
information, expressive power on formal structures, and algorithmic verification.
Our results provide another instance when the disciplines at stake are strongly
intertwined. Our Propositions 1 and 2 are cases in point. But admittedly, our ap-
proach was not highly systematic. We meandered from non-absentmindedness to
absentmindedness, and from partially ordered quantification to Partial Informa-
tion logic. Improving our understanding of the sparkling interface of logic and
game theory is definitely worthwhile.

For instance what kind of game-theoretic underpinning can we give forH∗?
What does its game-theoretic semantics look like? And can it maybe inspire us to
define aninteractive protocol[16] kind of computing device that computes PNP

q ?
After all, interactive protocols are games with imperfect information.

An intriguing question was raised in [15] related to the finite model theory of
Carnap’s first-order modal logicC. It is shown that even over finite structures,
C < H∗, but what complexity class is actually captured byC is left as an open
question. To this problem we may add the issue of developing a game-theoretic
foundation forC.

Finally we mention a game-theoretic gap that needs to be filled in the interest
of logic and descriptive complexity. We used the computational result saying that
every constant series of parallel queries can be reduced to one session of parallel
queries [6]. The logical face of this theorem is theflatness result, holding that over
linear ordered structures aH∗-sentence of arbitrary Henkin depth has an equiva-
lentH∗-sentence of Henkin depth at most one. The question arises what would be
the game-theoretic face of the aforementioned flatness result, in particular in the
realm ofmodel comparison gamesà la Ehrenfeucht and Fraïssé [9, 13]. Model
comparison games are typically used to prove that some property is not express-
ible in a logic. As such they are tools par excellence to separate NP from coNP, for
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instance. Although considerable progress has been made along these lines [2, 12]
the big questions from complexity theory are still unanswered. A fertile approach
to prove non-expressibility results is to simplify model comparison games, in or-
der to develop a library of intuitive tools for separating logics, cf. [1, 3]. Along
these lines the flatness result concerning Henkin quantifiers may give rise to less
complicated, but powerful, games.
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The purpose of this short note is to give credit to the right people who produced
original work on the connection between rational relations and logic. Indeed, my
experience is that some authors seem to partially ignore the literature or at least
neglect to cite it correctly. It is probably due to the fact that language theory
and logic, though having largely filled the original gap which separated them, still
have different backgrounds. I hope that recalling the chronology might be of some
help. If I had some doubt about the necessity of this reminder, a recent experience
proved it was justified. Indeed, I posted an early version of the present work on
my web page. Kamal Lodaya from the University of Chennai happened to come
across it, got interested and posed a few questions. Doing some bibliographical
search he found that the relations which after Läuchli and Savioz I had called
“special”, had in fact been introduced three years earlier by D. Angluin and D. N.
Hoover as “regular prefix relations”.

Now we come to the point. Givenn finite, nonempty alphabetsΣi, i = 1, . . . ,n,
I’m interested in the class of subsets, also calledrelations, of the direct product
Σ∗1× · · · ×Σ

∗
n which arerational (known asregular in the anglo-saxon literature).

A simple example: the relation which is the graph of the operation of concate-
nation of two words and which consists of all triples of the form (u, v,uv) where
u, v ∈ Σ∗, is defined by the rational expression∆∗1∆

∗
2 where∆1 =

⋃
a∈Σ(a,1,a) and

∆2 =
⋃

a∈Σ(1,a,a). These relations are also defined via an extension of the finite
automata operating on tuples of words rather than on words, introduced by Rabin
and Scott in the late fifties, [8]. They were studied by Elgot and Mezei who proved
most of their general properties, [6]. The main decision issues were settled by Fis-
cher and Rosenberg, [7]. It just happens that this class does not form a Boolean
algebra unlessn = 1 or all alphabetsΣi ’s are reduced to a single symbol. Until
the mid eighties, only two subclasses of the rational relations were known to be
closed under the Boolean operations, to wit the recognizable and the synchronous
relations which are therefore natural candidates for logical definability. A new
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class was discovered by D. Angluin and D. N. Hoover, [1], then rediscovered by
Läuchli and C. Savioz.

The reader curious of learning more on rational relations is referred to the
standard textbooks, such as [3, 4]. I only fix the notations by saying that the free
monoid generated by an alphabetΣ is denoted byΣ∗. An n-ary relation is a subset
of (Σ∗)n. It is assumed that the reader has a minimum knowledge on Rabin’s
monadic second order logic ofk successors. Finally, the comprehension of the
remainder is facilitated if the reader bears in mind the following inclusions of
classes of relations whose precise definitions are given in due time, representing
respectively the class of recognizable, special, synchronous and rational relations.

Rec⊆ Spec⊆ Sync⊆ Rat

The three inclusions are strict exactly under the same conditions that the class of
rational relations is not a Boolean algebra.

1969: synchronous relations
Though discovered 36 years ago, the logical characterization of this class of

relations due to Eilenberg, Elgot and Shepherdson is practically never cited. In-
tuitively, it can be described as follows. Given ann-tuple of words (w1, . . . ,wn) ∈
Σ∗×· · ·×Σ∗, pad all components by as few occurrences of a new symbol, say # to fix
ideas, as necessary in order to achieve equal length, i.e., transform (abaa,bb,bba)
into (abaa,bb##,bba#). Such ann-tuple of words may be viewed as a word
over the composite alphabet∆ = (Σ ∪ {#})n

− {#}n, e.g., (abaa,bb##,bba#) can
be viewed as the length 4 word [abb][bbb][a#a][a##]

3 tapes
a b a a
b b
b b a

converted into 1 tape
a
b
b

b
b
b

a
#
a

a
#
#

Given a relationR ⊆ (Σ∗)n transform all itsn-tuples by padding them as just
explained and denote byR# ⊆ ∆∗ the resulting subset. ThenR is synchronous if
there exists a finite automaton on the alphabet∆ which recognizesR#. E., g., the
relation{(an+1,an) | n ≥ 0} ∪ {(a2n,a2n+1) | n ≥ 0} is synchronous but the relation
{(a2n,an) | n ≥ 0} is not. The authors introduce the first order theory

Th = (Σ∗,Eq,≤pref, (La)a∈Σ) (1)

where the binary predicate Eq(u, v) is true if and only if the two wordsu andv
have the same length, the binary predicateu ≤pref v is true if and only if u is a
prefix of v and for eacha ∈ Σ, the unary predicateLa(u) is true if and only if the
wordu ends with the lettera. Observe in passing that this signature is denoted by
Slen in [2] and that this logic, in the context of infinite words, is called chain logic
+ E in [10]. The logical characterization is as follows, [5].
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Theorem 1. A subset R⊆ (Σ∗)n is synchronous if and only if it is definable in the
theory (1).

The sufficiency of the condition is a simple consequence of the closure prop-
erties of the synchronous relations under the Boolean operations, composition
of relations and projections. The authors prove the converse when the relation
is given through a rational expression. Mimicking the automaton yields a much
more intuitive proof and can be reconstructed by a good PhD student.

1984: special relations
I discovered this family in a paper of Wolfgang Thomas, [10] where he cited a

publication of Läuchli and Savioz. However the correct reference as far as I know
is [1]. The merit of this family is that it is a new Boolean class of relations with
a neat logical characterization. The starting point is a restriction of the theory of
the k successors SkS on the structure(Σ∗, (sa)a∈Σ) where for eachu ∈ Σ∗, sa is
interpreted as the function defined bysa(u) = ua for eachu ∈ Σ∗. Indeed, a for-
mulaϕ(x1, . . . , xn) with n free individual variables and no free set variable defines
ann-ary relationR ⊆ Σ∗ by settingR |= ϕ(x1, . . . , xn). Furthermore, Läuchli and
Savioz introduce the first order theory

Th = (Σ∗,1,LCP, (PL)L∈RatΣ∗) (2)

where 1 is the empty word, LCP is the function that assigns the largest common
prefix of two words and for all rational subsetsL ∈ RatΣ∗, the predicatePL(x, y)
is true whenevery ∈ xL. This structure is studied under the terminologyS+reg

in [2]. The theory yields a new subclass of rational relations which is strictly
intermediate between the recognizable and the synchronous relations. Indeed,
consider a denumerable set of symbolsX = {xi}i∈N and define the least collectionC
of sequences of strings onX which contains the sequences reduced to one symbol
xi and which satisfies the two conditions

(i) if (u1, . . . ,up) ∈ (X∗)p belongs toC and if σ is a permutation on the set
{1, . . . , p}, then (uσ1, . . . ,uσp) ∈ (X∗)p belongs toC.

(ii ) if (u1, . . . ,up) ∈ (X∗)p belongs toC and if xi andxj are two distinct symbols
occurring in none of theui ’s, then (u1, . . . ,up−1,upxi ,upxj) ∈ (X∗)p+1 belongs toC.

For example, (x1x3, x1x2x4, x1x2x5) is of this form, (x1x2, x2x1) and (x1x2, x3x4)
are not. Finally, a relationR is specialif there exist a sequence (u1, . . . ,up) in C
and a rational subsetLi for eachxi such thatR is the set ofp-tuples obtained by
substituting an arbitrary word ofLi for each occurrence ofxi. As particular cases

of special relations, we have the generalized diagonal{

ntimes︷     ︸︸     ︷
(u, . . . ,u) | u ∈ Σ∗}, all

recognizable relations (see below), the relation{(uv,uw) ∈ Σ∗ ×Σ∗ | u ∈ Σ∗, |v| ≡ 0
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mod 2, |w| ≡ 1 mod 3}, etc . . . . I chose the formulation given by Läuchli and
Savioz, rather than that of Angluin and Hoover. Indeed, the latter authors do not
mention the theory (2). Also instead of the notion of special relations, they give a
more complicated, though substantially equivalent, notion of prefix automata.

Theorem 2. Given a subset R⊆ (Σ∗)n, the following conditions are equivalent

(i) R is definable in S kS by a formula having n free variables and no free subset
variables

(ii) R is definable in the first order theory (2)

(iii) R is a finite union of special subsets

1990: recognizable relations
The reason for this last characterization to remain hidden it that it was pub-

lished in the proceedings of an ASMICS meeting. Furthermore, it was stated more
generally in terms of trace monoids: these are quotients of free monoids by a con-
gruence generated by a reflexive and symmetric relation calledrelation of partial
commutations I⊆ Σ×Σ. Direct products of free monoidsΣ∗1×· · ·×Σ

∗
n are a special

case whereI =
⋃

i, j Σi × Σ j.
We recall that a subsetRof Σ∗1 × . . . × Σ

∗
n is recognizableif there exists a finite

monoidM and a morphismf : Σ∗1 × . . . × Σ
∗
n → M such thatR = f −1 f (R) holds.

It is a classical exercise to prove that the class Rec(Σ∗1 × . . . × Σ
∗
n) of recognizable

relations is a Boolean algebra. It can be shown thatR is recognizable if and only
if it is a finite union of direct products of the formX1 × . . . × Xn whereXi is
a recognizable subset ofΣ∗i , a result which is attributed to Elgot and Mezei by
Eilenberg. From a logical viewpoint, the idea is to consider ann-tuple of strings
(w1, . . . ,wn) as a disjoint union ofn linear orders together with two constants
for each component representing the first and the last positions and a predicate
asserting that a certain position is labeled with a given letter. More precisely, the
model theoretic structure is of the form

(
⋃

1≤i≤n

I i , <, ((Qa)a∈Σi )1≤i≤n) (3)

whereI i = {(0, i), . . . , (|wi |−1, i)} for i = 1, . . . ,n. The predicate (j1, i1) < ( j2, i2) is
true if and only ifi1 = i2 and j1 < j2 holds and the predicateQa(( j, i)) is true if and
only if the j-th occurrence ofwi is equal toa. For example ifn = 2, Σ1 = {a,b},
Σ2 = {a, c} and (w1,w2) = (babb,aca), then the corresponding structure is

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2)
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We have, e.g.,Qa(1,1) = true, Qc(2,2) =false, (0,1) < (3,1) = true and
(2,0) < (1,2) = false.

We insist that in the previous two cases, the monoid was the model, while here
it is each element of the monoid which is a model in itself. Then the following
holds, [9].

Theorem 3. A subset R of is recognizable if and only if it is the set of models of
some formula in the theory defined in (3).

One direction of the proof is standard. The crux for showing that a recogniz-
able relation is expressible through the above logic is the fact that each of then
components of the relationR ⊆ Σ∗1 × · · · × Σ

∗
n can be independently controlled by

a finite automaton.
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Abstract

A short proof is given for a result of Fraenkel and Simpson [Electronic J.
Combinatorics 2 (1995) #R2] stating that there exists an infinite binary word
which has only three different squaresu2.

1 Introduction

Consider the setΣk = {0,1, . . . , k− 1} as an alphabet of symbols, called letters.
The set of allwordsoverΣk, denoted byΣ∗k, consists of the finite sequences of ele-
ments fromΣk. We denote by|w| the length of the wordw, i.e., the number
of occurrences of the letters inw. An infinite word over Σk is a mapping from
w: N → Σk which is usually presented as the ordered sequencew(1)w(2) · · · of
the images.

A word u is afactorof a wordw ∈ Σ∗k, if w = w1uw2 for some wordsw1 andw2.
A nonempty factoru2 (= uu) is called asquarein w. The wordw is square-freeif
it has no squares.

It is easy to see that every binary wordw ∈ Σ∗2 with |w| ≥ 4 has a square.
Indeed, the only square-free binary words are 0,1,01,10,010,101. On the other
hand, Entringer, Jackson, and Schatz [1] showed in 1974 that there exists an in-
finite word with 5 different squares. Later Fraenkel and Simpson [2] showed that
there exists an infinite binary word over the alphabet{0,1} that has only three
squares 00, 11, and 0101. A somewhat simplified proof of this result was given
by Rampersad, Shallit, and Wang [4]. We shall give here a still shorter proof of
this result based on square-free words over a three letter alphabet.
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Example 1. We can show that the wordw = 101100111000111100111011 of
length 24 has the squaresu2 only for u ∈ {0,1,11}. Also, it can be checked that
the wordw has the maximum length 24 among the words having only the squares
02, 12, and (12)2. Indeed, it can be checked that all words of length 25 or more do
have three squares 02, 12, andu2 for some wordu < {00,11}.

The following result is due to Axel Thue; see, e.g. Lothaire [3] for background
and a proof of this theorem.

Theorem 1. There exists an infinite square-free word over the three letter alpha-
betΣ3.

2 Three squares

In the rest of this paper, we prove

Theorem 2. There exists an infinite binary word W that has only the squares u2

for u ∈ {0,1,01}.

Proof. Letw be an infinite square-free word over the alphabetΣ3 provided by The-
orem 1. Also, letW be the word where each 0 (1,2, resp.) inw is substituted byA
(B, C, resp.) where

A = 13031202101203130210,

B = 1303101203130210120310,

C = 13031202101203101302101202 .

It is easy to check that these words have only the squares 02, 12 and (01)2. Denote
∆ = {A, B,C}. We have the following marking property of 1303:

the factor 1303 occurs only as a prefix of eachA, B, C (a)

Also, we notice that the longest common prefix (suffix, resp.) of two words from
∆ is 130312021012031 of length 18 (0210 of length 4, resp.). Since the wordsA, B
andC are longer than 22, we obtain

no wordZ ∈ ∆ can be factored asZ = yx wherex is a suffix (b)

of a wordX ∈ ∆ \ {Z} andy is a prefix of a wordY ∈ ∆ \ {Z}.

Suppose thatW has a squareU2, whereU < {0,1,01}. It is straightforward
using (a) to verify that the short wordsXY for differentX,Y ∈ ∆, do not contain
other squares than 02, 12, and (01)2. In particular, we may assume thatU2 has
a factorZ from ∆.



174 174

174 174

BEATCS no 89 TECHNICAL CONTRIBUTIONS

166

Suppose first thatU does not have a factor from∆, and thus thatU has at most
one occurrence of the marker 1303. Now U2 = xZy for someZ ∈ ∆, wherex is
a suffix of a wordX ∈ ∆ andy is a prefix of a wordY ∈ ∆ for X,Y , Z, sincew is
square-free. We divide our considerations into two cases.

(1) Assume thatU has exactly one occurrence of 1303. In this case,Z = yx,
sincey begins with the unique occurrence of 1303 inside the secondU. This,
however, contradicts the property (b).

(2) Assume thatU has no occurrences of 1303. In this case,U = xu = vy
so thatZ = uv, whereu andy are proper prefixes of 1303, and as they are both
suffixes ofU, one of them is a suffix of the other. Necessarilyu = y, and hence
alsox = v. But nowZ = yx contradicts the property (b).

Suppose then thatU has a factor from∆. If U = uXvwith X ∈ ∆, then neces-
sarily U2 = uXvuXvis a factor inW such thatvu ∈ ∆∗, because of the marking
property (a). Therefore,U = xX1X2 · · ·Xny such thatX0X1 · · ·XnZX1 · · ·XnXn+1 is
a factor ofW whereXi ∈ ∆ for eachi, x is a suffix of X0, Z = yx ∈ ∆, andy is
a prefix ofXn+1. Now Z , X0, since otherwise (X0X1 · · ·Xn)2 would be a factor
of W and this would contradict the square-freeness ofw. Similarly, Z , Xn+1.
AgainZ = yx contradicts (b). �

We observe that the word

w = 10110011100011001000111000100

of length 29 has only the squaresu2 for u ∈ {0,1,100}. It can be shown, with the
aid of a computer, that each wordw of length|w| ≥ 30 with exactly three different
squares, has the squares 02, 12 and (01)2 or 02, 12 and (10)2.
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Abstract

We prove a variant of the well-known Fine and Wilf’s periodicity theo-
rem in the case of two relatively prime abelian periods. A result for the case
of non-relatively prime abelian periods is conjectured.

Fine and Wilf’s theorem. Fine and Wilf’s periodicity theorem is one of the
most widely used results on words. It was initially proved by Fine and Wilf [10]
in connection with real functions but then adopted as a natural result for words,
see [6, 13, 14]. We say that a word has a certain integer as period if the word
repeats itself after that period; e.g., the wordabaabaaba has periods 3, 6, and 8.
It is not difficult to see that, given a set of integers, any long enough word which
has those periods will have also their greatest common divisor as period. The
essential question is how long the word should be. Fine and Wilf’s theorem states
the optimal length for two periods: it is the sum of the two periods minus their
greatest common divisor.

The result has been extended for three periods in [4] and to many periods in
[11], the optimal bound for the general case been given in [7] and [19]. Further
variants of Fine and Wilf’s theorem are given in [1, 3, 5, 15, 2].

Abelian periods. The notion of a period is closely related with that of repetition,
already studied by Thue [17, 18]. A repetition is simply a periodic word that ap-
pears as a subword in another one. The notion of abelian repetition is well known
from the so-called Erdös problem [9] which asked whether abelian squares can be
avoided over four letters (affirmatively solved by [12]). An abelian square is an
adjacent permuted occurrence of the same string; e.g.,abb.bab. Abelian repeti-
tions are obtained accordingly. Our definition below is slightly different from the
one of [8] which gives algorithms for computing similar repetitions (calledweak
repetitions).
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We begin by introducing a few notations. LetA = {a1,a2, . . . ,ak} be an alpha-
bet. For a wordw ∈ A∗ and a lettera ∈ A, we denote the number of occurrences
of a in w by |w|a; the length ofw is |w| =

∑k
i=1 |w|ai . The empty word is denotedε.

Thecharacteristic vectorof w is ‖w‖ = (|w|a1, |w|a2, . . . , |w|ak). For two vectors
with the same number of integer components, we use the component-wise addi-
tion, subtraction, scalar multiplication, and ordering. Notice that, for two wordsu
andv, ‖u‖ = ‖v‖means thatu is a permutation ofv and‖u‖ ≤ ‖v‖means thatu can
be obtained fromv by permuting and, possibly, deleting some of its letters.

A word w hasabelian period pif we can writew = u0u1 . . . urur+1, where
ui ∈ A∗, r ≥ 0 such that

(i) |u1| = |u2| = · · · = |ur | = p and
(ii) ‖u0‖ ≤ ‖u1‖ = ‖u2‖ = · · · = ‖ur‖ ≥ ‖ur+1‖.

For example, the wordaabbbabbbaba has abelian period 3; it can be factor-
ized asa.abb.bab.bba.ba .

Notice that one might be tempted to give the above definition withu0 = ε.
Such a definition would have the problem of not being preserved for factors. (The
definition of weak repetitions in [8] hasu0 = uk+1 = ε.)

Remark further that any multiple of an abelian period is also an abelian pe-
riod. Also, abelian period is a generalization of ordinary period. Precisely,w has
(ordinary) periodp if and only if w has abelian periodp that can be arbitrarily
“shifted,” that is, for any possible length ofu0 between 0 andp, the properties
(i)-(ii) still hold.

Fine and Wilf’s theorem for abelian periods. We prove in this section our
variant of Fine and Wilf’s theorem for abelian periods. As we show in the last
section, the result holds only for relatively prime abelian periods. We shall con-
jecture a weaker result for the general case.

Theorem 1. If a word w has abelian periods p and q which are relatively prime
and |w| ≥ 2pq− 1, then w has period one.

Proof. Assumep < q and letw = u1u2 . . . um+1 and w = v1v2 . . . vn+1 be the
factorizations ofw with respect to the periodsp andq, respectively. From the
overlaps inw between theus and thevs we can write eachvi, 1 ≤ i ≤ n asvi =

xiubi+1ubi+2 . . . ubi+1−1yi, for some suffix xi of ubi and prefixyi of ubi+1; see Fig. 1. To
be precise, we setbi as the smallest indexj for which |u0u1 . . . uj | ≥ |v0v1 . . . vi−1|.

We have then|xi |+|yi | ≡ q (mod p) and|xi+1|+|yi | = p and hence|xi+1| ≡ |xi |−q
(mod p), for any i ≥ 1. Inductively, we get|xi+r−1| ≡ |xi | − (r − 1)q (mod p), for
r ≥ 1, i ≥ 1. For i = 1, we have|xr | ≡ |x1| − (r − 1)q (mod p). As p and
q are relatively prime, there isr, 1 ≤ r ≤ p, such that|xr | ≡ 0 (mod p) (take
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ubi−1 ubi+1 ubi+1−1 ubi+1 ubi+1+1
yi−1 xi yi xi+1

vi vi+1vi−1

ubi

Figure 1: The two abelian periods

r − 1 = (|x1|(q−1 mod p)) mod p) and, since|xr | < p by the definition ofbr , it
must be thatxr = ε.

Thereforev0v1 . . . vr−1 = u0u1 . . . ubr and |v0v1 . . . vr−1| = |v0| + (r − 1)q ≤ pq.
However, if |v0| = q, then we can start the congruences one step earlier, that is
|xr | ≡ |x0| − (r − 1)q (mod p), for r ≥ 1, and obtain a smallerr.

Therefore, we need onlypq−1 symbols at the beginning ofw to have a perfect
match betweenus andvs. Sincep andq are co-primes, the next match will appear
after exactlypq symbols. But|w| ≥ 2pq− 1, so the second match is guaranteed.
More precisely,vrvr+1 . . . vr+p−1 = ubr+1ubr+2 . . . ubr+q. Now, the vectorsα = ‖v2‖

andβ = ‖u2‖ must have the same non-zero components. Since the sum of the
non-zero components ofα is q, if there are more than two components greater
than 0 inα then one of them, sayαi, is less thanq. But pαi = qβi, which implies
that p/q is reducible, a contradiction. Consequently,α andβ must have only one
non-zero component which means thatw contains only one letter. �

The general case. In general, Fine and Wilf’s theorem cannot be extended to
abelian periods which are not relatively prime. That is, if gcd(p,q) = d ≥ 2, then
the two abelian periodsp andq cannot impose the abelian periodd no matter how
long the word is. Here is an example. The infinite wordw = (bbaaababbbaa)ω

has abelian periods 4 and 6 but not 2. (The notationxω meansxxx. . . .)
A number of problems appear naturally. The first problem is to find out what is

imposed by two non-relatively prime periods. In particular, is it true that gcd= d
implies the word has at mostd letters? Also, is the bound in Theorem 1 opti-
mal? Can the definition of the abelian period be modified so that Fine and Wilf’s
theorem holds in all cases? The case of more periods could be also of interest.
Finally, one can also attempt similar generalizations for approximate periods, but
the correct formulation of the problem becomes less clear.
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Lawrence S. Moss∗

Abstract

Register machine programs provide explicit proofs of results such as the
sm
n -Theorem, Kleene’s Second Recursion Theorem, and Smullyan’s Double

Recursion Theorem. Thus these programs provide a pedagogically useful
approach. We develop without appeal coding, universal programs, or quo-
tation. None of the results are new from the point of view of computability
theory apart from the particular formulations themselves. We introduce the
notion of atext register machine; this is a register machine whose registers
contain words from some alphabet and whose instructions are again words
from the same alphabet. We work with a particular instruction set whose lan-
guage of programs we call1#. Tools for writing and evaluating1# programs
have been made freely available: seewww.indiana.edu/~iulg/trm.

It is generally recognized that the greatest advances in modern computers
came through the notion that programs could be kept in the same memory

with ‘data,’ and that programs could operate on other programs, or on themselves,
as though they were data.”

Marvin Minsky [5]

1 Introduction

What is the simplest setting in which one can formalize the notion that “programs
could operate on other programs, or on themselves”? This paper contains a pro-
posal for such a formalization in the form of a programming language1#.1 Using

∗Mathematics Department, Indiana University, Bloomington, IN 47405 USA. Email:
lsm@cs.indiana.edu

1This paper leaves open the pronunciation of the name of the language. The symbol# has
many names, includingcheck, octothorpe, pound sign, hash, andcrosshatch. It is not quite the
sharp sign]. The names of languages likeA# andC# use “sharp” anyways.
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programs of1# we obtain explicit programs corresponding to the fixed point the-
orems from the theory of computation. In addition to re-proving classic results,
our goal is to suggest a useful way of teaching them.

To get the simplest formulation of any complicated idea is not always easy,
and to do so for programs operating on programs one must make some choices.
The goal of this paper is to present a setting in which one could explain the con-
cept to a person who can read mathematical notation but who doesn’t necessarily
know about programming or computability. Thus the model of computation in this
discussion should be as intuitively simple as possible. For this, I have chosen a
certain flavor of register machines. Second, the notion of a program should also be
as simple as possible: both the syntax and semantics should be explainable in less
than fifteen minutes. This rules out high-level programming languages. As they
are standardly studied, register machines work on numbers, but their programs
are not numbers. So we work with a variant notion,word register machines. Such
machines process strings over the tiny alphabetA = {1, #}. The key additional
feature of our machine is that its instructions and programs are words over this
same setA. We call such machinestext register machines.

Word register machines are a Turing-complete computational formalism. Text
register machines also illustrate versions of the main foundational theorems of
recursion theory explicitly. So when a result says “there is a program such that
. . .” then it is often possible to easily exhibit such a program. The results I have
in mind are thesm

n -Theorem and the Second Recursion Theorem. Usually the
sm

n -Theorem is treated by appealing to the Church-Turing thesis (that is, saying
that the construction is “obvious but tedious”) or else done via the coding of se-
quences by numbers. Our development is more direct. It also leads to explicit
self-reproducing programs.

We turn to the main development itself in Section 3. Before that, we have
some discussion of how our proposal fits into the history of the subject.

2 Historical and conceptual points

The register machine formalism was introduced in Shepherdson and Sturgis’ 1963
paper [6]. Their goal was to provide a formalism for which one could verify
that all partial recursive functions are computable by some “finite, discrete, de-
terministic device supplied with unlimited storage.” Their notion of a register
machine comes in several variants. Broadly speaking, these variants include ma-
chines whose registers contain natural numbers, and also with machines whose
registers contain wordsw ∈ A∗ over some setA = {a1, . . . ,as} of alphabet sym-
bols. We are concerned in this paper with the latter variant. It has for the most
part been forgotten in the literature. For example, Fitting [2] writes, “Register ma-
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chines come from [Shepherdson and Sturgis 1963]. As originally presented, they
manipulated numbers not words; the version presented here is a straightforward
modification.” And to be sure, I had not known of word register machines before
I wrote up this paper. Getting back to the idea itself, it might be worthwhile to
recall (in a somewhat updated terminology and notation) the formulation in [6].

In Sections 5 and 6 of [6] we find a formulation ofpartial recursive functions
onA∗ and then a definition ofunlimited register machinesoverA. These are
register machines whose instructions are as follows:

P(i)(n): placeai on (the right-hand) end of〈n〉

D(n): delete the (left-most) letter of〈n〉, provided that〈n〉 , ε.

J(i)(n)[E1]: jump to lineE1 if 〈n〉 begins withai, otherwise go to the next in-
struction.

In these,〈n〉 denotes the content of registern, andε the empty word. A machine
whose instructions are of the above types is called a URM(A).

The main result of Appendix B is that all partial recursive functions overA∗

may be computed on some URM(A). A variant of the instruction set above comes
in Appendix C. It replaces the second and third types of instructions by one “scan
and delete” scheme defined as follows:

S cd(n)[E1 . . . ,Es]: scan the first letter of〈n〉; if 〈n〉 = ε, go to the next instruc-
tion; if the first letter of〈n〉 is ai, then delete this and go to lineEi.

Then the main result of Appendix C is that one can simulate the delete and jump
instructions using the scan and delete operation.

The paper contains numerous other results. However, it does not formulate
direct results like thesm

n -Theorem for URM(A) computations. We would like
to do this directly. For this, it is essential thatA include whatever symbols are
needed to formulate the syntax of the overall language. (In the setting of [6],
this is problematic for an interesting reason. If the symbolsP(i) are taken to be
atomic symbolsP(i) – and this seems to be the prima facie interpretation – then
the alphabetA would have to include those symbols. But this is absurd ifA is to
be finite. So we must reformulate the language to get around this.)

Register machines are used in many textbooks due to their intuitive appeal.
Needless to say, in writing this paper I looked at many sources to make sure that
the development was new. Occasionally register machines are calledcounter ma-
chines. Minsky’s textbook [5] on automata theory and computability presents a
machine model that amounts to arithmetic register machines. He calls thempro-
gram machines; it is not clear from the book why he did not mention [6] in the text
even though it appears in the references. He notes that the program is “ ‘built into’
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the programming unit of the machine.” Hence [program machines] “arenot, then,
‘stored-program’ computers.” But he then makes the quote reproduced above the
introduction of the present paper. Perhaps Minsky did not even present the word
register machines because register machines are not a direct model of a stored-
program computer. But our point is that register machines operating on words do
allow one to come closer to the notions that Minsky cites than machines operating
on numbers. His book also does discuss Turing machines whose symbol set goes
beyond one or two symbols to be an arbitrary finite set, including the set of sym-
bols used in a “representation” of a Turing machine itself. Problem 7.4–3 of [5]
asks a reader to construct a self-reproducing Turing machine, and the solution of
course would have to use an expanded symbol set.

There are two papers that present material that seems close to ours. One is
Corrado Böhm’s paper [1]. He proposes a languageP′′ with a small instruction
set, and proves that it is Turing-complete.P′′ is intended to be run on Turing
machines. Here are some differences with our work: we feel that our instruc-
tion sets would be easier for a complete novice to use thanP′′. (For example,
moving register contents is a simple loop here.) Certainly the programs for the
self-replicating program that we end up with is considerably smaller than what
one finds for descendants ofP′′ such as BF. Finally, our languages are regular sets
of expressions, whereas languages likeP′′ are context-free but not regular. (This
is a very minor point.) We also know that Neil Jones in [4] has proposed sim-
ple languages and studied thesm

n - and Recursion Theorems. The difference here
is that Jones’ languages are not based on as simple a machine model as register
machines. There are good reasons why Jones works with the languages that he
formulated, of course.

There might be classroom situations where one might want a presentation like
the one we outline here. I think back to my own first exposure to Computabil-
ity Theory, an taking an inspiring course given by Herbert Enderton at UCLA
around 1977. The course used register machines as its primary model, and in the
first few weeks we had to run programs written on punched cards. Later on, the
course turned toµ-recursion, and via the usual coding machinery it presented the
sm

n -Theorem (but not the Recursion Theorem). The development here would al-
low one to efficiently present all the main results of interest without any of the
coding; for some courses this would be a good idea. Instead of punched cards
one now has graphical interfaces, and for this the technical overhead in learning
the language would be small indeed. The material would work well in any course
that wants to discuss self-replicating computer programs, a topic that comes up in
various settings where reproduction is studied, including compilers, artificial life,
and security. So someone teaching those topics could introduce them using1#
and the freely available tools for it.
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3 The language1#

A register is a time-varying word indexed by a positive integer. We work with
a machine whose registers are R1, R2, R3,. . .. Each program uses a fixed finite
number of registers. We may either take the ideal machine which we now describe
to have infinitely many registers, or else to have a number which includes all
registers in whatever program we are running on it.

Syntax The basic alphabet of symbols isA = {1,#}.
There are five types of instructions, and the full syntax is listed in Figure 1.
The set of programs is just the set of all nonempty concatenations of sequences

of instructions. The set of instructions is a regular set, and hence so is the set of
programs. The programs are uniquely (and efficiently) parsed into sequences of
instructions.

We sometimes employ abbreviations in writing programs, and in particular we
use | for the concatenation operation on programs. We also add explanations in
English. None of this is part of the official language.

We experimented with variations on the syntax in order to get an instruction
set which minimized the lengths of the programs of interest. Nothing beat Fig-
ure 1. Having extra characters allows for binary numbers, but this does not quite
compensate for the extra branches in the case statements.

Semantics The easiest way to present the semantics is to run an evaluator in
connection with our tutorial on this topic. For those reading this on its own, here
are the details.

The registers store wordsw ∈ A∗. Running a program, sayp, means executing
a sequence of steps, and at each step one or another of the instructions which
comprisep is active. It is convenient to number those instructions. We begin with
instruction 1 ofp. Whenp starts, some registers might contain words; these are
the inputs. Actually, we do not distinguish between a register being empty and its
containing the empty string. The various instructions in our set involve writing
to the end of a register, popping an element from the front of a register and then
branching according to what was found, and outright transfer (=goto) statements.
Here is more detail on all of these.

All writing is to be done at the end (the right side) of words. So if R6 contains
the string11## and we execute the instruction111111#, then R6 will then have
11##1. After executing a write instruction, the next instruction ofp (if there is
one) is the active one.

Executing a case statement1n#5 removes the leftmost symbol of the word in
registern, so that item is no longer there. After this, there are threecontinua-
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instr meaning
1n# add1 at the end of Rn
1n## add# at the end of Rn
1n### go forwardn steps

instr meaning
1n#### go backwardn steps
1n##### cases on Rn

Figure 1: The instruction set of1#. Heren ≥ 1, and1n is n consecutive1s.

tion branches. In order, those branches are first for the case when registern is
empty, then when the popped element is1, and finally for#. Suppose R3 con-
tains the string1##1 and instruction 17 of our programp contains the instruction
111#####. In executing this, we drop the initial 1, the tail##1 then remains in
R3, and finally we proceed to instruction 17+ 2 = 19 of p.

The transfer instructions are allrelative; i.e., they specify a forward or back-
ward transfer of some positive number of instructions.

Consider the execution of a programp. If at some point, instructionk is active
and it asks to transfer forwardl steps, and ifp hask + l − 1 instructions, then
after executing instructionk, we say thatp halts. There are similar ways forp to
halt following the add instructions and even case statements. Informally, and a bit
incorrectly, we say thatp halts if the active line is “one below the last instruction
of p.”

1#-computable partial functions Let n ≥ 0, and letp ∈ A∗. We define the
partial functionϕ(n)

p : (A∗)n⇀ A∗ by

ϕ(n)
p (x1, . . . , xn) = y

if p is a program, and ifp is run withx1 in R1,x2 in R2, . . ., xn in Rn, and all other
registers empty, then eventually the machine comes to a halt withy in R1 and all
other registers empty. These partial functionsϕ(n)

p are called1#-computable. (We
allow n = 0, and in this case we would writeϕp( ). And in all cases we usually
drop the superscript from the notation when it is clear.)

This notion of1#-computability is not the only one worth studying. For many
purposes, one would want1#-computability using the first k registers. Equally
well, one often wants definitions that keep the original input intact; the notion
studied here loses the input.

Notation likeϕp(x1, . . . , xn) = ϕq(y1, . . . , ym) has the usual meaning: either
both sides are undefined, or both are defined and equal.

The empty stringε is not a program (by definition), and soϕ(n)
ε is the empty

function for alln. Incidentally, our stipulation thatε not be a program might be
reconsidered. One might then reconsider the status ofϕ(n)

ε . This would result in
minor changes to our results.
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It is clear that restricting our notion from sequences fromA = {1, #} to se-
quences of1’s alone, the1#–partial computable functions are exactly the partial
computable functions in the classical sense. There is also a formulation of this
result which usesA to represent numbers in binary.

4 Programs

4.1 Programs to move register contents

Here is a programmove2,1 which writes the contents of R2 onto the end of R1,
emptying R2 in the process:

11##### cases on R2
111111### go forward 6
111### 1 branch: go forward 3
1## # branch: add# to R1

1111#### go backward 4
1# 1: add 1 to R1
111111#### go backward 6

Note that in our displayed examples we often write the instructions going down
the two columns. Similarly, we can buildmovem,n for all distinct numbersm and
n. The official programmovem,n is

1m#####111111###111###1n##1111####1n#111111####.

4.2 Comparison and reversal

It is a good exercise to write some programs dealing with string manipulations.
One would be to write a programcompare with the following property. When run
with x in R1 andy in R2, compare halts with 1 in R1 (and nothing in any other
register) ifx = y, and with R1 (and all other registers) empty ifx , y.

A better exercise is to write a program that reverses words.

4.3 A program to write a program to write a word

Figure 2 contains a programwrite with the following property: whenwrite is
started with a wordx in R1 and R2 empty, the output is a wordy = ϕwrite(x) in R1
and all other registers empty. Moreover,y is a concatenation of instructions1#
and1##. And runningy writes the originalx after whatever happens to be in R1,
providedx , ε. For suchx we indeed have

ϕϕwrite(x)( ) = x.

The official program is shown at the bottom of Figure 2; the parse is on top. The
horizontal line indicates thatmove2,1 is concatenated at that point.



186 186

186 186

BEATCS no 89 TECHNICAL CONTRIBUTIONS

178

1##### cases on R1
111111111### empty branch
11111### to 1 branch
11# # branch
11## add# to R2
11## add# to R2

111111#### go backward 6
11# 1: add 1 to R2
11## add# to R2
111111111#### go backward 9
move2,1

1#####111111111###11111###11#11##11##111111####11#11##
111111111####11#####111111###111###1##1111####1#111111####

Figure 2: The programwrite.

4.4 s1
1

We construct a programs1
1 which, when when started with a programp in R1 and

a wordq in R2, and R3 and R4 empty, yields a programϕs1
1
(p,q) which, when

started withr in R1, yields the same word as would be obtained whenp is started
with q in R1 andr in R2. In particular,

ϕϕs1
1
(p,q)(r) = ϕp(q, r). (1)

We takes1
1 to be

move1,3 |move2,1 |write |move1,2 |ϕwrite(move1,2) |move2,1 |move3,1

We use| as a symbol for concatenation of programs. Note also that the third of
the seven segments iswrite, the program that we saw in Section 4.3 just above;
the fifth is the result of applying that program tomove1,2. Then the following
equations show the desired result (1):

ϕs1
1
(p,q) = move1,2 |ϕwrite(q) | p

ϕmove1,2 |ϕwrite(q) | p(r) = ϕp(q, r)

There are also versions ofsm
n for all m andn.

4.5 The programsdiag and self

This section illustrates self-replicating programs in1#. We begin with the follow-
ing program which we’ll calldiag for the rest of this paper. Whendiag is run with
x in R1, the result isϕwrite(x) | x in R1. Hence forx , ε,

ϕϕdiag(x)( ) = ϕϕwrite(x) | x( ) = ϕx(x). (2)

Here is the informal description ofdiag:
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Move x from R1 into R2, and at the same time putϕwrite(x) in R3. Move R3
back to the now-empty R1. Finally, move R2 onto the end of R1.

The way to formalize the “at the same time” is to write one combined loop:

1##### cases on R1
11111111111### empty: go 11
111111### 1 branch: go 6
11## #: add# to R2
111# add 1 to R3
111## add# to R3
111## add# to R3

1111111#### go back 7
11# add 1 to R2
111# add 1 to R3
111## add# to R3
11111111111#### go back 11
move3,1

move2,1

One way to get a self-writing programself is to apply this programdiag to
diag itself. When we rundiag on itself, we getϕwrite(diag)|diag in R1. So when we
run self on nothing, we first writediag into R1; and second we rundiag. This
gives usself, as desired. For a more formal proof, we use (2) withx = diag:

ϕself( ) = ϕϕdiag(diag)( ) = ϕdiag(diag) = self.

One can find the full programs onwww.indiana.edu/~iulg/trm.
Programs likeself are often calledquinesfollowing Douglas Hofstadter in [3];

there are several web pages devoted to collections of them, for example. A stan-
dard example is to takeλ-terms as the programs,β-conversion as the notion of
execution, and then to consider (λx.xx)(λx.xx).

It might be useful to expose the device behind our self-replicating program
self by rendering it into English. We are interested in “programs” (sequences of
instructions) of a simple form, including instructions to print various characters,
and instructions which accept one or more sequences of words as arguments, and
so on. We’ll allow quotation, and we won’t attempt to formulate a minimal lan-
guage, or a formal semantics. We’re aware of the semantic problems that are being
pushed under the rug, but the point is only to hint at a rendering ofdiag andself.
Perhaps the most direct example of a self-replicating program would bewrite
me, but this not immediately translated to1#. Instead, we want a version ofdiag,
and we take

write the instructions to write what you see before it (3)

Here “what you see” and “it” refer to the input. So applying this informal render-
ing of diag to write me would give

print "w" print "r" print "i" print "t"
print "e" print " " print "m" print "e" write me
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Applying this version ofdiag to itself gives a long program which would look like

print "w" print "r" print "i" print "t" print "e" · · ·

print "r" print "e" print " " print "i" print "t"
write the instructions to write what you see before it

(4)

Executing (4) prints instructions to print (3) followed by (3) itself. This is (4).

5 Exercises

I have used most of the exercises below as classroom exercises before turning to
Kleene’s Recursion Theorem. As one might expect, some of the problems can be
solved by appealing to the Recursion Theorem. However, the direct solutions are
usually shorter.

1. Write a program which when started on all empty registers writes itself to
R1 and# to R2.

2. Write an infinite sequence of pairwise different programs

p1, p2, . . ., pn, . . .,

such that for alln, runningpn with all registers empty givespn+1 in R1.

3. Write a self-replicating program that begins with the program to transfer
ahead one instruction,1###.

4. Which programsp have the property that there is a self-replicating program
which begins withp?

5. Write a programswhich when run with R2, R3,. . ., initially containing the
empty string, writess itself into R1 after whatever happens to be there to
begin with.

6. Write a programp with the property that when run on a stringq in R1, p
runs and halts with 1 in R1 ifq = p, and runs and halts with R1 empty if
q , p. (Sop “knows itself”.)

7. Write a programp with the property that when run on a programq in R1,
the result is the same as would be the case whenq is run with p in R1. (So
programanddatahave changed roles!) [You will want a circular interpreter
for this.]
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8. Write two “twin” programss1 and s2 with the properties that (a)s1 , s2;
(b) runnings1 with all registers empty givess2 in R1; (c) runnings2 with all
registers empty givess1 in R1.

9. Work out a version of the Busy Beaver problem in this setting.

6 Kleene’s Second Recursion Theorem

Here is our formulation of this fundamental result: Letp , ε, and considerϕ(2)
p .

Then there is a programq∗ so that for allr,

ϕq∗(r) = ϕp(q
∗, r).

For the proof, let ˆq be as follows (later we setq∗ = ϕq̂(q̂)):

diag |move1,2 |ϕwrite(move1,4) |move2,1 |ϕwrite(move4,2 | p).

This program ˆq uses only the first three registers. We have that for allx,

ϕq̂(x) = move1,4 |ϕdiag(x) |move4,2 | p.

In particular,ϕq̂(q̂) = move1,4 |ϕdiag(q̂) |move4,2 | p. Now for all r

ϕϕq̂(q̂)(r) = ϕmove1,4 |ϕdiag(q̂) |move4,2 | p(r) = ϕp(ϕq̂(q̂), r).

(This last point is worth checking in detail; it uses the fact that ˆq only uses the first
three registers.) Letq∗ = ϕq̂(q̂). So we haveϕq∗(r) = ϕp(q∗, r), as desired.

There are also versions of this result forϕ(k)
p with k ≥ 3, and the details are

similar.

7 Smullyan’s Double Recursion Theorem

Our final result is Smullyan’s Double Recursion Theorem, a result used by Smul-
lyan in work on recursion theory connected to the Gödel Incompleteness The-
orems. Letp and q be programs. Consider the functions of three arguments
ϕ(3)

p (a,b, x) andϕ(3)
q (a,b, x). There are programsa∗ andb∗ so that for allx, ϕa∗(x) =

ϕp(a∗,b∗, x), andϕb∗(x) = ϕq(a∗,b∗, x).
We lack the space to exhibita∗ and b∗ explicitly in terms of p and q (but

Exercise 8 in Section 5 above could be a good first step). One example application
of the Double Recursion Theorem would be to findp andq so thatϕp(p) = q,
ϕp(q) = p, ϕq(p) = q, andϕq(q) = p|q.
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8 Using1#

Several students in my class enthusiastically implemented1#. Some of their work
has been polished, and it is available atwww.indiana.edu/~iulg/trmalong
with other material. The most widely usable is a Java program that comes with
a pleasant interface that allows one to watch registers change as programs run.
Other interpreters come with tools which make it easier to write programs; so in
effect one can write in a slightly-higher-level language that is translated back to
a bona fide1# program. There also is a universal program (a circular interpreter)
for 1#, that is a1# programu such that for allp andq, ϕu(p,q) = ϕp(q).

Acknowledgements

My thanks to Will Byrd and Jiho Kim for numerous comments, corrections, ref-
erences, and suggestions.

References

[1] Böhm, Corrado.“On a family of Turing machines and the related programming lan-
guage”, ICC Bull. 3, 187-194, July 1964.

[2] Fitting, Melvin. Computability Theory, Semantics, and Logic Programming. Oxford
Logic Guides, 13. The Clarendon Press, Oxford University Press, New York, 1987.

[3] Hofstadter, Douglas R.Gödel, Escher, and Bach: an Eternal Golden Braid. Basic
Books, Inc. New York, New York.

[4] Jones, Neil. Computer implementation and applications of Kleene’ss-m-nand recur-
sion theorems. in Y. N. Moschovakis (ed)Logic From Computer Science, 243–263,
Math. Sci. Res. Inst. Publ., 21, 1992.

[5] Minsky, Marvin L. Computation: Finite and Infinite Machines.Prentice-Hall Series
in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.

[6] Shepherdson, J. C. and Sturgis, H. E. Computability of recursive functions.J. Assoc.
Comput. Mach.10 217–255, 1963.



191 191

191 191

Bulletin of the EATCS no 89, pp. 183–184, June 2006
©c European Association for Theoretical Computer Science

T P C


L R

LRI, Orsay CNRS-Université de Paris Sud
Bât 490, 91405 Orsay France
Laurent.Rosaz@lri.fr

Readers are invited to send comments, and to send exercises, even if they
don’t know the answer. Write to Laurent.Rosaz@lri.fr.

76 The 4 buoys

A geophysicist tells me he has dropped 4 buoys, floating on the sea, which are
equidistant of each other. Should I call him a liar ?

77 Going far ?

Your are on the road. At km 0 is the unique gas station. You haveN cars (and
drivers) and you can fill theN tanks at the gas station. It is forbidden to store gas
elsewhere than in the tanks. It is allowed at any time to decant gas from one car
tank to another. A full tank allows a car to drive for a constant distanceK. You
have car number one (and that makes you the chief) and you are ready to abandon
other cars on the way. How far can you go ?

S  P P

74 Another fake coin problem: independent tests

There are N coins of which one is counterfeit. In each test, you measure a set
of coins and the answer reveals if the set contains the counterfeit coin or not
(so, the classical group testing setting). Obviously, we can find the counterfeit
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coin in dlog2ne tests by a straightforward binary division algorithm. It is also
obvious that this number of test is optimal. However, in this procedure each test
depends directly on the answers to the previous tests, and we want all tests to be
independent of each other. In other words, we want to be able to make all tests in
parallel. Is it possible to identify the counterfeit coin indlog2ne tests by such an
algorithm ? (if yes, give the algorithm; if not, give the lower bound) [Thanks to
G. Kucherov for the problem]

Solution Number the coins from 1 toN. In thei th test, put coink iff the i th bit
in the writing ofk in base 2 is a 1. It is easy to deduce the faulty coin from the
dlog2ne results.

75 Number of loops on a grid

You are on an infinite grid. You are interested in paths from point (0,0) to (0,0)
made of elementary North, South, East or West steps. For example,

NEEWES WNNWWS S S WNEE

is such a path of length 18. LetXn be the number of such paths of length 2n.
ComputeXn. After a little calculus, you should be able to get the answer in

a very simple form, namely (CY
X)δ (You should need

∑n
0(C

k
n)

2 = Cn
2n). Could you

explain the final result by a more direct proof ?

Solution First solution: choose the numberk of west moves, then choose the
k west moves, then thek east Moves, then then− k north moves. This leads to the
formula

n∑
0

Ck
2n ∗Ck

2n−k ∗Cn−k
2n−2k =

n∑
0

(2n)!
k!(2n− k)!

∗
(2n− k)!

k!(2n− 2k)!
∗

(2n− 2k)!
(n− k)!2

=

n∑
0

(2n)!
k!2(n− k)!2

=
(2n)!
n!2

n∑
0

n!2

k!2(n− k)!2

= Cn
2n

n∑
0

(Ck
n)

2 = (Cn
2n)

2

Second solution: To every loopl of lengthn associateNE(l), the set of steps
which are north or east, andNW(l), the set of steps which are north or west. The
function l → (NE(l),NO(l)) is a one-to-one function from the loops toX2 where
X is the set ofn steps among 2n. Hence the number of paths iscard2(X) = (Cn

2n)
2.
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The 22nd British Colloquium for Theoretical Computer Science

4–7 April 2006, Swansea, Wales

Faron Moller

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum for researchers in theoretical computer science to meet, present research
findings, and discuss developments in the field. It also provides an environment
for PhD students to gain experience in presenting their work in a wider context,
and benefit from contact with established researchers.

BCTCS 2006 was held at Swansea University during 4–7 April 2006. The
event attracted 122 participants, and featured an interesting and wide-ranging pro-
gramme of 6 invited talks and 62 contributed talks; roughly half of the participants
and speakers were PhD students. Abstracts for all of the talks are provided be-
low; further details, including on-line slides from the talks, are available from
the BCTCS website athttp://www.bctcs.ac.uk/. The financial support of
the Engineering and Physical Sciences Research Council (EPSRC), the London
Mathematical Society (LMS), the British Computer Society (BCS), and the Welsh
Development Agency (WDA) is gratefully acknowledged.

A highlight of the meeting this year was a lengthy discussion, led by Samson
Abramsky and chaired by Faron Moller, on the formation of a Learned Society
for Computer Science in the UK. Such a Society was first proposed for Theoret-
ical Computer Science 18 months earlier in a widely-circulated letter signed by
Samson Abramsky, Faron Moller and David Pym which received overwhelming
support; this led directly to wider interest in the UK in creating a Learned Society
which would envelop the whole of Computer Science. This mammoth endeavour
is being developed by a Working Party involving representatives from all relevant
national organisations, and the meeting demonstrated near-unanimous support for
its efforts (with only a small handful disappointed that the idea of a UK Society
just for TCS would now be realised only as a sub-group of a wider organisation).

Another novel feature of BCTCS 2006 was the form of its opening Invited
Lecture, which came in the guise of Peter Mosses’ Public Inaugural Lecture mark-
ing his recent appointment to a professorship at Swansea University.

BCTCS 2007 will be hosted jointly by Oxford and Oxford Brookes Universi-
ties in Oxford University’s St. Anne’s College from 2–5 April 2007. Researchers
and PhD students wishing to contribute talks concerning any aspect of theoretical
computer science are warmly welcomed to do so. Further details are available
from the BCTCS website athttp://www.bctcs.ac.uk.
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Invited Talks at BCTCS 2006

Hajo Broersma, Durham University
Toughness in graphs: structural and algorithmic aspects
(LMS Keynote Lecture in Discrete Mathematics)

The toughnessof a graphG is a vulnerability or reliability measure related to its con-
nectivity, but it involves the number of componentsω(G−S) that result after deleting a
subsetS of the vertex set ofG. Formally, a non-complete graphG = (V,E) is calledt-
tough if t·ω(G−S) ≤ |S| for every setS ⊆ V with ω(G−S) > 1. The concept of toughness
was introduced by Chvátal in the seventies. Since then a lot of research has been done,
mainly relating toughness conditions to the existence of cycle structures. Historically,
most of the research was based on a number of conjectures by Chvátal. More recently,
research has also focused on computational complexity issues. We will survey progress
and open problems in both directions.

Stephen Cook, University of Toronto
A tutorial on proof complexity

NP= co-NP iff there is a propositional proof system in which every tautology has a poly-
nomial size proof. Proving NP, co-NP would show NP,P, and seems out of reach at
present. But it motivates trying to prove lower bounds on proof length for specific proof
systems. We summarize some results here, and also explain the interesting connection
between proof systems and complexity classes.

Tony Hoare, Microsoft Cambridge
Unifying theories of concurrency

The goal of unifying theories is one that inspires much good basic research in all mature
branches of scientific endeavour. To show that two or more theories are just special cases
of some yet more general theory is a strong support of the credibility of all the theories
involved. Unification is a scientific ideal that can justifiably be pursued by theorists for its
own sake.

In Computer Science, a good theory of programming can also deliver important prac-
tical benefits. It provides a sound conceptual basis for the construction of programming
tools, which make the results of the theory available to the practising software engineer.
Many such tools, incorporating specialised theories of concurrency like Esterel, are now
finding application in the design of hardware and of software systems embedded in aero-
planes and cars.

In order to extend the utility of these tools, it eventually becomes necessary to use
them in combination with other specialised tools. To ensure the quality and soundness
of such a combined tool, it is essential that it should be based on a unification of their
theoretical foundations. So without in any way detracting from the value of proliferation
of theories, I would like to suggest that unifying theories is a suitable Grand Challenge
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to inspire collaborative research in Theoretical Computer Science. I will give a brief
example of my own current attempt to unify two familiar theories of concurrency, CCS
and CSP. It finds an interesting application of the concept of a Scott retraction.

Mark Jerrum, University of Edinburgh
A tutorial on efficient sampling

Sampling – it might be of points from some spatial distribution or of specified combinato-
rial structures – is an interesting algorithmic pursuit. Moreover, many sampling problems
are externally motivated, for example, by models in statistical physics. There have been
a number of notable successes in the area, but many open questions remain. It seems an
opportune moment to conduct a SWOT analysis.

Peter Mosses, Swansea University
The meaning of it all: Programming language semantics, from Scott and Strachey to
semantics/online
(BCS-FACS Keynote Lecture in Formal Methods)

Since the middle of the last century, hundreds of programming languages have been de-
signed and implemented – and new ones are continually emerging. The texts that make
up the programs of a language – the syntax of the programming language – can usually be
described quite precisely and efficiently using formal grammars first developed in linguis-
tics. However, the formal description of what the programs do – their semantics – is much
more challenging. Like syntax in the 1950s, precise semantics is commonly regarded as
impractical and too costly. Research in semantics allows us to reason about software and
has provided valuable insight into how (not) to design programming languages, but few
semantic descriptions of full languages have been published, and hardly any of these are
available online.

One of the major approaches to formal semantics is denotational semantics, developed
by Scott and Strachey in the late 1960s. Recent research has shown how to combine some
aspects of denotational semantics with other approaches. A radical change to the way
semantic descriptions are organised has also dramatically improved their practicality, and
should allow efficient online access to a repository of semantic descriptions, as well as
contributing to the solution of a long-standing open problem: programming the automatic
generation of compilers and interpreters from language descriptions.

Moshe Vardi, Rice University, Houston
Alternation as an algorithmic construct

Alternation was introduced by Chandra, Kozen, and Stockmeyer (JACM, 1981) as a gen-
eralization of nondeterminism. The typical use of alternation is in complexity-theoretic
settings. The focus of this talk is on presenting alternation as a powerful algorithmic con-
struct. The driving examples are various automated-verification tasks, where alternation
yields elegant and optimal algorithms.
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Contributed Talks at BCTCS 2006

Thorsten Altenkirch, University of Nottingham
Stop thinking about bottoms when writing programs!

Reasoning about functional programs is often obscured by dealing with the possibility of
non-terminating programs, i.e. programs denoting bottom. I argue that most programs
can be perfectly well understood in a total setting and this provides a more appropriate
framework for reasoning about programs formally and informally. There are some pro-
grams where partiality cannot be avoided, eg interpreters, however I will show that this
impurity can be dealt with by a monadic interface, the partiality monad. The latter is
based on joint work with with Venanzio Capretta and Tarmo Uustalu.

Ioannis Baltopoulos, University of Cambridge
Model checking business processes

In this talk we present ongoing work in the area of model checking of business pro-
cesses expressed in the pi-calculus. The Business Process Execution Language (BPEL)
is an OASIS standard aimed at providing a language for modelling the behaviour of exe-
cutable business processes and business protocols (abstract processes) collectively known
as Business Processes.

Using as a starting point previous work on the semantics of the BPEL language done
in Petri nets we initially present a pi-calculus semantics for the language, by means of a
set of transformation rules from XML descriptions to pi-calculus ones. The application
of the semantics to business processes results in formal process descriptions that lend
themselves to property checking through the modal mu-calculus.

Future extensions of this work will involve capturing temporal information in the
process descriptions that would enable the calculation of performance metrics and the
verification of temporal properties.

Joachim Baran, University of Manchester
Linear temporal logics and grammars

Linear temporal logics are widely associated with automata, i.e. a formula can be (more or
less) easily translated into an automaton that accepts the formula’s models as its language
and vice versa. The most prominent example is probably the linear-time mu-calculus,
whose expressiveness coincides withω-Buchi automata. However, when considering log-
ics that go beyondω-regular expressiveness, the relationship to automata is either not clear
or not straightforward anymore.

The linear-time fixed-point logic with chop (LFLC) is an extension of the linear-time
mu-calculus. Its expressiveness is beyond context-free properties and it has been shown
that the logic’s models coincide with the languages of alternating context-free grammars
over finite and infinite words. We give here a short introduction to the field of temporal
logics and grammars and our latest research results concerning the representation of the
empty word and about the alternation hierarchy in LFLC.
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Nick Cameron, Imperial College London
A state abstraction for Java like languages

An objects’ state, intended as some abstraction over the value of fields, is always in the
mind of (imperative object-oriented languages) programmers. When concurrency comes
in, the need for a state abstraction becomes even more prevalent: as the state of an object
changes so, usually, does the synchronization behaviour.

We introduce a language feature for expressing the notion of state in Java-like lan-
guages. The proposed feature takes the form of a new kind of class, that we call a state
class. We first introduce and motivate the new construct through examples written in a
dialect of Java called StateJ. Then, we provide a formal account of our proposal by pre-
senting syntax, typing, reduction, and type soundness for the FSJ calculus, a minimal core
calculus (in the spirit of Featherweight Java) for modelling the state construct.

Luis Cereceda, London School of Economics
Recolouring graph colourings

Suppose we are given a graphG together with two proper vertexk-colourings ofG, α and
β. How easily can we decide whether it is possible to transformα into β by recolouring
vertices ofG one at a time, making sure that at each stage we have a properk-colouring of
G? We consider some algorithmic aspects of this and related questions. Special attention
will be given to the casek=3.

This is joint work with Jan van den Heuvel and Matthew Johnson.

David Cunningham, Imperial College London
Implementing atomicity with locks

In a multi-threaded shared-memory system, many single-threaded algorithms fail because
of atomicity violations that break the programmer’s assumptions. In practice, this is pre-
vented by explicitly coding synchronisation into the program using locking primitives.
The programmer attempts to enforce the atomicity that is required for the algorithm to be
correct. However this is error-prone, causing hard-to-find bugs in the application. Trying
to simplify the solution can result in coarse synchronisation and the loss of the benefits of
parallelism.

The atomic section is a much higher level primitive, which programmers can use
to directly specify the atomicity requirements of their algorithms. Other threads will
never interfere with code in an atomic section. This means there is no possibility of bugs
such as deadlocks and race conditions, that can occur when the programmer is forced to
implement such a guarantee. The implementation of atomic sections uses transactions to
rollback the state if interference occurs, but this is slow without hardware support, cannot
support IO in an atomic section, and may have undesirable performance characteristics
when threads contend heavily for a resource.

We propose an implementation of atomic sections that uses locks to ensure the atomic-
ity of object oriented code. We define a static analysis on a simple object calculus without
dynamic binding. This infers the objects touched by an atomic section, in terms of paths
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through the initial heap. At run-time these paths are evaluated and the objects “locked”
for the duration of the atomic section.

Sharon Curtis, Oxford Brookes University
Multirelational folds

Multirelations are isomorphic to predicate transformers, but provide a different perspec-
tive when it comes to the algebraic treatment of angelic and demonic non-determinism.
Folds in multirelations take a form very familiar to functional programmers.

Neil Datta, Imperial College London
Computational idioms, symmetry, reversibility and K-theory

Operator algebras have been introduced over the last decade as candidate operational or
denotational semantical domains for quantitative extensions of programming languages.
Unlike other operator algebras, C*-algebras are topologically stable in infinite dimen-
sions and so it appears they are particularly suitable for the characterisation of recursive
behaviour as a limit. Moreover, associated with this topological stability is the property
that every C*-algebra is dual to a lattice of projections. There is a general aim to inter-
pret this lattice as an axiomatic semantics which is dual to the operational or denotational
perspective encoded in the elements of the C*-algebra.

We are particularly interested in approximately finite-dimensional C*-algebras (AF-
algebras). AF-algebras are defined as the limit of an infinite sequence of increasing finite
dimensional C*-algebras; each algebra is embedded into its successor by means of an
involutive (*-) homomorphism. There is a famous classification theorem for AF-algebras
which states that each *-isomorphism equivalence class of AF-algebras is uniquely as-
sociated with a “dimension group” (the algebra’s “K-theory”) arising from its projective
structure. We would like to apply this theorem to the long-standing question of comparing
the expressiveness of programming languages in a more refined way than merely stating
whether or not a language is Turing complete. We suppose that the dimension group
somehow characterises the idiom and relative richness of the computational properties or
situations that are expressible in a language.

The topological stability of C*-algebras is a consequence of a symmetry constraint
arising from the “*” operation. The computational nature of this constraint is not yet
clear but is related to reversibility. The behaviour of programs is in general irreversible; it
is interesting that naïve AF-encodings of a range of reasonably expressive programming
languages produce the same AF-algebra. We will discuss the application of the inherent
symmetry of C*-algebras in distinguishing different computational idioms.

Aleksandar Dimovski, University of Warwick
Game semantics supported component verification

Game semantics provides algorithms for software model checking. Open programs are
modeled by looking at the way in which they can observably interact with their envi-
ronment. Computation is seen as a game between two players, the environment and the
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program, and the model of a program is given as a strategy for the second player.
One of the most important features of game semantics models is compositionality.

The model of a large program is constructed from the models of its constituting com-
ponents (sub-programs). This facilitates using compositional (i.e. divide-and-conquer)
verification techniques that decompose the verification of a large program into manage-
able subparts.

We present a technique for performing compositional verification in an iterative and
fully automated fashion; the approach uses learning and model checking.

Mike Dodds, University of York
Graph transformation in constant time

Graph transformation systems are applicable to a wide range of problems including
pointer safety, pattern recognition, and forming the basis of graph programming lan-
guages. They have the disadvantage, however, that the application of a rule generally
requires the construction of a subgraph isomorphism, a problem known to be NP-complete
(or polynomial if rules are considered as fixed). In this talk I will discuss so-called
“rooted” graph transformation rules, a restricted form of rules where applicability can
be checked in constant time (assuming fixed rules). Rooted rules define a set of root ver-
tex labels which can appear at most once in the graph to be transformed, and require that
all matched nodes are reachable from some root. I will show that, despite these restric-
tions, rooted rules are surprisingly general. I will discuss using rooted rules to simulate
unrooted rules, and show that rooted rules are general enough for Turing machine simu-
lation. I will also discuss possible applications of rooted rules, in particular in modelling
pointer manipulations.

This is joint work with Detlef Plump.

Alastair Donaldson, University of Glasgow
General techniques for symmetry reduction in model checking

Model checking is a potentially useful technique for verifying designs of concurrent sys-
tems, but is limited by the state-explosion problem: as the number of components in a
concurrent system grows, the state-space of a model of the system suffers combinatorial
explosion. Replication in the system being modeled may induce symmetries on the global
state-space of a model, and if this replication can be identified in advance, model check-
ing can be performed over a, generally smaller, quotient state-space, consisting of one
state per equivalence class with respect to the symmetry. The success of symmetry reduc-
tion depends on efficient techniques to compute orbit representatives, and the problem of
representative computation is known to be NP-hard.

In this talk, we present exact, efficient solutions to this problem for certain classes of
symmetry group, and approximate solutions for arbitrary symmetry groups. We describe
an approach to classifying an arbitrary symmetry group based on its structure as a disjoint
or wreath product of subgroups, so that an appropriate symmetry reduction strategy can be
chosen for the group. We briefly describe TopSPIN, a new symmetry reduction package
for the SPIN model checker which implements our techniques.
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This is joint work with Alice Miller.

Martin Dyer, University of Leeds
The complexity of counting homomorphisms to directed acyclic graphs

For a fixed (di)graphH chosen from some class, we consider the complexity of the prob-
lem of counting the number of homomorphisms to it from some graphG taken from some,
possibly different, class. The usual aim is to prove a “dichotomy theorem” showing that
for someH the problem is in P and for every otherH the problem is #P-complete. We
review previous work on this problem, then describe a new result for the problem of count-
ing homomorphisms to directed acyclic graphs, providing a graph-theoretic classification
of the “easy” graphs. An interesting feature of the classification, which is absent from
previous dichotomy results, is that there is a rich supply of tractable graphs with complex
structure.

Edith Elkind, University of Warwick
Nash equilibria in graphical games on trees, revisited

Graphical games have been proposed as a game-theoretic model of large-scale distributed
networks of non-cooperative agents. When the number of players is large, and the un-
derlying graph has low degree, they provide a concise way to represent the players’ pay-
offs. It has recently been shown that the problem of finding Nash equilibria on a general
degree-3 graphical game is complete for the complexity class PPAD, indicating that it is
unlikely that there is any polynomial-time algorithm for this problem. We show here that
in contrast, degree-2 graphical games are tractable.

Our algorithm uses a dynamic programming approach, which was introduced by
Kearns, Littman and Singh in the context of graphical games on trees. The algorithm
of Kearns et al. is a generic algorithm which can be used to compute all Nash equilibria.
The running time is exponential, though approximate equilibria can be computed effi-
ciently. Kearns et al. proposed a modification to the generic algorithm in order to find a
Nash equilibrium in polynomial time, provided that the underlying graph is a bounded-
degree tree. We show that this modified algorithm is incorrect: the output is not always a
Nash equilibrium.

In this talk, we focus on graphical games in which the underlying graph is a path
or “path-like”. First, we show that Nash equilibria can be computed in quadratic time if
the underlying graph is a path, and therefore in polynomial time if the underlying graph
has maximum degree 2. Our algorithm, which is based on the approach of Kearns et al.,
can be used to compute Nash equilibria of graphical games on arbitrary trees, but the
running time can be exponential, even when the tree has bounded degree. We show that
this is inevitable: any two-pass algorithm of this type will take exponential time, even on
bounded-degree trees with pathwidth 2.

It is an open question whether our algorithm runs in polynomial time on graphs with
pathwidth 1 but we show that finding a Nash equilibrium for a graphical game in which
the underlying graph has maximum degree 3 and constant pathwidth is PPAD-complete
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(and hence is unlikely to be tractable).

This is joint work with Leslie Ann Goldberg and Paul Goldberg.

Simon Foster, University of Sheffield
A formal model for web-service composition

Orchestration describes the rules which define the patterns underlying the way in which
a composite web-service interacts with other services, thereby enabling composite func-
tionality. In this talk we look at Cashew-S, a language based on OWL-S, which we have
created for specifying orchestration with formal semantics provided by a timed process
calculus, and examine how this fits into the general theory of service composition via pro-
cesses. We believe that this research will eventually enable us to give a formal model for
choreography, the method by which services engage in conversations, and will further aid
in automated service composition.

Stephen Gorton, University of Leicester
Task-oriented business requirements elicitation for web services

The expression of semantically-rich business requirements for web services is restricted
by current composition and management solutions available, e.g. BPEL. These solutions
often address orchestration concerns, rather than actual requirements. Methods such as
BPMN, although able to express requirements in terms of business activities and flows, are
unable to express non-core requirements such as resource and performance constraints. In
this talk, we will present a language to accurately express business requirements specifica-
tions through the use of graphical notation and policies. We will present a business goalG,
which defines a set of tasksT, a task mapm and a set of operatorsO. Subsequently, we
will explain how this method can map to current composition and management solutions
such as graphical notations and BPEL.

Alexey Gotsman, University of Cambridge
On proving liveness properties of programs

We describe a new counterexample-guided refinement-based algorithm for proving live-
ness properties of programs built upon an extension of a recently discovered technique
for proving program termination. Our implementation of the algorithm provides an au-
tomatic, interprocedural, path sensitive and context-sensitive liveness prover for the C
programming language. It supports such language features as arbitrarily nested loops,
arbitrarily nested recursive functions, pointers and side-effects, and function-pointers.

This is joint work with Byron Cook, Andreas Podelski, and Andrey Rybalchenko.

Jonathan Grattage, University of Nottingham
QML: A functional quantum programming language

QML is a high-level functional quantum programming language that allows the contrac-
tion of quantum variables, in apparent contradiction of the no-cloning theorem of quan-
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tum mechanics. Of course, no cloning actually takes place. The contraction, or non-linear
use of variables, is modeled as sharing, as with most programming languages. This is
achieved by the use of two if-then-else constructs: a classical-if, which measures quan-
tum data; and a quantum-if, which allows quantum parallelism and entanglement. We
show how these constructs allow contraction-as-sharing, and briefly discuss the issues of
orthogonality with regard to judgments needed for the quantum-if.

Alexander Green, University of Nottingham
Reversible quantum circuits from irreversible functions

Quantum circuits are, by their nature, reversible. It is possible to create reversible circuits
that perform irreversible functions. These transpositions often require additional input
qubits (“heap”), and produce extra output (“garbage”), that allows the function to be re-
versible. In this talk we give three laws governing circuits containing heap and garbage,
show how they can be optimised, and show how they can be used to prove the measure-
ment postulate. The three laws also hold for classical reversible circuits, but other laws
are also satisfied such as that the measurement of a bit has no effect on other bits in the
circuit.

Abubakar Hassan, King’s College London
Compiling interaction nets

Interaction nets have been put forward as both a graphical programming paradigm and as
an intermediate language into which we can compile other languages. Although we can
already program in interaction nets, they still lack what modern programming languages
should offer. In this talk, we address two issues. Firstly, we consider how to expand this
programming paradigm to become a useful and usable programming language, providing
features such as a module system, data types, input/output etc. Secondly, we consider
how to compile such a language by giving a compilation scheme of interaction nets to
bcode (our target/intermediate language) which can be executed by our abstract machine,
or further be translated into Java bytecodes for execution by a Java virtual machine. We
conclude the talk by giving a formal correctness proof of the compiler.

Michaela Heyer, University College Cork
An intelligent example-generator for graph theory

As with most areas of mathematics, graph theory relies heavily on the use of examples and
counterexamples to prove, disprove or support new conjectures. The intelligent example-
generator has a way of providing these example graphs in a very efficient manner by
combining different aspects of computer science and mathematics. In this talk I give
a broad overview of the areas involved and describe the main steps in the process of
generating the example graphs: the generation of all graphs of a given size; the use of
automated logical inference together with expert knowledge of graph theory to greatly
reduce the amount of work to be done; and the use of a 100 node Beowulf cluster to speed
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up the process through parallel testing of graph properties.

Catherine Hope, University of Nottingham
Fusion in less space

There are many advantages to writing functional programs in a compositional style, such
as clarity and modularity. However, the resulting programs can be inefficient in terms of
space due to the use of intermediate data structures. These structures may be removed
using deforestation techniques, but whether the space performance is actually improved
depends on the structures being consumed in the same order that they are produced. In
this talk I explore this problem and present a solution.

Wan Huang, London School of Economics
Enumerating Nash equilibria for game trees

We develop an algorithm for finding all Nash equilibria in a game tree with imperfect
information. The algorithm is based on the “sequence form” which was introduced by von
Stengel, and employs linear programming duality and polyhedral theory. The sequence
form represents “mixed strategies” in game trees compactly, with exponentially fewer
variables than the strategic form. The Nash equilibria are the solutions to an optimization
problem (called a linear complementarity problem) derived from the sequence form. We
show how to remove all the redundant variables and some of the redundant constraints of
this optimization problem by considering terminal sequences of moves. We also give a
proof that all Nash equilibria correspond to some convex combination of certain vertices
in the polyhedra.

Andrew Hughes, University of Sheffield
Combining timing, localities and migration in a process calculus

Process calculi provide an abstract representation of concurrency, and have been used
in both theoretical and practical contexts. Since the early days of CCS, CSP and ACP,
process algebras have diverged into two groups: those that add the concept of time, and
those that bring in mobility. The latter has been represented in two different ways: as
scope mobility (most notably in the pi-calculus) and as migration.

My research attempts to combine these two separate ideas within a single process cal-
culus. This continues my earlier work with the CaSE and Cashew Nuts calculi developed
at Sheffield. These both have a notion of time, represented by clock hierarchies, but do
not include mobility. I will discuss these briefly, before demonstrating the use of other
calculi which allow the representation of distribution, via locality, and process migration.
I will also consider how these ideas might be combined.

Markus Jalsenius, University of Warwick
Improved mixing bounds for the anti-ferromagnetic Potts model onZ2

We consider the anti-ferromagnetic Potts model on the integer latticeZ2. The model is
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used in statistical physics and corresponds to graph colourings with two parameters,q
andλ: parameterq is the number of colours andλ ∈ [0,1] is used to weight colourings.
We are interested in sampling from the set ofq-colourings onZ2 where each colouring
is assigned a probability proportional to its weight. In the caseλ=0 we are sampling
from the uniform distribution on properq-colourings. Ifλ=1 we are sampling from the
uniform distribution on allq-colourings. We use Markov chains, Glauber dynamics, to
sample colourings. Each state corresponds to a colouring and the stationary distribution
is identical to the distribution we want to sample from. It is known that Glauber dynamics
is rapidly mixing if q>7, λ ∈ [0,1], or if q=7, λ=0, λ>1/8, or if q=6, λ=0, λ>1/4.
We show that Glauber Dynamics is rapidly mixing forq≥6 and anyλ ∈ [0,1]. We also
show rapid mixing for a larger range ofλ than was previously known forq=3,4 and 5.

This is joint work with Leslie Ann Goldberg, Russell Martin and Mike Paterson.

Mauro Jaskelioff, University of Nottingham
Towards operations on operational semantics

Standard structural operational semantics has poor modularity. We build upon the work
of Turi’s functorial operational semantics, an abstract category-theoretical model of oper-
ational semantics which guarantees that the defined semantics are well behaved. Working
in this abstract setting we reason about the combination of operational semantics and we
define operations for achieving it. We show how to use these operations to combine four
toy languages featuring different effects.

Kenneth Johnson, Swansea University
The theory of spatial data types and constructive volume geometry

Spatial data types model data in space. There are a vast number of examples in computing,
ranging from medical images to computer memories. Spatial data types are modeled using
algebras of total functions from a topological space of points to a topological algebra of
attributes.

In this talk, we motivate a general theory of spatial data types by introducing Con-
structive Volume Geometry (CVG), an algebraic framework for the high-level program-
ming of spatial objects in graphics. We discuss the problem of the expressive power of
CVG in the context of the 4-colour channel model: Do the CVG terms define all the
spatial objects one wants?

We sketch some general theory and show how to solve the expressiveness problem
in general. Using variants of the Stone-Weierstrass Theorem we prove a density result
which shows that some subsets of spatial objects under certain primitive operations can
approximate all other spatial objects.

Oliver Kullmann, Swansea University
Using (hyper)graph decomposition for satisfiability decision

Given a hard satisfiability problemF (boolean or not), an interesting option is to use some
(hyper)graph representationG(F) with the property that, ifG(F) splits into connected
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components, then we can work on the components independently. In this talk, I present a
unifying approach, looking at the whole picture from “local” hypergraph cuts to “global”
tree decompositions (typically associated with fixed parameter tractability). In this way
the different decomposition strategies can be much better linked to the “logical” properties
of the problemF (as opposed to the “graphical” properties represented byG(F)); we
identify the missing link here as the cause for the (hitherto) failure of graph decomposition
algorithms for practical applications (while being attractive in theory).

Ranko Lazic, University of Warwick
LTL with the freeze quantifier and register automata

Temporal logics, first-order logics, and automata over data words have recently attracted
considerable attention. A data word is a word over a finite alphabet, together with a
piece of data (an element of an infinite domain) at each position. Examples include timed
words and XML documents. To refer to the data, temporal logics are extended with the
freeze quantifier, first-order logics with predicates over the data domain, and automata
with registers or pebbles.

We investigate relative expressiveness and complexity of standard decision problems
for LTL with the freeze quantifier, 2-variable first-order logic (FO2) over data words, and
register automata. The only predicate available on data is equality. Previously undiscov-
ered connections among these formalisms, and to counter automata with incrementation
errors, enable us to answer several questions left open in recent literature.

We show that the future-time fragment of LTL with freeze which, corresponds to FO2

over finite data words, can be extended considerably while preserving decidability, but at
the expense of non-primitive recursive complexity, and that most further extensions are
undecidable. We also prove that, surprisingly, over infinite data words, LTL with freeze
and without the “until” operator, as well as nonuniversality of one-way nondeterministic
register automata, are undecidable even when there is only 1 register.

This is joint work with Stephane Demri (CNRS & ENS Cachan & INRIA Futurs).

Cindy Li, University of Liverpool
Efficient probe selection in microarray design

DNA microarray technology, originally developed to measure the level of gene expres-
sion, is becoming one of the most widely used tools in genomic study. Microarrays have
been proved to benefit areas including gene discovery, disease diagnosis, and multi-virus
discovery. The crux of microarray design lies in how to select a unique probe that dis-
tinguishes a given genomic sequence from other sequences. However, in cases that the
existence of a unique probe is unlikely, e.g. in the context of a large family of closely
homologous genes, the use of a limited number of non-unique probes is still desirable.

Due to its significance, probe selection attracts a lot of attention. Various probe se-
lection algorithms have been developed in recent years. Good probe selection algorithms
should produce as small a number of candidate probes as possible. Efficiency is also cru-
cial because the data involved is usually huge. Most existing algorithms usually select
probes by filtering, which is usually not selective enough and quite a large number of
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probes are returned. We propose a new direction to tackle the problem and give an ef-
ficient algorithm to select (randomly) a small set of probes and demonstrate that such a
small set of probes is sufficient to distinguish each sequence from all the other sequences.
Based on the algorithm, we have developed a probe selection software RandPS, which
runs efficiently and effectively in practice. A number of experiments have been carried
out and the results will be discussed.

This is joint work with Leszek Gasieniec, Paul Sant and Prudence WH Wong.

Olga Lightfoot, Queen Mary, University of London
Real arithmetic test suite for a theorem prover

Theorem proving has been used with great success in system verification, in particular,
in reasoning about problems expressed in terms of continuous mathematics over the real
numbers. Such mathematical expressions lie in the domain of higher order logic, so we
are interested in the performance of theorem provers in handling operations on functions
in the domain of real numbers. Despite the good level of automation of linear arithmetic
operations, non-linear operations over both algebraic and transcendental functions still
present a considerable challenge. We discuss the construction of a test suite for evaluating
the real arithmetic capabilities of an interactive theorem prover and, using PVS, show
what can be deduced about a theorem prover from such a test.

David Manlove, University of Glasgow
Vertex and edge covers with clustering properties: complexity and algorithms

We consider the concepts of at-total vertex cover and at-total edge cover (t≥1), which
generalize the notions of a vertex cover and an edge cover, respectively. At-total vertex
(respectively edge) cover of a connected graphG is a vertex (edge) coverS of G such
that each connected component of the subgraph ofG induced byS has at leastt vertices
(edges). These definitions are motivated by combining the concepts of clustering and cov-
ering in graphs. Moreover they yield a spectrum of parameters that essentially range from
a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a
spanning tree (in the edge case). For various values oft, we present NP-completeness and
approximability results (both upper and lower bounds) and FPT algorithms for problems
concerned with finding the minimum size of at-total vertex cover,t-total edge cover and
connected vertex cover, in particular improving on a previous FPT algorithm for the latter
problem.

This is joint work with Henning Fernau (University of Trier).

Erik Arne Mathiesen, Queen Mary, University of London
Abstract Hoare logic and dynamical systems

Setting out to define a Hoare logic for dynamical systems, we define an abstraction of
Hoare logic in the setting of traced monoidal categories. More particularly, we define
a class of subcategories of the category of posets and monotone mappings on which we
define a sound and complete system of inference rules. This provides us with a way of
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generating Hoare-logic-like rules for general systems through embeddings into the before-
mentioned class of subcategories. A particular instance is the embedding of the traced
monoidal category of while programs which yields Hoare’s original logic. Of special
interest to us are embeddings of certain dynamical systems. We conclude by discussing
further aspects of the framework such as partial vs total correctness.

Neil Mitchell, University of York
CATCH - Case And termination check for Haskell

There are two main ways in which a Haskell program may fail at runtime. Firstly, the pro-
gram may not terminate. Secondly, if the program has any incomplete (non-exhaustive)
patterns in definitions or case alternatives then it may encounter a pattern match error.

This work presents an automated analysis which checks a Haskell program, and at-
tempts to generate a proof that the Haskell program encodes a total function. It includes a
constraint language that can be used to reason about the data in a Haskell program, along
with mechanisms to propagate these constraints between program components.

Matthias Mnich, London School of Economics
Computation of correlated equilibria in succinctly-representable games

A correlated equilibrium is a more general notion of a Nash equilibrium modelling the
simplest form of co-operation in a game via “shared randomness”. The question of
whether a polynomial-time algorithm exists for computing correlated equilibria in suc-
cinctly representable games has recently been solved by Papadimitriou (STOC 2005).
This approach applies certain properties of the ellipsoid algorithm for linear programming
that allows it to run on a problem with polynomially-many unknowns and exponentially
many constraints. We give an overview of that idea and also include other results encom-
passing other classes of games. Finally, possibilities to use this algorithm for game trees
with imperfect information (called extensive games) are discussed, where the number of
pure strategies may be exponential in the size of the extensive game.

Peter Morris, University of Nottingham
Containing families

We examine the idea of indexed-containers from a programming perspective. We show
how to use this notion to characterise inductive families in the dependently-typed func-
tional language Epigram. This gives us a flexible and compositional semantic notion of
Strict Positivity and enables us to write generic programs not in a type system we model
but for the full Epigram type system.

Dimitrios Mostrous, Imperial College London
Session types for object-oriented languages

A session takes place between two parties; after establishing a connection, each party in-
terleaves local computations with communications (sending or receiving) with the other



210 210

210 210

BEATCS no 89 REPORTS FROM CONFERENCES

202

party. Session types characterise such behaviour in terms of the types of values commu-
nicated and the shape of protocols, and have been developed for the pi-calculus, CORBA
interfaces, and functional languages. We study the incorporation of session types into
object-oriented languages through the language Moose, a multi-threaded language with
session types, thread spawning, iterative and higher-order sessions. Our design aims to
consistently integrate the object-oriented programming style and sessions, and to be able
to treat various case studies from the literature.

We describe the design of Moose, its syntax, operational semantics and type system,
and develop a type inference system. After proving subject reduction, we establish the
progress property: once a communication has been established, well-typed programs will
never starve at communication points.

This is joint work with Mariangiola Dezani (University of Turin) and Nobuko Yoshida
and Sophia Drossopoulou (Imperial College).

Jonty Needham, University of Bath
A fully abstract game semantics for answer set programming

We present a fully abstract interaction model of answer set programming based on logic
games semantics. The field of games semantics has proved to be a powerful mathematical
framework in which to view a wide variety of programming languages and logics. We
present an outline of games semantics and then prove the correctness result for the de-
notation. We also present a result about providing an alternative algorithm for grounding
which reduces computation time, as well as the correctness of a debugging algorithm.

Gregg O’Malley, University of Glasgow
Stable matching problems with constant length preference lists

The Stable Marriage problem (SM) and many of its variants have been studied extensively
in the literature. In recent years much research has focused on the model SMTI, where
a given participant’s preference list may involve ties and be incomplete. It is currently
known that, in this setting, stable matchings may have different sizes, and the problem of
finding a maximum stable matching is NP-hard. In this talk we consider various restric-
tions of SMTI where some of the preference lists are constrained to be of constant length.
Such restrictions arise naturally in practical applications. We prove that in some cases,
finding a maximum stable matching can be achieved in polynomial time, and for others
we show that the problem remains NP-hard.

Nick Palmer, University of Warwick
PAC-learnability of probabilistic deterministic finite state automata in terms of varia-
tion distance

We consider the problem of PAC-learning distributions over strings, represented by prob-
abilistic deterministic finite automata (PDFAs). PDFAs are a probabilistic model for the
generation of strings of symbols, that have been used in the context of speech and hand-
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writing recognition and bioinformatics. Recent work on learning PDFAs from random
examples has used KL-divergence as the error measure; here we use variation distance.
We build on recent work by Clark and Thollard, and show that the use of variation dis-
tance allows simplifications to be made to the algorithms, and also a strengthening of
the results; in particular that using variation distance, we obtain polynomial sample size
bounds that are independent of the expected length of strings.

Nick Papanikolaou, University of Warwick
A framework for automated verification of quantum cryptographic protocols

This talk will consider the problem of proving correctness and security properties for com-
munication protocols, and cryptographic protocols in particular, with a view to showing
how formal methods may be used in the analysis of schemes for quantum communication.
Quantum cryptographic techniques rely on the laws of quantum mechanics to establish a
secret key between two users; indeed, several protocols implementing these techniques
have been shown to be perfectly secure in the information–theoretic sense.

We will give an account of the process algebra CQP (Communicating Quantum Pro-
cesses) and how it may be used to build accurate models of quantum protocols; also, the
verification of protocol models using a probabilistic model-checker will be discussed. Fi-
nally, we will report on our progress in developing an integrated framework for simulating
and verifying properties of systems with finite-dimensional quantum state spaces.

This is joint work with Rajagopal Nagarajan (University of Warwick) and Simon Gay
(University of Glasgow).

Mike Paterson, University of Warwick
Overhang

How big an overhang beyond the edge of the table can we reach by stackingn identical
blocks of length 1? The classical solution achieves an overhang of 1/2Hn, whereHn ≈ ln n
is thenth harmonic number. This solution is widely believed to be optimal. We show that
it is exponentially far from optimal.

This is joint with Uri Zwick (Tel Aviv University).

Daniel Paulusma, Durham University
Locally constrained graph homomorphisms and degree refinement matrices

We consider three types of locally constrained graph homomorphisms: bijective, injective
and surjective. Degree refinement matrices have tight connections to locally constrained
graph homomorphisms. If a graphG has a homomorphism of a given type to a graph
H then we say that the degree refinement matrix drm(G) of G is smaller than drm(H).
In this way we obtain three partial orders. Computing drm(G) is easy, so an algorithm
deciding comparability of two matrices in one of these partial orders would be a heuristic
for deciding if G has a homomorphism of a given type toH. For the locally bijective
constraint this corresponds to a well-known heuristic for graph isomorphism. For local
surjectivity and injectivity we show that the problem of matrix comparability belongs to
the complexity class NP.
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This is joint work with Jǐrí Fiala and Jan Arne Telle.

Kasper Pedersen, University of Warwick
A scan Markov chain for sampling colourings

Consider a graphG with maximum vertex degree∆. A properq-colouring ofG is an as-
signment of colours to the vertices ofG such that no edge is monochromatic. Calculating
the exact number of properq-colourings of a graph is #P-complete but this number can
approximated by sampling from the uniform distribution of properq-colourings,π, pro-
vided thatq is sufficiently large. Sampling fromπ is done by simulating a Markov chain
with state spaceΩ and stationary distributionπ whereΩ is the set of allq-colourings of
G. The mixing time of a Markov chain is how long it takes to get close to its stationary
distribution.

We are interested in discovering Markov chains that (1) are mixing in as few steps
as possible and (2) succeed in mixing for as few colours as possible. It is known that
wheneverq> (11/6)∆, a random update Markov chain (in which, during each step, one
vertex is chosen uniformly at random and updated) mixes inO(n logn) steps (Vigoda,
2000). We study the mixing time of “scan” Markov chains. A Markov Chain is a scan if
the vertices ofG are visited in an order specified by some permutation which must remain
constant during each sweep. It has been shown that scan mixes inO(logn) steps when
q>2∆ and in a polynomial number of steps whenq=2∆ (Dyer, Goldberg and Jerrum,
2005).

In this talk we present a scan which mixes inO(nlogn) steps providedq≥2∆.

Doron Peled, University of Warwick
Efficient model checking forLTL with partial order snapshots

Certain behavioural properties of distributed systems are difficult to express in interleav-
ing semantics, whereas they are naturally expressed in terms of partial orders of events or,
equivalently, in terms of Mazurkiewicz traces. Examples of such properties are serializ-
ability of a database or snapshots.

Recently, a modest extension of LTL by an operator that expresses snapshots has been
proposed. It combines the ease of linear (interleaving) specification with this useful partial
order concept. The new construct allows one to assert that a global snapshot (also called
a slice or a cut) was passed, perhaps not in the observed (interleaved) execution sequence,
but possibly in a (trace) equivalent one. A model checking algorithm was suggested for a
subset of this logic, with PSPACE complexity in the size of the system and the checked
formula. For the whole logic, a solution that is in EXPSPACE in the size of the system
(PSPACE in the number of its global states) was given.

In this talk, we present a model checking algorithm which is PSPACE in the size of
a system of communicating sequential processes when restricting snapshots to boolean
combinations of local properties of each process. Concerning the size of the formula, it is
PSPACE for the case of snapshot properties expressed in DNF, and EXPSPACE where a
translation to DNF is necessary.

This is joint work with Peter Niebert (Marseille).
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Alexis Petrounias, Imperial College London
The small chorded object-oriented language

The chord construct is a concurrency mechanism inspired by the join from the Join-
Calculus. Chords were implemented in an extension of C# called Polyphonic C#, and
also are available in COmega. They promise to raise the level of abstraction concurrent
programs are written in, hence offering a more powerful means of reasoning about the
behaviours of such programs.

Furthermore, the inclusion of chords in COmega means they will be used in conjunc-
tion with traditional, imperative concurrency constructs such as monitors and threads. In
order to study the interactions between other language constructs and chords it is neces-
sary that we fully understand the behaviour of chords. We therefore provided a formal
model describing the fundamental semantics of chorded languages, namely the Small
Chorded Object-Oriented Language (SCHOOL), to our knowledge the first formalisation
of a chorded language.

In this talk I will give an introduction to chords, show what programming with chords
looks like, and briefly describe the formal model of chorded programming languages
known as Simplified SCHOOL.

Pattarawit Polpinit, University of Warwick
Comparing parallel and sequential selfish routing in the atomic players setting

We consider the problem of routing traffic flow to optimize the performance of a congested
network. In particular, we specialize the traffic model with atomic players where each
player controls an amount of splittable flow, and aims to minimize their own cost. We are
given a network and a linear cost function for each edge. The objective is to compare the
optimal social cost with the cost arising from selfish routing decisions by the players.

In this work, we compare a game with two different settings: a parallel setting and a
sequential setting. The sequential setting represents a set of flows where all players make
decisions sequentially while the parallel setting is a set of flows at Nash equilibrium, i.e.
the optimal point for the player given the other players’ flows. We prove that in a two-
players two-link network model, the social cost of the sequential setting is at most 9/8
times the minimum possible for the parallel setting. We also consider the more general
setting in which there arem players in the model.

Sam Sanjabi, University of Oxford
Full abstraction for additive aspects

Aspect-Oriented Programming (AOP) is an emerging programming paradigm that has,
from the practitioner’s point of view, been extensively studied in the last few years. It
allows programmers to “weave” fragments of new code into existing code without mod-
ifying the base code. These fragments can potentially exchange data with the base code,
or even elide its execution altogether. It has therefore become apparent that current aspect
oriented languages such as AspectJ (an aspect-oriented extension of Java) – while pro-
viding a powerful programming tool – also break many desirable modularity principles,
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making it almost impossible to reason about code in the presence of aspects. It seems
therefore necessary to subject aspect-orientation to some degree of formal analysis in or-
der to learn to control program behaviour, while retaining as many of the benefits of the
paradigm as possible. However, theoretical study – while increasingly active – has lagged
far behind implementation in this field.

In this talk, I shall present (to my knowledge) the first known fully abstract game se-
mantics for a non-trivial fragment of AOP: additive aspects. Additive aspects are those
which do not prevent the base computation from executing, but may otherwise exchange
information with it in any way. The full abstraction result is achieved (in the style of
McCusker) by demonstrating the existence of a compositional, fully abstract translation
between a simple language of additive aspects, and Idealised Algol with General Refer-
ences (an imperative language known to have an existing games model). After presenting
the main theorem, I discuss some the implications, applications, and potential extensions
of the result.

Paul Sant, University of Luton
Combinatorics of colouring 3-regular trees

An instance of the Colouring Pairs of Binary Trees Problem (CPBT) consists of two 3-
regular trees, both withn leaves. The challenge of CPBT is to show that, for every in-
stance of the problem, there exists 3-edge-colourings of the trees such that the sequence
of colours associated with root-edges in both trees is the same. Interest in the problem
stems from its equivalence to a number of other important combinatorial problems includ-
ing, specifically, the historically-famous 4-colour problem of planar maps. We present a
number of recent results, both combinatorial and algorithmic, related to CPBT and pose a
number of challenges.

This is joint work with Alan Gibbons (King’s College London).

Rahul Savani, London School of Economics
Hard-to-solve bimatrix games

A bimatrix game is a two-player game in strategic form, a basic model in game theory.
A Nash equilibrium is a pair of (possibly randomized) strategies, one for each player, so
that no player can do better by unilaterally changing his or her strategy. The problem
of finding one Nash equilibrium of a bimatrix game is considered as “one of the most
important concrete open questions on the boundary of P today” (Papadimitriou, 2001).

In this talk, we show that the commonly used Lemke-Howson algorithm for finding
one equilibrium of a bimatrix game isnot polynomial. This question had been open
for some time. The algorithm is a pivoting method similar to the simplex algorithm for
linear programming. We present a class of square bimatrix games for which the shortest
Lemke-Howson path grows exponentially in the dimensiond of the game. We construct
the games using pairs of dual cyclic polytopes with 2d facets ind-space.

This is joint work with Bernhard von Stengel.

Anton Setzer, Swansea University
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Inductive recursive definitions and generic programming

Inductive-recursive definitions were originally introduced by Peter Dybjer in order to cap-
ture the general principle for defining sets in Martin-Löf type theory. They generalise the
notion of a strictly positively inductively defined set by allowing to define a set induc-
tively while simultaneously defining recursively an element of another type (which could
be a set, the type of sets, or a higher type like the type of functions mapping sets to sets).
Together with Peter Dybjer, the author has developed a closed formalisation of inductive-
recursive definition, which gives rise to a condensed definition of inductive-recursive defi-
nitions. Although inductive-recursive definitions were originally introduced in the context
of dependent type theory, their relevance seems not to be restricted to dependent types.

In the specific case where the recursively defined object is a set we obtain a relative
general notion of generic functions. The set of elements of the inductive-recursively de-
fined set are codes for data types, and the recursively defined set determines for each code
the data type it denotes. A generic function can take a code for a data type and an ele-
ment of the data type it denotes, and compute from it a code for another data type and an
element of the data type it denotes, where the target code could be given by an inductive-
recursive definition different from the the one used by the arguments. Some examples of
generic functions will make use of inductive-recursive definitions of higher types.

In this talk we introduce the notion of inductive-recursive definitions and give some
examples of generic functions definable using inductive-recursive definitions.

Nikolaos Siafakas, King’s College London
A fully labeled lambda calculus

Levy’s labeled lambda calculus has been of major importance in the research of efficient
implementations of functional programming languages. If we compute the normal form
of a term then the resulting label will describe a path in the graph of the term. The Geom-
etry Of Interaction (GOI) machine, which is an implementation of Girard’s Geometry of
Interaction semantics for Linear Logic, will follow exactly the path described by the label.
The investigation of the structure of the labels has led to optimised versions of the GOI
machine, such as the Jumping Abstract Machine (JAM), where the length of the path to
be traversed is significantly reduced. However, the structure of the labels is different from
the structure of the paths. The latter depend on the choice of translation of the lambda
calculus into Linear Logic proof nets (call-by-value or call-by-name) and the optimisa-
tions rely on the transposition of the structural information obtained from the labels into
paths. For each translation we present a fully labeled lambda calculus which unifies the
information yielded from the paths with the structure provided by Levy’s labels. Our main
goal is to find new and efficient ways of computing the paths in the GOI machine.

Alexandros Skaliotis, King’s College London
Logarithmic simulated annealing for protein folding

Protein folding is the process by which a sequence of amino-acids conforms to a three-
dimensional shape that determines the biological function of the resulting protein. We
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consider the problem of predicting these conformations based on the hydrophilic-hydro-
phobic model introduced by Dill et al. in 1995. A problem instance consists of a chain
of amino-acids, each labeled “H” (hydrophobic) or “P” (hydrophilic). This sequence has
to be placed in a 2D or 3D grid in a non-overlapping way that preserves the original
adjacencies of the amino acids. Following Anfinsen’s hypothesis which suggests that
proteins fold to a minimum energy state, the goal is to minimise the overall energy. In the
simplest variation, this corresponds to maximising the number of adjacent hydrophobic
pairs. The protein folding problem in the HP model is NP-hard in both 2D and 3D.
In 2004, Fu and Wang gave an exp(O(n1−1/d)ln(n)) algorithm ford-dimensional protein
folding simulation in the HP-model.

We investigate the application of logarithmic simulated annealing to the problem by
employing a set of moves proposed by Lesh et al. in 2003 and Blazewicz et al. in 2005.
Albrecht et al. in 2006 show that after (n/a)O(G) Markov chain transitions, the probability
of being in a minimum energy conformation is at least 1−a, wheren is the length of the
instance andG is the maximum value of the minimum escape height from local minima of
the underlying energy landscape. For selected benchmark instances we performed an ex-
perimental estimation of values forG. These indicate thatG<n1−1/d which is competitive
to the bound by Fu and Wang.

This is joint work with Andreas Albrecht (University of Hertfordshire) and Kathleen
Steinhofel (King’s College London).

Colin Sng, University of Glasgow
Popularity in the capacitated house allocation problem

We consider the problem of finding a popular matching in the Capacitated House Alloca-
tion problem (CHA), in which we have a set of agents and a set of houses. Each agent has
a preference list ranking a subset of houses in some order of preference, and each house
may be matched to a number of agents that must not exceed its capacity. A matchingM is
popular if there is no other matchingM′ such that the number of agents who prefer their
houses inM′ to M exceeds the number of agents who prefer their houses inM to M′.
Here, we give a polynomial-time algorithm to determine if an instance of CHA admits
a popular matching, and to find a largest such matching if one exists. Specifically, the
complexity of the algorithm isO(r3/2s1/2) wherer is the number of agents ands is the
number of houses.

Mike Stannett, University of Sheffield
Future trends in hypercomputation

Hypercomputation (the theory of “super-Turing machines”) is a rapidly expanding area of
Theoretical Computer Science, with links to physics, philosophy, biology and mathemat-
ics. We present a user-friendly guide to the current state-of-the-art, including quantum
computation and cosmological models, and suggest a number of theoretical problems
whose solution might prove important to the future development of the subject.
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Wouter Swierstra, University of Nottingham
Isomorphisms for context-free types

We can show two types to be isomorphic by constructing explicit coercion functions.
What should we do if we cannot find such an isomorphism? There’s no way to be sure
we’re not looking hard enough. I briefly show how a variation of classical monadic parser
combinators can be used to provide evidence that two inductive types are not isomorphic.

Traditionally, monadic parser combinators consume an input sequence of symbols.
Instead of input strings, however, we consider parsing multisets. Interestingly, we can
then interpret the results of our parsers as a powerseries. We can show that two types are
isomorphic if and only if their associated powerseries are identical. Distinguishing non-
isomorphic types now simply reduces to finding a disparity between two powerseries.

Rick Thomas, University of Leicester
FA-presentable structures

A structure consists of a set together with a collection of relations. For example, a group
consists of a set together with a ternary relation (representing the composition of elements
in the group), a unary relation (yielding the identity element) and a binary relation (repre-
senting the process of taking the inverse of an element). A natural general question is the
following: given a structure, can we perform computations in it?

The natural approach would be to take some general model of computation such as
a Turing machine. A structure would then be said to be computable if its domain can
be represented by a set which is accepted by a Turing machine and if there are decision-
making Turing machines for each of its relations. However, there have been various ideas
put forward to restrict the model of computation used; whilst the range of structures de-
creases, the computation can become more efficient and certain properties of the structure
may become decidable.

One interesting approach was introduced by Khoussainov and Nerode who considered
structures whose domain and relations can be checked by finite automata as opposed to
Turing machines; such a structure is said to be “FA-presentable”. This was inspired,
in part, by the theory of “automatic groups” introduced by Epstein et al; however, the
definitions are somewhat different.

We will report on some recent results obtained in conjunction with Graham Oliver
and Andre Nies. In particular, we will survey some of what is known about the possible
structure of FA-presentable groups and rings.

Ashutosh Trivedi, University of Warwick
Average time games

An average time game is played on the infinite graph of configurations of a finite timed
automaton. The two players, Min and Max, construct an infinite run of the automaton by
taking turns to perform a timed transition. Player Min wants to minimize the average time
per transition and player Max wants to maximize it.

In this work the strategy improvement algorithm for average payoff games on finite
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graphs is generalized to solve average time games. A direct consequence is an elementary
proof of determinacy for average time games. This generalizes results of Asarin and Maler
for optimal time reachability games and it partially solves a problem posed by Bouyer et
al., to design an algorithm for solving average payoff games on priced timed automata.

Zheng Wang, University of Manchester
A component model for verified software

Component-Based Software Development (CBSD) is a promising approach for assem-
bling pre-existing software components into an integrated software system; this poten-
tially helps to achieve effective software reuse, easy software evolution a and low cost-
to-performance ratio. Software verification is a long-standing grand challenge. The aim
is to verify software correctness using theorem provers or model checkers. This task is
practically impossible for large software systems, for either technical or cost reasons, and
is currently not done except for small to medium-sized safety-critical applications. Our
research focuses on cross-fertilisation between these two areas: how to make the verifica-
tion task practically feasible by decomposing and devolving it to software components.

Cross-fertilising CBSD with software verification could offer a practical way to con-
struct verified software from pre-verified components. The central issue is how to design
a CBSD methodology that can reuse component proofs via composition operators and the
cornerstone of such CBSD methodology is its underlying software component model that
provides the semantic framework of components. In order to tackle this issue, we build a
software component model that defines the semantics and syntax of software components
and their composition. In our component model, components can be built, verified and
stored in a repository. Larger components can then be composed from these components
using composition operators that carry proof plans that reuse the existing proofs of the
components. Thus verification of large systems can be decomposed and devolved to the
components, i.e. it can be done by composing or reusing component proofs via proof
plans associated with the composition operators.

In this talk I give an overview of our component model and show how it helps to con-
struct verified software from pre-verified components, and demonstrate the feasibility of
our component model with an industrial case study: an automatic train protection system.

Taoyang Wu, Queen Mary, University of London
Fixed point free property isNP-complete

Considering a permutation groupG naturally acting on a finite setX, an elementg∈G is
calledfixed point freeif it doesn’t fix any point inX. A natural problem is whether there
is any fixed point free element for givenG andX. WhenG is input as a set of generators,
we show that the problem is NP-complete via reduction from 3-SAT problem. To this
end we also present another NP-complete problem: the solvability of a certain type of
incongruences.

This is joint work with Peter Cameron.

Yonghong Xiang, Durham University
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Fault-tolerant properties of k-ary n-cube

First, some introduction of fault-tolerant properties of interconnection networks will be
introduced. Then, our consideration of finding a longest fault free path in a faultyk-ary
n-cube with at most 2n−2 faults for even integerk andn≥3 will be given.

Hong Qing Yu, University of Leicester
Semantic web services composition via planning as model checking

The ability to automatically compose services is one essential aspect of service oriented
architecture. It can reduce time and cost in development and maintenance of complex
services and software systems. We are developing a technique to realize this aim by com-
bining the “planning as model checking” approach with semantic web service concepts.
We have modified a planning as model checking algorithm by using a bounded on-the-
fly depth-first search algorithm that its possible service execution plans are generated on
the fly. One of the challenges is to model a web service as a state transition system.
The approach will be suitable in the context of ontologies, but for now we are simply
using dictionaries for mapping operations and parameters. The planning as model check-
ing approach forms part of a larger framework to automatically compose services, which
addresses several drawbacks of current composition approaches.

Michele Zito, University of Liverpool
Lower bounds for dominating sets in web graphs

In this work we study the size of generalised dominating sets in graph processes that
model aspects of the World Wide Web. We show that graphs generated in this way have
fairly large dominating sets (i.e., linear in the size of the graph). Various results will be
described that enable us to prove increasingly good bounds. The proof techniques we
present may be applicable to the study of other combinatorial properties of web graphs.

This is joint work with Colin Cooper (King’s College London) and Ralf Klasing (Bor-
deaux).
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R  UC 2005

The Fourth International Conference on Unconventional Computation
3–7 October 2005, Seville, Spain

Ion Petre

The fourth meeting in the series of international conferences on Unconven-
tional Computation, UC 2005, was held in beautiful Seville, Spain, October 3-7,
2005. The conference was organized under the auspices of EATCS by the Cen-
ter for Discrete Mathematics and Theoretical Computer Science (Auckland, New
Zealand) and the Department of Computer Science and Artificial Intelligence of
the University of Seville, Spain. The organizing committee consisted of M. Cav-
aliere, C. Graciani Dìaz, M.A. Gutièrrez-Naranjo, A. Nepomuceno Fernàndez,
Gh. P̆aun, M.J. Pèrez-Jimènez (chair), F.J. Romero-Campero, A. Riscos-Nùñez,
A. Romero Jimènez, F. Sancho Caparrini, D. Sburlan, U. Speidel (registration,
Auckland, New Zealand).

The series of conferences on Unconventional Computationhttps://www.
cs.auckland.ac.nz/CDMTCS/conferences/uc/ is devoted to all aspects of
unconventional computation, theory as well as experiments and applications. Typ-
ical, but not exclusive, topics are: natural computing including quantum, cel-
lular, molecular, neural and evolutionary computing; chaos and dynamical sys-
tems based computing; and various proposals for computations that go beyond
the Turing model. The previous three UC conferences were held in Auckland,
New Zealand (1998), Brussels, Belgium (2000) and Kobe, Japan (2002).

The scientific program of the conference consisted of 5 invited lectures, 3 tu-
torials, and 18 contributed papers, covering as varied topics as genetic algorithms,
quantum computing, bio-inspired computing, nanotechnology, self-assembly, cel-
lular automata, optical computing, neurocomputing, and others.

The first invited talk was that of L. Grover on “Quantum searching amidst
uncertainty”, discussing classical and quantum algorithms for selecting a marked
entry from a database with most entries marked. The second invited talk was given
by T. Bäck on "Using genetic algorithms to evolve behavior in cellular automata",
covering both theoretical issues, as well as impressive applications in industry.

The third invited talk was given by S. Istrail on “Logic functions of the ge-
nomic cis-regulatory code", discussing several cis-regulatory processing functions
(with examples from sea urchin) viewed as logic operations. He discussed the
topic in more details also in his tutorial, with a special stress on the intertwining
of discrete and continuous mathematics in the modelling of cellular processes.

The fourth invited lecture was by C. Torras on “Natural inspiration for artifi-
cial adaptivity: Some neurocomputing experiences in robotics", discussing some
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very interesting experimental robotic systems and how their implementation was
influenced by biological paradigms. The last invited talk was by N. Seeman on
“Structural DNA nanotechnology: Molecular constructions and computations".
This was an especially inspiring talk for the computer science dominated audi-
ence. Seeman presented several of the major nano-scale constructs achieved in
his lab in the last two decades and implications of nanotechnology for computing.

Along with the tutorial by S. Istrail, UC 2005 was host to two other 2-hour tu-
torials. One was by I. Petre and G. Rozenberg on “Computing with living cells",
where the two speakers presented a survey of their research on the mathemati-
cal modelling of gene assembly in ciliates, including invariants, assembly power,
and gene patterns. The other tutorial was by G. Păun on “Elementary aspects of
membrane computing". This tutorial reviewed the main types of P-systems in-
vestigated so far, and it also discussed some promising research directions of the
P-community, including efforts on systems biology, more biology-driven features
in P-systems, and comparisons to other modelling frameworks, in particular am-
bients and brane calculus.

The most popular topic in UC 2005 was membrane computing. Good presen-
tations were given on issues ranging from simulators (C. Bonchis) and solving
numerical decision problems (A. Risco-Nuñèz) to population P-systems (M. Ghe-
orghe), model-checking (Dang et al), and computational efficiency (M.J. Pèrez
Jimènez). Quantum computing was also well represented with three good presen-
tations: A. Cabello on communication complexity, M. Nagy on the concept of a
universal computer, and T. Tusarova on a new complexity class.

Reflecting the broad scope of the area of unconventional computing, several
other research topics were discussed in papers accepted at UC 2005. Good presen-
tations were given on an optical model of computation (D. Woods), counterfactual
computing (P. Zuliani), autopoietic automata (J. Wiedermann), graph automata
(Tosic and Agha), pseudo-biliard systems (I. Potapov), firing squad synchrinisa-
tion problems (K. Kobayashi and also Umeo et al), amorphous computing (M.
Hagiya), cellular automata (Inokuchi et al), and self-assembly (N. Jonoska).

Our host at UC 2005, M.J. Pèrez-Jimènez, and his excellent team at the De-
partment of Computer Science and Artificial Intelligence, University of Seville,
organized a wonderful social program in which we could stroll through beautiful
Seville, but also sample the delights of Spanish cuisine. Our warmest thanks to
the whole organizing committee.

UC 2005 was a successful conference of high scientific level, very-well or-
ganized. The next UC meeting will take place on September 4-8, 2006, in York,
United Kingdom.
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R  OPODIS 2005

The 9th International Conference on Principles of Distributed Systems
12–14 December 2005, Pisa, Italy

Eric Ruppert

This conference was held from December 12 to 14, 2005 in Pisa, Italy, draw-
ing 52 attendees from across Europe, as well as Canada, Israel, Japan and the
United States. The conference was hosted by the Università di Pisa, with Giuseppe
Prencipe and Vincenzo Gervasi making the local arrangements. The conference
covered a wide range of topics in the theory, design and implementation of dis-
tributed systems. 30 papers were presented at the conference. These were chosen
from among 109 submissions from 30 countries by a 29-member programme com-
mittee, co-chaired by James Anderson and Roger Wattenhofer. The progamme
also included two invited talks, which reflected two special focusses of the con-
ference this year: wireless networks and real-time systems. Proceedings will be
published in Springer’s LNCS series.

The conference opened with an invited talk by David Peleg on autonomous
mobile robots. He spoke of the advantages of swarms of simple robots, each with
limited capabilities: they can be designed to be cheap, expendable and simple.
However, they require complex coordination in their movements to perform a task
cooperatively. This is a fairly new research area in distributed computing, since
earlier work focussed on centralized control, which may not be adequate for large
swarms. He spoke of the importance of choosing a model of computation for the
design of such algorithms that accurately captures reality.

The second keynote talk was given by Giorgio Buttazzo. He spoke about is-
sues related to real-time systems in mobile networks. For example, he described
how scheduling algorithms must be “energy-aware” if the components of the sys-
tem have limited power sources. One strategy is to use elastic scheduling of peri-
odic tasks, using a range of acceptable periods so that the task can be scheduled
at times when the system is not overloaded. More generally, one might accept
less precise computations during overload conditions. Another issue that he dis-
cussed was the scheduling of transmissions in radio networks to avoid collisions
that cause information to be lost.

To give an impression of the rest of the technical programme, I shall mention
a sample of some of the papers presented. (Although I only give the names of
the presenters, in most cases they were presenting work that they did jointly with
co-authors; please refer to the conference proceedings.)

Nir Shavit described an algorithm, which he presented as the missing link in
the evolution of distributed linked list implementations, which have progressed
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from “primaeval” coarse-grained locking, through fine-grained locking, all the
way to Maged Michael’s state-of-the-art algorithm. Prasad Jayanti gave an algo-
rithm that efficiently implements a collection of many load-link/store-conditional
objects from compare-and-swap primitives. Burkhard Englert introduced the no-
tion of memory-adaptivity as an analogue (for space complexity) to the idea of
adaptive algorithms which require that time complexity is bounded by a function
of contention in the system. In a memory-adaptive algorithm, the index of any
register accessed by the algorithm can be bounded by a function of the contention
in the system. Ling Cheung showed that randomized consensus can be done more
efficiently against an adversarial scheduler that is weaker than the ones that have
been studied traditionally.

James Aspnes presented self-stabilizing algorithms for the population proto-
col model, in which very simple agents move around and interact with one another
in an unpredictable order to collectively carry out a computation. Toshimitsu Ma-
suzawa gave a self-stabilizing link-colouring algorithm with the goal of fault con-
tainment: the distance that the effects of such errors can propagate through the
network is bounded.

Fabiano Sarracco discussed malicious black holes, which can suck in mobile
agents that wander too close. He described algorithms that can be used to search
for black holes that approximate the optimal number of exploratory steps, and
gave a lower bound on the achievable approximation ratio if local computation
must be done in polynomial time (assumingP , NP).

Sanjoy Baruah and Michele Cirenei both presented talks on scheduling jobs
which must be repeated periodically in a multiprocessor system. Björn Andersson
also considered a periodic scheduling problem, but for message transmissions in
a radio network, which has the constraint that transmissions must not collide.

Vincent Gramoli talked about how to reconfigure read/write quora in a dy-
namic network. Ittai Abraham gave a new dictionary data structure, called a skip
B-tree, that can be used in peer-to-peer systems. The data structure is the result of
combining ideas from B-trees and from skip graphs. Alex Shvartsman discussed
the node discovery problem: when the nodes in a network wish to cooperate on a
problem, they must first discover one another’s existence.

Héctor Tejeda gave some nice geometric constructions that can be used to
build a graph structure (e.g. for routing) in an ad hoc network if each process
on a plane knows its own coordinates. Mohamed Gouda proposed a model of
sensor networks with the goal of being both realistic and mathematically tractable
for verification. David Hay spoke about clock synchronization in wireless ad
hoc networks. In particular, he discussed how to balance two conflicting goals:
minimizing energy consumption and minimizing the difference between clocks.
The final talk of the conference, by Kevin Lillis, described how mobile nodes
could choose how much power to use while doing radio broadcasts: using too
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much is wasteful and causes unnecessary collisions, but using too little makes it
hard to communicate. In particular, he described how to do this when there are
bounded errors in available estimates of the distances between processes.

There were several social events at this well-organized conference. A recep-
tion (with live music) was held at Santa Croce in Fossabanda, a former convent
dating from the 14th century. Conference attendees went on an excursion to the
nearby walled city of Lucca for a walking tour of the historic sites. Afterwards,
many of us relaxed in the Caffè di Simo which was the former haunt of Lucca’s na-
tive son, Giacomo Puccini, and serves the richest hot chocolate I have ever tasted.
The excursion was followed by an excellent dinner at Villa Poschi. On their own
time, many attendees also explored the scenic city of Pisa, climbed the famous
Leaning Tower, and enjoyed Tuscan cuisine.

The next OPODIS conference is to be held in Saint-Emilion, near Bordeaux,
France from December 12 to 15, 2006. Details, including the call for papers are
available atwww.opodis.net.
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Abstract of PhD Thesis
Author: Maria J. Blesa
Title: Stability in Communication Networks

under Adversarial Models
Language: English

Supervisor: Prof. Maria J. Serna
Institute: Universitat Politècnica de Catalunya, Barcelona, Spain

Date: February 27, 2006

Abstract

The work of A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson
from 1996 [Universal stability results for greedy contention-resolution protocols,
FOCS:380-389 1996, and JACM, 48(1):39-69 2001], together with the immediate
continuation by the work of M. Andrews, B. Awerbuch, A. Fernández, J. Klein-
berg, T. Leighton, and Z. Liu [Adversarial queueing theory, STOC:376-385 1996,
and JACM, 48(1):13-38 2001] can be considered the starting point and basis of the
research conducted in this thesis. In their work, they proposed a model for study-
ing the dynamics of packet-switched networks under adversarial traffic providers.
This model was given the name of Adversarial Queueing Theory (AQT) and can
be considered a pioneering work in studying stability via worst-case analysis.

Before AQT appeared, the existing models were based on more traditional
queueing theory and used to make probabilistic assumptions on the traffic arrival
pattern. The AQT model replaced those more traditional assumptions by worst-
case inputs and approached the topic towards the traditional analysis of algorithms
and to more unpredictable network configurations and dynamics.

The AQT model has been mainly applied to the study and determination of the
conditions for assuring the stability in packet-switched communication networks.
Stability is the property that determines whether the amount of information in the
system is always bounded. Three main components are considered to define a
networking system: the network (working in a packet-switched mode), the adver-
sarial traffic provider (i.e., an adversary that injects traffic into the network), and
the protocols used to schedule the congested packets in the intermediate points of
the flow. Indirectly, stability is also referring to the limited size of the buffers at
hosts for storing in-route packets and, in many cases, implies the on-time delivery
of packets to their destination. A stronger notion studied is that of universal stabil-
ity both from the network and the protocol point of view. The universal stability
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of a network implies the stability of the system under every traffic provider and
every protocol. The universal stability of a protocol implies the stability of the
system under every network and traffic provider.

The aim of the research conducted in this thesis was to deepen the understand-
ing of the conditions for stability in packet-switched communications networks,
such as the Internet, under adversarial traffic service assumptions and to extend
the model, as much as possible, in order to cover additional features of nowadays
communication networks.

Not much results were available in the area when this thesis was started. The
first contributions of this thesis use the AQT model as proposed in those original
works. The property of universal stability of networks is fully characterised in
terms of forbidden subgraphs. Different characterisations are provided according
to different packet trajectory assumptions. The obtained characterisations allow
to decide the property in polynomial time. Apart from the importance of the
characterisation itself, these results helped on clarifying some confusion existing
in the initial literature about the packet trajectory.

The property of universal stability of some protocols was also studied in this
thesis. Interestingly enough, for some protocols the characterisation coincides
with the characterisation of universal stability in networks. This, apart from assur-
ing a polynomial time decidability, establishes a relation between both properties.

In order to study stability issues in more realistic scenarios, the original AQT
model is extended in this thesis to capture additional features existing in nowadays
networks. The new evolved models incorporate elements such as (i) prioritised
flows, (ii) faulty network topologies and (iii) asynchronous networks dynamics.

Concerning prioritised flows, some extensions of the AQT model are proposed
to deal with traffic in which the packets can have different priorities. Both, models
for static and variable priorities, are considered. When the priorities of the pack-
ets can vary, the adversary become very powerful and the systems tend easily to
instability under every greedy protocol. This should warn us about the possible
consequences of the loss of control over the priority of the traffic in the network.

Inspired by the growing importance of wireless mobile networks, where some
connections between nodes may fail or change quickly and unpredictably, adver-
sarial models for dynamic networks, in which the edges of the underlying graph
topology of the network can appear and disappear arbitrarily, are also proposed.
In the dynamic models we propose, the adversary controls not only the packet
arrivals, but also the link failures. Depending very much on which restrictions are
imposed on the adversary in producing failures, and on how the packets involved
in those failures are managed, the stability of the system is easier or harder to
assure. This is a very influential matter in the study of stability.

The research included in this thesis concludes with a significantly more gen-
eral adversarial model that includes specific technological features of nowadays
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networks, namely bandwidths, propagation delays and non-unitary packet sizes.
These features determine strongly the dynamics of the communication networks
we have nowadays. Additionally, the adversarial model proposed does not assume
anymore the inherent synchronism of the AQT model. This is also an important
feature to include in the forthcoming models, since the dynamics of real-life com-
munication networks are not synchronous. However, the results considering this
more general model do not differ significantly to those obtained with the origi-
nal AQT model. This brings up the question of how complex a model has to be
in order to capture the dynamics of real networking scenarios. Maybe, after all,
a relatively simple model is enough to describe the complex dynamics of some
communication networks.
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Abstract

SAT (SATisfiability of Boolean formula) and QSAT (SATisfiability of Quanti-
fied Boolean formula) are central problems in computer science. In this disserta-
tion we present a new algorithm for the QSAT problem. Our algorithm is based
on Zero-suppressed Binary Decision Diagrams (ZBDDs or ZDDs), splitting and
memoization (a technique which is based on memorization). It is comparable and
in some cases much faster than existing solutions.

A QBF is an expression of the form:Q1x1 . . .QnxnΦ (n ≥ 0), where every
Qi(1 ≤ i ≤ n) is a quantifier, either existential∃ or universal∀; The literals
x1 . . . xn are pairwise distinct atoms; andΦ is a propositional formula in CNF on
atomsx1 . . . xn. The QSAT problem is: Given a QBF formula, prove if is it True?

It can be shown that many scientific problems with numerous applications
can be reduced or formulated in the form of the above problem. Therefore any
progress in solving the QSAT problem, is a progress in solving a lot of important
problems.

Almost all existing QSAT solvers are based on an extended version of the
well known DPLL algorithm. The main efforts to improve the DPLL algorithm in
recent solvers consist of:

• Clever selection of the branching/splitting variable;

• Clever selection of the next branch to examine;

• Utilizing efficient data structures;

• Making profit from local search and learning.

We realized that ZDDs can represent Boolean formulas given in CNF (Conjunc-
tive Normal Form) efficiently. We also learned that the main drawback of the
basic DPLL-for-QBF algorithm is its duplication. These observations led us to
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use ZDD as the data structure holding the QBF formula and to embed memo-
ization to the named algorithm in order to avoid solving the same subproblem
repeatedly. We implemented our algorithm using CUDD (Colorado University
Decision Diagram) package. We called it ZQSAT.

First experimental results showed that ZQSAT is comparable with other im-
proved algorithms. Afterwards we developed and embedded a number of other
heuristics to improve our ZQSAT. Finally we showed by experiential results and
gave formal proofs to show how ZQSAT was comparable and sometimes much
faster than all other existing solutions in solving a set of benchmark problems
which are known to be hard for DPLL based QSAT solvers.

We also improved ZQSAT to let it accept QBFs in the form ofQ1x1 . . .QnxnΦ,
(prenex-NNF) whereΦ is a propositional formula in NNF(Negation Normal
Form). We showed and proved that this possibility may be exponentially
beneficial.

We may summarize our contribution as:

• Using ZDDs to represent the matrix of the QBF. We adopted this idea then
established the specific rules suitable for QBF evaluation.

• Embedding memoization to overcome the duplication problem of the
”DPLL for QBF algorithm” (to avoid solving the same subproblem repeat-
edly).

• Accepting Prenex-NNF in addition to Prenex-CNF formulas.

We can summarize what we learned from ZQSAT as follows:

• Representation of Boolean formulas by ZDDs is beneficial, since this data
structure allows compact representation of the formula and lets us store new
(sub)formulas with no or a few additional nodes.

• Embedding memoization to the ’DPLL for QBF’ algorithm lets us avoid
solving same subproblems repeatedly. Sometimes it was exponentially ben-
eficial. This idea is only feasible along with the above idea.

• Removing subsumed clauses was very useful in simplification of the for-
mula and as a result the speed of the search procedure.

• Transformation of a general Boolean formula into its equivalent NNF can
be done efficiently, but transformation of a general Boolean formula into its
equivalent in CNF can be done in exponential time. Therefore accepting
NNF formulas can be exponentially beneficial.
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Abstract

The crossing minimisation problem is of outmost importance in the field of graph
drawings. The aesthetical properties and readability of graphs are heavily depen-
dent on the number of crossings in a drawing. Moreover, crossing minimisation is
the most important goal in the linear Very Large Scale Integration (VLSI) circuit
design and Quantum-dot Cellular Automata (QCA), since smaller crossing num-
ber means lower cost. Another application is in bioinformatics computing. The
problem of computing an mRNA sequence of maximal codon-wise similarity to
a given mRNA (MRSO problem) is fixed parameter tractable parameterised by
the number of crossing edges of the implied structure graph of the source mRNA
sequence.

The simplest graph drawing method is that of putting the vertices of a graph
on a line and drawing the edges as half-circles onκ-half planes (pages). Such
drawings are calledκ-page book drawings. In a 1-page book draiwng, all edges
are placed on one side of the spine, and in a 2-page book drawing, all edges are
placed either above or below the spine. The minimal number of edge crossings
in a book drawing is called the book crossing number (BCN). To minimise the
BCN, the 1-page book crossing number problem (BCNP) is to find a good order
of vertices, and the 2-page BCNP is to further find a good edge distribution in two
pages. Both problems are NP-hard. Moreover, the 1-page and 2-page BCNs of
a graph provide an upper bound for the standard planar crossing number of the
graph. The main objectives were to develop various algorithms for the 1-page and
2-page BCNPs, and further to explore graph theory.

This thesis started with a survey of the previous research on the crossing num-
ber problem, especially on the 1-page and 2-page BCNPs. Based on the previous
research, the following work on the 1-page and 2-page BCNPs has been done:

(1) presented novel heuristic algorithms to solve the BCNPs, which achieved the
results better than or comparable with previous algorithms.
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(2) applied genetic algorithms for the BCNPs. The genetic models obtained better
results than the latest heuristic algorithms.

(3) created two neural network models for the 1-page and 2-page BCNPs, re-
spectively. The convergence of the neural network models was investigated
and good results are achieved. Especially, the model for the 2-page BCNP
achieved much better performance in the quality of solutions and running
time than previous model.

(4) investigated the complexity of parallel genetic algorithms, and unified the
framework of PGA models with the functionPGA(subpopulation size, clu−
ster size, migration period, topology).

(5) proved some theorems and presented some conjectures about the 1-page and
2-page crossing number for some structural graphs.
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Abstract

In this dissertation a non-deterministic lambda-calculus with call-by-need eval-
uation is treated. Call-by-need means that subexpressions are evaluated at most
once and only if their value must be known to compute the overall result. Also
called “sharing”, this technique is inevitable for an efficient implementation. In
the calculusλND of chapter 3 sharing is represented explicitely by alet-construct.
Above, the calculus has function application, lambda abstractions, sequential eval-
uation andpick for non-deterministic choice.

Non-deterministic lambda calculi play a major role as a theoretical founda-
tion for concurrent processes or side-effected I/O. In this work, non-determinism
additionally makes visible when sharing is broken. Based on the bisimulation
method a notion of equality is developed which respects sharing. Using bisimu-
lation to establish contextual equivalence requires substitutivity within contexts,
i.e., the ability to “replace equals by equals” within every program. This property
is called congruence or precongruence if it applies to a preorder.

The open similarity of chapter 4 represents a new concept, insofar that the
usual definition of a bisimulation is impossible in theλND-calculus. So in section
3.2 a further calculusλ≈ has to be defined. In section 3.3 the so-called Approxima-
tion Theorem is proved which states that the evaluation inλND andλ≈ agrees. The
foundation for the non-trivial precongruence proof is set out in chapter 2 where
the trailblazing method of Howe is extended to be capable with sharing. By the
use of this (extended) method, the Precongruence Theorem proves open similarity
to be a precongruence, involving the so-called precongruence candidate relation.

Joined with the Approximation Theorem we obtain the Main Theorem which
says that the open similarity of theλ≈ is contained within the contextual preorder
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of theλND-calculus. However, this inclusion is strict, a property whose non-trivial
proof involves the notion of syntactic continuity. Finally, chapter 6 discusses pos-
sible extensions of the base calculus such as recursive bindings or case and con-
structors. As a fundamental study the calculus lambda-ND provides neither of
these concepts, since it was intentionally designed to keep the proofs as simple as
possible. Section 6.1 illustrates that the addition case and constructors could be
accomplished without big hurdles. Since recursive bindings cannot be represented
simply byY, further investigations are necessary.
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.

Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
a Treasurer and a Secretary. Policy guidelines are determined by the Council and the General
Assembly of EATCS. This assembly is scheduled to take place during the annualInternational
Colloquium onAutomata,Languages andProgramming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;

- Publication of the “Bulletin of the EATCS;”

- Publication of the “EATCS Monographs” and “EATCS Texts;”

- Publication of the journal “Theoretical Computer Science.”

Other activities of EATCS include the sponsorship or the cooperation in the organization of various
more specialized meetings in theoretical computer science. Among such meetings are: TAPSOFT
(Conference on Theory and Practice of Software Development), STACS (Symposium on Theo-
retical Aspects of Computer Science), MFCS (Mathematical Foundations of Computer Science),
LICS (Logic in Computer Science), ESA (European Symposium on Algorithms), Conference on
Structure in Complexity Theory, SPAA (Symposium on Parallel Algorithms and Architectures),
Workshop on Graph Theoretic Concepts in Computer Science, International Conference on Ap-
plication and Theory of Petri Nets, International Conference on Database Theory, Workshop on
Graph Grammars and their Applications in Computer Science.

Benefits offered by EATCS include:

- Subscription to the “Bulletin of the EATCS;”

- Reduced registration fees at various conferences;

- Reciprocity agreements with other organizations;

- 25% discount when purchasing ICALP proceedings;

- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”

- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”

- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and now
customarily taking place during the second or third week of July.

Typical topics discussed during recent ICALP conferences are: computability, automata theory,
formal language theory, analysis of algorithms, computational complexity, mathematical aspects
of programming language definition, logic and semantics of programming languages, founda-
tions of logic programming, theorem proving, software specification, computational geometry,
data types and data structures, theory of data bases and knowledge based systems, cryptography,
VLSI structures, parallel and distributed computing, models of concurrency and robotics.
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S  ICALP :

- Paris, France 1972 - Warwick, Great Britain 1990
- Saarbrücken, Germany 1974 - Madrid, Spain 1991
- Edinburgh, Great Britain 1976 - Wien, Austria 1992
- Turku, Finland 1977 - Lund, Sweden 1993
- Udine, Italy 1978 - Jerusalem, Israel 1994
- Graz, Austria 1979 - Szeged, Hungary 1995
- Noordwijkerhout, The Netherlands 1980 - Paderborn, Germany 1996
- Haifa, Israel 1981 - Bologne, Italy 1997
- Aarhus, Denmark 1982 - Aalborg, Denmark 1998
- Barcelona, Spain 1983 - Prague, Czech Republic 1999
- Antwerp, Belgium 1984 - Genève, Switzerland 2000
- Nafplion, Greece 1985 - Heraklion, Greece 2001
- Rennes, France 1986 - Malaga, Spain 2002
- Karlsruhe, Germany 1987 - Eindhoven, The Netherlands 2003
- Tampere, Finland 1988 - Turku, Finland 2004
- Stresa, Italy 1989 - Lisabon, Portugal 2005

- Venezia, Italy 2006

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium forrapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D.Theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated athttp://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email atbulletin@eatcs.org.

(3) EATCS MONOGRAPHS AND TEXTS

This is a series of monographs published by Springer-Verlag and launched during ICALP 1984;
more than 50 volumes appears. The series includes monographs in all areas of theoretical com-
puter science, such as the areas considered for ICALPs. Books published in this series present
original research or material of interest to the research community and graduate students. Each
volume is normally a uniform monograph rather than a compendium of articles. The series also
contains high-level presentations of special topics. Nevertheless, as research and teaching usually
go hand in hand, these volumes may still be useful as textbooks, too. Texts published in this series
are intended mostly for the graduate level. Typically, an undergraduate background in computer
science is assumed. However, the background required may vary from topic to topic, and some
books may be self-contained. The texts cover both modern and classical areas with an innovative
approach that may give them additional value as monographs. Most books in this series will have
examples and exercises. Updated information about the series can be obtained from the publisher.
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The editors of the series are W. Brauer (Munich), G. Rozenberg (Leiden), and A. Salomaa (Turku).
Potential authors should contact one of the editors. The advisory board consists of G. Ausiello
(Rome), M. Broy (Munich), C.S. Calude (Auckland), A. Condon (Vancouver), D. Harel (Rehovot),
J. Hartmanis (Cornell), T. Henzinger (Lausanne), N. Jones (Copenhagen), T. Leighton (MIT),
M. Nivat (Paris), C. Papadimitriou (Athens and San Diego), and D. Scott (Pittsburgh).

EATCS Monographs and Texts is a very important EATCS activity and its success depends largely
on our members. If you are a potential author or know one please contact one of the editors.

EATCS members can purchase books from the series with 25% discount. Order should be sent to:
Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

(4) THEORETICAL COMPUTER SCIENCE

The journalTheoretical Computer Science, founded in 1975, is published by Elsevier Science
Publishers, Amsterdam, currently in 20 volumes (40 issues) a year. Its contents are mathematical
and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim
is to understand the nature of computation and, as a consequence of this understanding, provide
more efficient methodologies.

All kinds of papers, introducing or studying mathematical, logical and formal concepts and meth-
ods are welcome, provided that their motivation is clearly drawn from the field of computing.

Papers published inTCSare grouped in three sections according to their nature. One section, “Al-
gorithms, automata, complexity and games,” is devoted to the study of algorithms and their com-
plexity using analytical, combinatorial or probabilistic methods. It includes the fields of abstract
complexity (i.e., all the results about the hierarchies that can be defined using Turing machines), of
automata and language theory (including automata on infinite words and infinitary languages), of
geometrical (graphic) applications and of system performance using statistical models. A subsec-
tion is the Mathematical Games Section, which is devoted to the mathematical and computational
analysis of games. The second section, “Logic, semantics and theory of programming,” is devoted
to formal methods to check properties of programs or implement formally described languages;
it contains all papers dealing with semantics of sequential and parallel programming languages.
All formal methods treating these problems are published in this section, including rewriting tech-
niques, abstract data types, automatic theorem proving, calculi such as SCP or CCS, Petri nets,
new logic calculi and developments in categorical methods. The newly introduced third section is
devoted to theoretical aspects of “Natural Computing.”

The Editors-in-Chief of “Theoretical Computer Science” are:
G. Ausiello, Università di Roma ‘La Sapienza’, Dip. Inform. e Sistemistica,

via Salaria 113, 00198 Roma, Italy;

D. Sannella, University of Edinburgh, Lab. for Foundations of Computer Science,
Division of Informatics, King’s Building, Mayfield Road, Edinburgh, EH9 3JZ, UK

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

M.W. Mislove, Tulane University, Dept. of Mathematics, New Orleans, LA 70118, USA.
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ADDITIONAL INFORMATION

For further information please visithttp://www.eatcs.org, or contact the Secretary of EATCS:
Prof. Dr. Branislav Rovan, Department of Computer Science, Comenius University,
SK-84248 Bratislava, Slovakia, Email: secretary@eatcs.org

EATCS MEMBERSHIP

DUES

The dues aree30 for a period of one year. A new membership starts upon registration of the
payment. Memberships can always be prolonged for one or more years.

In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS fore25 per year. Additionale25 fee is required for ensuring theair mail
delivery of the EATCS Bulletin outside Europe.

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
sitewww.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, a subscription form can be downloaded fromwww.eatcs.org to
be filled and sent together with the annual dues (or a multiple thereof, if membership for multiple
years is required) to theTreasurer of EATCS:

Prof. Dr. Dirk Janssens, University of Antwerp, Dept. of Math. and Computer Science
Middelheimlaan 1, B-2020 Antwerpen, Belgium
Email: treasurer@eatcs.org, Tel: +32 3 2653904, Fax: +32 3 2653777

The dues can be paid (in order of preference) by VISA or EUROCARD/MASTERCARD credit
card, by cheques, or convertible currency cash. Transfers of larger amounts may be made via the
following bank account. Please, adde5 per transfer to cover bank charges, and send the necessary
information (reason for the payment, name and address) to the treasurer.

Fortis Bank, Bist 156, B-2610 Wilrijk, Belgium
Account number: 220–0596350–30–01130
IBAN code: BE 15 2200 5963 5030, SWIFT code: GEBABE BB 18A
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