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Abstract—This paper introduces an accurate and high speed 

pose tracking method for mobile robots based on matching of 
extracted features from consecutive scans. The feature extraction 
algorithm proposed in this paper uses a global information of the 
whole scan data and local information around feature points. 
Uncertainty of each feature is represented using covariance 
matrices determined due to observation and quantization error. 
Taking into account each feature's uncertainty in pose shift 
calculation leads to an accurate estimation of robot pose. 
Experiments with low range URG_X002 laser range scanner 
illustrate the effectiveness of the proposed method for mobile 
robot localization. 
 

Index Terms—autonomous mobile robot, localization, laser 
scan matching, feature uncertainty 

I. INTRODUCTION 
AST and accurate localization algorithm is one of the most 
important requirements in mobile robotics. Consequently, 

the subjects of localization and mapping have justifiably 
received considerable attention in the last 15 years, [1-4]. 
Standard methods often use odometric sensors for relative 
localization which is also known as dead reckoning. It is well 
known that the errors due to dead reckoning are accumulating 
over time, and one possible method to assist with localization 
is to use two-dimensional range finders such as laser range 
finders (LRF) [5], or ring of ultrasonic range sensors [6]. 
However, using laser range finders is more accurate compared 
to ultrasonic range sensors. 

Usually, two consecutive laser scans are matched to obtain 
an estimate of the relative displacement of the robot. Scan 
matching algorithms can be categorized based on their 
association method, i.e. point to point or feature to feature. In 
point-wise scan matching algorithms, which are implemented 
in many cases to solve the matching problem, usually two 
scans are compared directly. Different routines are developed  
to use point to point matching approaches such as  the 
iterative closet point (ICP), iterative matching range point 
(IMPR) [7], and the popular iterative dual correspondence 
(IDC) [7]. Pfister et al. proposed recently an interesting new 
approach to point-wise scan matching [8]. This algorithm 
weights the contribution of each scan point to the overall 
matching error according to its uncertainty. Although their 
implementation results are impressive, its main drawback is its 
high computation cost. Moreover, in matching algorithms it is 

assumed that corresponding points of two scans captured from 
two different poses of robot are successfully matched. This 
assumption is generally not true and especially in a point-wise 
scan matching algorithm, this is an optimistic assumption. 
SLIP method [9] uses a probabilistic distance metric to robust 
rejection of outliers and establishes point-wise 
correspondences. Metric-based ICP (MbICP) [10] presents a 
metric-based matching algorithm by point-wise matching 
dense range scans. It uses geometric distance that takes into 
account the translation and rotation of a robot simultaneously. 
Histogram based approaches, e.g. [11], use a special 
representation of the scanned data for matching of two 
consecutive scans. These algorithms are not robust with 
respect to the sensor noise and they require high computation 
cost. Some other approaches are also proposed for matching 
which utilize either active or passive artificial landmarks [12]. 

Above mentioned algorithms are subjected to high 
computation cost and imprecision, particularly in case of self-
localization for high speed robot in large environments. Due 
to  the iterative calculations required to obtain optimal scan 
matching in these algorithms, computational complexity are 
high, and in order of O(nk), in which k >1 and n is the number 
of scan points. In point-wise approaches, n is approximately 
two orders of magnitude more than that of feature-based 
methods. 

Recently Lingemann et al. [13] proposed a promising 
algorithm (HAYAI) to solve self-localization problem of high 
speed robots.  Although this method is a fast and feature based 
method for scan matching, it suffers from the lack of 
satisfying robustness property of feature extraction and it is 
well-suited for high range sensors. In this paper the idea of 
this approach is borrowed for the scan matching and similar 
arguments are given regarding the computation cost and 
precision of feature based scan matching. However, by 
introducing appropriate algorithm for extracting features, and 
modeling existence features' uncertainty, the robustness of the 
method is improved significantly, even for low range sensors. 
The main idea behind the proposed algorithm in this paper is 
to address the issue of feature matching extracted from two 
consecutive scans, such that they can be integrated based on 
their covariance, in order to form accurate displacement 
estimation. Analyzing different sources of errors which affect 
displacement estimation process, appropriate uncertainty 
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models is developed for each feature extracted from the scan. 
Incorporating these models in displacement estimation, results 
in more accurate estimations. This paper is organized as 
follows: section 2 describes the feature extraction and 
matching algorithms in detail. Section 3 aims to calculate 
optimal pose shift of robot between two consecutive scans 
using matched feature pairs and their covariance. Section 4 
demonstrates the experimental results and the concluding 
results are given in last section. 

II. FEATURE EXTRACTION AND MATCHING 
Some techniques of data analysis are applied to the scan S, 

provided by the scanner, in order to extract features from the 
scan. Desired features are divided into two types: features 
corresponding to the jump-edges and those corresponding to 
the corners detected in the scan. Formal notation for the scan S 
is given by: 

( ) 1,...,
, i

i ii n
i

x
S p p

y=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

In order to detect jump-edges in scan , scan points are 
divided into some clusters consisting of consecutive scan 
points in their natural order. As a result, every cluster features 
a dedicated start point (p

S

i) and an end point (pj), in which, i 
and j are indices of points in whole scan S, and also i j< . 
Therefore, k’th cluster is defined by: 

{ },k m mc p p S i m j= ∈ ≤ ≤  

Clustering procedure is as following: 
1 1p c∈  and for all points 

in scan like  the distance ip ( 1,..., )i = n 1i id p p+= − i
 is 
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In which, dth is the maximum distance between two 
consecutive points within a cluster. The start and end point of 
each cluster are good candidates for being a feature. On the 
other hand all features have to be invariant with respect to 
robot’s displacement. Thus, only invariant points are reliable 
for being selected as a feature and thus must be chosen. There 
are two cases in which one can see variation in end-cluster 
features: 

Case 1) Clusters correlated to objects partially occluded by the 
other object. The start or the end point of a cluster, which is 
established by occlusion, is a growing (variant) point with 
respect to robot's displacement, and is not a good feature as 
illustrated in Fig 1. Therefore, the feature selection can be 
found by the following routine, given pi the start or end point 
of cluster ck, 

1 1

1 1

if and and is start of isnotafeature

if and and is end of  isnotafeature
otherwise isafeature

i i th i i i k i

i i th i i i k i

i
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θ θ θ

θ θ θ
− −

+ +

− < > ⇒

− < > ⇒

⇒
Where ( )1tan /i i i i iy x and r x yθ −= = 2 2

i+  represent pi in 

polar coordinates. According to the above conditions, if the 

angle difference between two clusters is more than c thθ , no 
occlusion has happened. thcθ  is often equal to the sensor’s 
angular resolution. 

 
 Fig. 1. Lines in black represent the environment, blue and red lines are the 
acquired scans from pose i and j, respectively. Upper feature is varying 
with respect to robot’s displacement, but the other feature is an invariant 
one. 

Case 2) When the start or the end of a cluster established due 
to sensors low range and not to a real feature in the 
environment. As illustrated in Fig. 2 low range sensors are 
subjected to this problem more than high range sensors. So if  
pi is the start or end of a cluster one can say: 

if     is not a feature
otherwise        isa feature

i s i

i

r cr p
p

>
 

In which rs is the maximum range of laser scanner sensor. 
0.9c =  can be a reasonable value. 

Second class of features corresponds to the corners within 
the clusters. In [13] filters with small lengths are introduced to 
operate on the sequence of distance values (ri) of points in the 
scan. Because of their small length, this method suffers from 
the lack of global sight on the scan data and some global 
information is missed. For example it may choose some 
features on flat walls due to scan noise. Therefore, in this 
paper it is proposed that for detecting corner features, at first a 
line fitting algorithm is applied as a global filter. In the 
literature several approaches are developed to solve the 
problem of extracting line segments from a sequence of 
points, with different speed and accuracy. Reference [14] has 
compared the state-of-art methods for line extracting, and 

reported that for real-time applications, split-and-merge 

 
Fig. 2. End cluster feature, established due to sensor low range, is variant 

with respect to robot’s displacement. 
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algorithm is the best choice by its fair correctness and superior 
speed. Thus, split-and-merge algorithm is used in here for line 
fitting within each cluster. Due to the primary clustering, 
merging stage is often not required, and if required it is very 
fast.  

The parameter tuple specifying a line reads as: 
, where, , ,q q q ql n lenα⎡= ⎣ ⎤⎦ qα is the angle between line and  

axis;  is the number of associated scan points in line , and 

is the length of . If intersection of two successive lines, 

and , satisfies two following conditions, , which is 

the end point of l , is introduced as a candidate corner feature. 

x

qn ql

qlen ql

ql 1+ql ccp

q

1 qq
Condition1) | |αα −+

 exceeds the minimum threshold thαΔ . 

Condition2) For both l  and l , either len  or . 
q 1+q thq len>

n +

thnn >

thlen  is the minimum acceptable length and n  is the 
minimum acceptable number of points of lines intersected at 
this corner. may be not the exact corner point. Thus, using 
local information around , the following algorithm tries to 
find the nearest point to exact corner feature. 

th

ccp

ccp

First, two points and  are selected which 

have distance r  to  (see figure 3).  is proportional to 
 and le .  and  are connected by a straight line 

and for all scan points, , lying between  and , 

i qp l∈ 1j qp l +∈

ccp r

qlen 1q ip jp

mp ip jp

jmi << , distance  to this line is calculated. The scan 

point, produces the maximum distance, is named . If 

, procedure is terminated and  is selected as a 

corner feature. If , then , 

md ,⊥

2ccp

cccc pp =
2 ccp

2cc ccp p≠
2cc ccp p= r  is decreased 

and the above procedure is recursively called until 
cccc pp =

2
. 

Finally, each corner feature is specified by [ , ,cc pre nextp ]α α , 

in which  is the feature point in scan and cc  is its index in 
the whole scan. 

ccp

preα  and nextα  are angles of two consecutive 

lines established this corner. Moreover, each start(end)-cluster 
feature is specified by point  of scan and 

ccp )( nextpre αα  which 

is the angle of line connecting to that. 
After extracting features from two consecutive scans, 

matching algorithm, based on a dissimilarity function, has to 
be calculated. Owing to the fact that features’ topology can 
not change fundamentally from one scan to the other, below 
dissimilarity function between ip and ip ′ , two features from 
two consecutive scans, is introduced as: 

2
( , )i j i jd p p p p B′ ′= − +  

 
Fig. 3. Blue dots represent a part of scan around pcc. pi and pj are scan 
points, which have distance r from pcc and pcc1 is the point produces the 
maximum perpendicular distance from the line connecting pi to pj. 

If 
i jnext nextα α′−  or 

ipre preα α′−
j

 (which one exists) exceeds 

a maximum threshold, the  and  are not matched, and B  

becomes infinity, otherwise . 
ip jp ′

0=B
After dissimilarity matrix is constructed, at each step the 

minimum value element of this matrix is chosen, its 
corresponding row and column are omitted and correlated 
features are matched, until all rows and columns of 
dissimilarity matrix are omitted or the minimum value of 
elements exceeds a maximum matching distance. 

III. POSE SHIFT CALCULATION 
This section aims to find proper uncertainty model for each 

of extracted features. Uncertainty of each feature has two 
major causes, rooted in physical properties of laser range 
finder: measurement process noise and quantized nature of 
rays' angles. First phenomenon that affects range sensing is 
measurement process noise in each scan point, ip S∈ , which 
is calculated as follows: 
                                     e p

nob i ip−                                   (1) =

in which,                  ( ) cos( )
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ni
p  is a noisy measurement of point pi.  is a zero mean 

Gaussian noise with small standard deviation, represents the 
i'th direction's angle uncertainty. e is a noise added to true 

range of . It comprises of two terms, 

θe

ir

ip bare iri
+= , in which 

 is the measured range of ,  is a zero mean Gaussian 
random variable and  is the representation of a bias noise 
exists in range measurement process, which modeled by an 
additive Gaussian noise with mean value equals to . These 
values can be obtained by statistical analysis of measurement 
data. Approximating  ,

ir ip a

b

0b

1)cos( =θe θθ ee =)sin(, 0≈reeθ  yields: 
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Second source of error in considering a scan point as a 
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feature, is a quantized nature of laser scanner rays' angles. 
This issue causes that the point pi, considered as a feature 
point, not necessarily be the same physical feature in the 
environment. Particularly, when incidence angle between laser 
scanner's i'th ray and surface of object related to pi is near to 
zero or 180 degrees, this error is much considerable. 

Quantization error for start(end)-cluster features is collinear 
with the boundary tangent of the object [8], on which pi is 
selected (see fig. 4). 

teq μ=                                                                                 (4) 

In which  is a unit vector collinear with fitted line to scan 
points around  and 

t

ip μ  is a random variable represents 
quantization error's quantity. For an end-cluster feature, 

[ ]cos( ) sin( ) Tt γ γ=  and for a start cluster feature, 

[ ]cos( ) sin( ) Tt γ γ= − , where: 

 .                    (5) ( )atan 2 ,y y x x
e s e sp p p pγ = − −

[ ]x y
s s sp p p=  and [ ]x y

e e ep p p=  are leading and ending 
points of the  fitted line around . Thus if  is the true 
position of the k'th feature in the environment in robot's 
coordinate and  is the selected point of the scan as the end 
of a cluster, we have:  

ip kf

ip

ii qobik eepf ++=                  (6) 

Accounting for the fact that the expected value of the 
modeled errors are nonzero, considered position for the k'th 
feature, , should differ from pkp̂ i

ˆ ( ) ( ) ( )k k i ob qf E f p E e E e= = + +                                       (7) 
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Figure 4 illustrates that q is the maximum value of 
d μ  and 

can be calculated by the formula:  

1

sin( )
sin( )d i

i

q rβ
α +

=                                                                   (9) 

In which β  is the separation angle of the laser scanner's rays 
and 1+iα  is the incidence angle between fitted line to scan 
points at  and (i+1)'th ray of LRF. Due to the unknown 
shape of objects in the environment, it is reasonable to assume 
that 

ip

μ  is a random variable with uniform distribution, so:  

 
Fig. 4. is an end-cluster point, and is a real feature in the environment. ip kf

1iα +
 is the incidence angle between ray i  and direction of wall, on which 

 lies. 
1

( ) ( ) ( )
2

id
q i i

q
iE e E t E t tμ μ= = =                                   (10) 

 After considering 
k̂f as the k'th feature, its error covariance 

should be calculated as: 
 ˆ
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Assuming that 
iobe~ and

iqe~ are independent: 
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Again assuming that  ,  and b  are independent equation8 
results into,  
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in which, θσ  is the standard deviation of the theta 
measurement noise, aσ that for the range measurement noise, 
and bσ  is the bias standard deviation. The covariance of the 
quantization error can be calculated as follows:  
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Using feature measurements and their corresponding 

covariance, the algorithm aims to calculate robot's 
displacement between scans. Displacement considered here, is 
composed of a translation, T, followed by a rotation, R. To 
find optimal T and R, the following error function should be 
minimized [16]. 
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ˆ pre
kf  and ˆ new

kf  are the k'th pair of matched features and m is the 

number of such pairs. 
k̂f

C
Δ

represents the amount of error that 

uncertainty of innovation vector, ˆ ˆ(new pre
k k )f Rf T− + , imposes 

to the pose shift calculation. Assuming that errors in two 
different scans are independent, we have, 
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Fig. 5. Extracted features from scan number 74. Ellipsoids in magenta 
represent the measurement covariance (OUE) of each feature and cyan 
ellipsoids (WUE) related to whole covariance of each feature. 

( ) ( )
k̂

T
ob q ob qf

C Cov e e RCov e e R
Δ

′ ′= + + +                (17) 

By substitution of Eq. 17 into Eq. 16 we reach to an error 
function that should be minimized. Sequential quadratic 
programming (SQP) method is used to solve the above 
nonlinear optimization. Since in feature-based approach the 
number of points taken into account in optimization procedure 
is often reduced to 0.01 of number of points used in point 
based approach, SQP method produces an accurate solution 
for R and T in a small portion of the computing time. 

IV. EXPERIMENTS 
Proposed method was implemented on the Melon robot, 

which is equipped with a Hokuyo URG_X002 Laser range 
scanner. The maximum measurable distance of this scanner is 
4095mm. It's angular resolution per step is (180/512)=0.3515 
degrees. Noise/maximum-range ratio in these laser scanners, 
are considerably more than high range sensors. In the 
experiments the following values are used by statistical 
analysis of measurement data: , 35 10aσ

−= × 1b mmσ =  and 
. All reported graphs are scaled in centimeters. 

 

310 degreeθσ
−=

   Fig. 5 shows the extracted features of 74th scan along with 
corresponding ellipsoids. The ellipsoids are illustrated by a 
scaling factor of 10, indicating the 99 percent confidence 
region of each feature’s covariance. There are two ellipsoids 
calculated in each scan for every feature, which are illustrated 
in two colors. The observation uncertainty ellipsoid (OUE) 
represents the measurement noise covariance of each feature, 
while the whole uncertainty ellipsoid (WUE) represents the 
whole covariance of the feature, consisting of the observation 
and quantization errors. The relative size of these ellipsoids 
reveals the contribution of the different sources of errors in 
the pose shift estimation. As it is seen in this figure the 
extracted features correspond to the real features in the 
environment. The growing start(end)-cluster points are 
effectively excluded from the selected features, and no 
features on flat walls are selected.  Matching of the extracted 

features from scan numbers 74 and 75 is shown in Fig. 6. As it 
is shown in this figure, the extracted features, which are 
shown by stars, are well matched and related to each other 
with connecting lines.  

Figure 7 shows the map constructed by superimposing 193 
scans gagged during drive in an L shape corridor of our lab. It 
should be mentioned that the only sensor used for localization 
is laser range scanner and none of the map improving 
algorithms such as global relaxation [16] is considered in this 
experiment. For the sake of comparison, we also implemented 
the HAYAI method and the same map produced with this 
method. Due to feature extraction and matching methods in 
HAYAI, this method uses some filters. In the case of high 
length filters, information relative to the details in scan is 
omitted, so only if there are features correspond to big jump-
edges or features correspond to sharp corners with high length 
lines in the scan, it has a chance to choose appropriate 
features. However, even in the presence of such features, due 
to high length filtering, position of scan points varies and error 
between selected point as feature and exact position of feature 
and features’ uncertainty will increase. After all, in low range 
LRFs probability of such features’ existence is considerably 
low. Therefore, small length filters should be used, (which is 
the case in [13]) but this case suffers from the lack of robust 
feature extraction and inaccurate localization in noisy scans. 
Besides, weakness of this method to block variant features, 
and discrimination between effects of features with high and 
low uncertainty in localization are other reason for the 
inaccuracy. 

 
Fig. 4. Melon, the mobile robot equipped with low range laser scanner

As it is shown in figure 7, although there are small details 
in the environment, map is relatively well extracted by the 
proposed method. This is mainly due to the structure of the 
proposed method, in which basically no data reduction 
filtering is used, and therefore, the small size walls are well 
extracted in the map. In addition, omitting variant features and 
optimally incorporating features regarding their uncertainty 
lead to accurate superimposing raw scans data. The cost of the 
significant improvement in the accuracy is mainly the relative 
computation time.  On a 1.1 GHZ processor, Processing 193 
scans by our method needed 5.67 seconds which is 
approximately five times of that for HAYAI procedure. 
However, the amount of time required is still much lower 
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compared to that of histogram based or point-based method 
(like IDC) and the algorithm is fast enough for real-time 
localization in high speed robots. A comparison between 
HAYAI and other algorithms speed is reported in [13]. 

V. CONCLUSIONS 
This paper describes a feature based matching algorithm in 
which features are incorporated in robot pose calculation, 
based on their uncertainty. Total uncertainty of each 
individual feature is represented by calculating the 
observation and quantization covariance. Optimal pose 
displacement estimation is calculated by minimizing the 
objective function derived from maximum likelihood concept. 
The feature extraction algorithm proposed in this paper uses a 
global filtering of the data, using a line fitting algorithm, in 
which a split-and-merge method is used. In order to accurately 
estimate the features, local information is used after global 
filtering stage. Matching of the features for consecutive scans 
is accomplished by analyzing the parameters specify each 
feature. The method is implemented on a mobile robot 
equipped with small range URG_X002 laser range scanner, 
and the experimental results verifies the effectiveness of the 
proposed method in feature extraction,  mapping, and robot 
localization.  
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Fig. 6. Reference scan is shown by '•' and the new scan is shown by '+'. 
Matched features are specified by red stars and connected to each other. 
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