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Abstract—This letter addresses the automatic detection of ur-
ban area in remotely sensed images. As manual administration
is time consuming and unfeasible, researchers have to focus on
automated processing techniques, which can handle various image
characteristics and huge amount of data. The applied method
extracts feature points in the first step, which is followed by the
construction of a voting map to represent urban areas. Finally, an
adaptive decision making is performed to find urban areas. This
letter presents methodological contributions in two key issues to
the algorithm: 1) An automatically extracted Harris-based feature
point set is introduced for the first step, which is able to represent
urban areas more precisely. 2) An improved orientation-sensitive
voting technique is proposed, exploiting the orientation informa-
tion calculated in the local neighborhood of points. Evaluation
results show that the proposed contributions increase the detection
accuracy of urban areas.

Index Terms—Aerial images, modified Harris detector, orienta-
tion sensitivity, spatial voting, urban-area detection.

I. INTRODUCTION

THE automatic detection of urban areas in optical aerial
images means a great support in urban development anal-

ysis, map updating, and disaster management, and also helps
municipalities in long-term residential area planning. Unfortu-
nately, the images may cover large areas, and they can be taken
in altering weather and illumination conditions, causing very
different image features. Moreover, as urban areas are usually
dynamically changing, continuous administration is required
to have up-to-date information. Since manual administration
is time consuming and unfeasible, researchers have to focus
on automated processing techniques, which can handle various
image characteristics and huge amount of data.

A wide range of automatic urban (a.k.a. built-in) area detec-
tion techniques have been introduced in recent years. The first
group of such methods needs specific training data to detect
urban areas, such as [1], using a differential morphological
profile to record structural image information then applied
feature extraction and neural network for classifying the fea-
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tures, and [2], presenting a multiple conditional random-field
ensemble model to incorporate multiple features and learn their
contextual information.

Our letter followed another methodology, i.e., to construct
a direct method that does not need any training data for
urban-area extraction. Martinez-Fonte et al. [3] showed that
corner detectors (Harris [4] and SUSAN [5]) are efficient
tools for distinguishing different types of structures (manmade
versus natural structures) present in the image. Since then,
other works also applied interest point detectors for urban-
area detection; [6] used scale-invariant feature transform (SIFT)
integrated with graph theory. The results were promising, but
the computational complexity and time were quite significant.
To reduce computational requirements, the same authors intro-
duced a novel technique using Gabor feature points and spatial
voting [7].

In this letter, we first introduce a new automatically extracted
feature point set, which is called Modified Harris for Edges and
Corners (MHEC) for urban-area detection, which was applied
for effective object contour detection in our earlier work [8].
As the density of extracted feature points is higher in the
residential areas [3], building a probability map based on this
feature point set can identify urban areas. After having a local
feature point set, we apply the voting matrix strategy of [7]
to get a probability map of the urban area. To improve the
accuracy of this step, we also propose a novel orientation-
sensitive technique for constructing the voting matrix. Finally,
urban areas are calculated by a decision making step. Fig. 1
shows the main algorithmic steps of the method. In the ex-
perimental part, we will show that the introduced method is
able to outperform other interest point detectors; moreover,
the proposed orientation-sensitive voting matrix is also able to
improve the performance of the previously introduced Gabor-
based algorithm [7].

II. MODIFIED HARRIS FOR EDGES AND CORNERS

We introduce a novel MHEC feature point set for urban-
area detection, which is based on the Harris corner detector [4]
but adopts a modified characteristic function. The advantage of
the improved detector is that it is automatic and it is able to
recognize not just corners but edges as well. Therefore, it gives
an efficient tool for characterizing contour-rich regions, such
as urban areas. The improved characteristic function was also
successfully applied earlier for object contour recognition with
parametric active contour algorithms [8].

By considering the behavior of the Harris matrix and its
eigenvalues (denoted by λ1 and λ2), we proposed the following
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Fig. 1. Simplified diagram of the workflow.

modification of the R characteristic function in our earlier
work [8]:

Rmod = max(λ1, λ2). (1)

As our aim is to emphasize edge and corner regions si-
multaneously, we can exploit the fact that they both have one
large eigenvalue. Therefore, the suggested Rmod value is able
to separate homogeneous and nonhomogeneous regions of the
image.

Feature points are calculated as the local maxima of Rmod. A
pixel pi = (xi, yi) is the element of the P feature point set, if it
has the largest Rmod(pi) value compared with its neighbors in a
surrounding bi = {[xi − 1, xi + 1]× [yi − 1, yi + 1]} window
and its Rmod(pi) value exceeds a given Tmax threshold, i.e.,

P =

{
pi :Rmod(pi)>Tmax AND pi=argmax

r∈bi
Rmod (r)

}
. (2)

Here, the Tmax threshold is calculated by Otsu’s method [9]
for each image adaptively; therefore, it can handle different
image characteristics.

By investigating the smaller eigenvalue min(λ1, λ2), edge
and corner points can be separated. If min(λ1, λ2) is over an
adaptive Tmin threshold (also calculated by Otsu’s method),
then the point is a corner point candidate; otherwise, it is an
edge point. The separation of edge and corner points will be
used in Section III-B.

The proposed feature point detector is completely automatic
and does not need any parameter tuning, unlike the referred
Gabor mechanism [7]. The method is also not sensitive to
the g scale parameter of the Gaussian smoothing used in the
Harris corner detection; we picked the g = 0.5 value for every
test case, regardless of resolution or any other image feature.
Therefore, we did not present it in Fig. 1 as the input parameter.
Additionally, the aforementioned Tmin and Tmax thresholds are
defined with Otsu’s adaptive method.

In the next step (see Fig. 1), we calculate a weight value
(presented in [7]) for each feature point that represents the
strength of the point’s neighborhood. Following [7], we binarize
the Rmod map with the adaptive Tmax threshold to get a B
binary map. In B, pixels of Rmod over Tmax get 1; others
get 0 value. By definition, every member of the P feature
point set will have a value of 1 [see (2)]. Let wi denote
the weight of the pi point, which is calculated as the natural
logarithm of the number of pixels connected to pi in the B
binary map. Two pixels are connected in B if both pixels are 1,
and a path of pixels with a value of 1 exists between them.
If the number of connected pixels is less than 10 (defined
based on the recommendation of [7]), the point is classified
as nonsignificant and eliminated from the feature point set.
Points in larger sections, like roads, may have higher weights
than others, resulting in an unbalanced weighting function;

Fig. 2. Steps of the urban-area extraction for the Szada1 image with the
proposed MHEC feature point set. (a) Extracted feature point set. (b) Voting
matrix of the referred nonoriented process [7]. (c) Detected urban area apply-
ing the nonoriented process. (d) Detected urban area applying the improved
orientation-sensitive process.

therefore, the reason for applying the natural logarithm function
on the calculated weights is to get steady wi values.

The modified Harris point set for the Szada1 image is shown
in Fig. 2(a). The modified (extended) point set has members
in edge regions (like roads) as well, and points are densely
located in the built-in area. Only a few points are situated in
the nonurban area.

III. ORIENTATION-SENSITIVE URBAN-AREA EXTRACTION

A. Orientation-Sensitive Voting Matrix Formation

Sirmaçek and Ünsalan [7] assumes that, around Gabor fea-
ture points [10], an urban area can be found with a high
probability. Thus, it defines a Gaussian domain around each
pi point with σi standard deviation, where the highest vote
is the point, and according to the spatial distance, the vote
is decreasing. σi controls the spatial effect of a point; if it is
higher, a point has wider impact. The significance of a point is
proportional to its weight; thus, σi is estimated by wi. The V
voting matrix for the (x, y) pixel is defined as

V (x, y) =

K∑
i=1

1

2πσ2
i

e
− (x−xi)

2+(y−yi)
2

2σ2
i (3)

where K is the total number of feature points, and σi = 5× wi.
Fig. 2(b) shows the generated V map for the Szada1 image.
Finally, the urban area is defined by an adaptive decision
making step. Otsu’s thresholding technique [9] is applied on
V to distinguish the urban area from the background. The
detection result is shown in Fig. 2(c).
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Fig. 3. Detection results for the Szada5 image with different voting matrix formation techniques. (Left) Original image. (Middle) Result of the original
nonoriented method [7] (F -measure value: 0.548). (Right) Result of the proposed orientation-sensitive method (F -measure value: 0.717).

The disadvantage of the method is that it is not able to detect
straight lines accurately because of the circular Gaussian repre-
sentation. If a straight urban-area border (like a road segment or
a row of houses) is represented by sparse feature points, then the
voting matrix will have high values only in the neighborhood of
the points; therefore, the detection will result in a less accurate
wavy urban-area border. Moreover, high curvature boundaries
are also inaccurately detected.

To compensate these drawbacks, we introduce the
orientation-sensitive extension of the voting matrix. Our
idea is to use the direction information of Gabor filters [10]
when constructing the voting matrix. Therefore, we propose to
apply the 2-D elliptical Gaussian function at the feature point
(xi, yi), which can model orientation:

Gi(x, y) =Ai · Ei(x, y)

Ei(x, y) = e−(ai(x−xi)
2+2bi(x−xi)(y−yi)+ci(y−yi)

2) (5)

where the calculation of Ai is given in (7), and ai, bi, and ci are
calculated in the following way:

ai =
cos2 θ

2σ2
i,x

+
sin2 θ

2σ2
i,y

bi = − sin 2θ

4σ2
i,x

+
sin 2θ

4σ2
i,y

(6)

ci =
sin2 θ

2σ2
i,x

+
cos2 θ

2σ2
i,y

where σi,x and σi,y are the spreads of the blob in the x- and y-
directions, and θ is the orientation for the (xi, yi) feature point.

This interpretation represents a 2-D elliptical Gaussian func-
tion, which is rotated by a clockwise angle θ. If we define θ as
the orientation of the Gabor filter, which extracted the feature
point, then we can exploit the additional direction information
in the voting matrix formulation by expanding a point’s impact
in the main θ-direction.

Regarding this consideration, we define the following ori-
ented voting matrix:

Vθ(x, y)=
K∑
i=1

Gi(x, y)=
K∑
i=1

1

2π(σ2
i,x + σ2

i,y)
· Ei(x, y). (7)

We set the σi,y/σi,x = 2 ratio to avoid too moderate voting
in the minor axis direction, resulting in false negative hits in the
detection step.

The effect of the orientation sensitivity is shown in Fig. 3,
where the middle image shows the result of the original nonori-
ented method for Gabor points [7], while the right image
shows the result of the improved orientation-sensitive technique
(σi,x = 3× wi and σi,y = 6× wi). To quantitatively compare
the results, the gained F -measure scores are also presented.
(For further evaluation details see Section IV.)

B. Orientation-Sensitive Voting Matrix Formation for the
Novel Feature Point Set

In case of a Gabor feature point set, defining a point’s
orientation does not need any extra computation; therefore, it is
favorable to exploit the additional information. However, there
may be other interest point detectors where the orientation has
to be calculated in a distinct step. Moreover, in some cases, no
such direction can be interpreted for points without further con-
sideration. For example, when using the Harris corner detector,
more than one main direction can be assigned to a point, which
may pose many interpretation questions. (How is it to decide if
a direction is significant? How many significant directions have
to be calculated?)

In our case, the feature point set proposed in Section II
will consist of both edge and corner points. Thus, calculat-
ing multiple directions featuring corner points is problematic.
Meanwhile, edge points represent a main orientation, which
can be defined, for example, by analyzing the small neighbor-
hood, as in [11]. Therefore, we propose to apply a mixture of
voting matrices (V and Vθ). After dividing the feature point
set into two subsets, i.e., corner and edge points (as described
in Section II), the original circular Gaussian field [V in (3)]
is calculated for corner points, and the improved orientation-
sensitive elliptical field [Vθ in (7)] is calculated for edge points.
The final voting matrix is then given as the pixelwise sum of
the two precalculated matrices. Fig. 2(d) shows the result of the
joint detection technique for the proposed MHEC point set.

IV. EXPERIMENTS

For testing the performance of the proposed feature point
set and the improved orientation-sensitive voting matrix, we
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used the Szada data set provided by the Hungarian Institute
of Geodesy, Cartography, and Remote Sensing (FÖMI; earlier
used in [15]). The Szada test set contains 11 aerial images taken
by FÖMI in 1984, 2000, and 2005, showing the Szada village
and its close proximity. Our aerial images have a different
spatial resolution, i.e., 1.5 or 0.5 m/pixel; images are either
grayscale or colored. The size of the images is varying from
320 × 256 to 996 × 558 pixels. Therefore, the data set contains
diverse images to represent different urban region characteris-
tics and to show the robustness of the proposed techniques.

In the first part of the evaluation process we investigate the
efficiency of different interest point detectors for urban-area
detection with the original nonoriented voting matrix technique.
In the second part, we test the performance of the improved
orientation-sensitive voting matrix for selected feature point
detectors.

For comparing the results, we use P precision, R recall, and
F -measure values, i.e.,

P =
TP

TP + FP
R =

TP

TP + FN
F = 2 · P ·R

P +R
(8)

where TP, FP, and FN denote the number of true positive, false
positive, and false negative detected pixels, respectively.

When defining an urban area, various interpretations might
be considered.

• Are roads and gardens parts of the urban area?
• Should buildings be separately or collectively marked?

To handle these subjective cases, we asked three individuals
to label the urban area manually. If a pixel was labeled as urban
by at least two persons, then it was treated as a part of a built-in
area in the ground-truth-based evaluation process.

A. Tests on Different Interest Point Detectors

To evaluate the performance of our proposed feature point
detector, we tested the original voting matrix technique for
different point detectors. Since there exist a large number of
point detection methods [16], we picked detectors so as to cover
a wide range of detection techniques. Harris [4] and SUSAN
[5] were proposed in [3] for extraction of manmade structures;
previous works of Sirmaçek and Ünsalan used Lowe’s SIFT
[14] method in [6], Gabor filtering [10] in [7], and Features
from Accelerated Segment Test (FAST) [12] and Lindeberg’s
blob detector Laplacian of Gaussian (LoG) [13] in [17]. Thus,
we chose these detectors for evaluation and comparison.

Table I shows the calculated average F -measure values
[see (8)] for different interest point detection methods. Our
proposed MHEC method outperforms the other detectors and
achieves more than 0.8 for a mean F -measure value.

The computation time was calculated for the MHEC feature
point extraction step on the Szada1 test image (with 320 ×
256 size), and altogether, 0.6 s has been achieved on a personal
computer with an Intel Core i7 2.67-GHz central processing
unit with 4-GB random access memory and MATLAB R2011b.
This is a fairly good time compared with [7], where Gabor
filtering and local feature point extraction steps needed approx-
imately 1.5 s for an image with a similar size (235 × 265).

TABLE I
AVERAGE F -MEASURE SCORE (MEAN ± STANDARD DEVIATION)

FOR THE EVALUATED FEATURE POINT DETECTOR METHODS

FOR THE SZADA DATA SET

B. Tests on Orientation Sensitivity

To test the orientation sensitivity, we first chose interest point
detectors, where the orientation is reasonable. As mentioned in
Section III-B, this additional information cannot be interpreted
for every detector (like Harris detector or blob detectors) and
sometimes needs more consideration like MHEC).

For the originally used Gabor points, orientation information
for a point is given when determining the direction of the
Gabor filter. Therefore, exploiting orientation information does
not need any additional computation. Furthermore, detectors
based on edge-enhancing techniques extract edge points as
well, which can be thus used for orientation-sensitive urban-
area detection with further considerations.

In our evaluation step, we picked the proposed MHEC
method and the SUSAN detector to show the performance
of the orientation-sensitive voting matrix. In both cases, we
used the mixture of nonoriented and oriented voting matrix
techniques (see Section III-B), as edge and corner points can
be separated. The separation procedure for the MHEC method
was described in Section II. For the SUSAN method, the
main principle can be used for both edge and corner detection
purposes. Depending on the value of the geometric threshold,
the algorithm is able to find edge or corner points (see [5] for
further details); therefore, it can be used to distinguish edges
and corners.

Fig. 4 shows the comparison of the performance for the three
selected algorithms. The light bar is the original F -measure per-
formance value achieved by the referred nonoriented method,
while the dark one is the result achieved by the improved
orientation-sensitive voting technique.

Spreading the parameter values of the orientation-sensitive
voting matrix, σi,x and σi,y were selected based on the number
of detected points and on the distribution of weight values.
While the σi,y/σi,x ratio handles the orientation sensitivity, i.e.,
the shape of the effect (depending on the number of points),
σi,x and σi,y values are responsible for the coverage of a point
(depending on the variance of weight values).

In case of Gabor points, we applied σi,x = 3× wi and σi,y =
6× wi values. As this detector gives the highest number of
points and the weight values have a large variance, orientation
and saliency are represented by effectively by the points.

In case of SUSAN, the oriented σi,x, σi,y (for edge points)
and nonoriented σi (for corner points) values were manu-
ally tuned with the following restrictions: σi,y/σi,x = 2 ratio
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Fig. 4. Detection results based for different voting matrix techniques.
(Left) Original nonoriented method [7]. (Right) Proposed orientation-sensitive
method.

and σi,x < σi < σi,y (a typical spreading parameter setting
was σi,x = 8× wi, σi,y = 16× wi, and σi = 14× wi used
for Szada1 in Fig. 2). These considerations were empirically
defined to balance the effect of corner and edge points. The
variance of the weights was much lower than in the case of
the Gabor detector; therefore, we selected larger multipliers in
the case of σi,x and σi,y to exaggerate the saliency effect. The
exact parameter values also depended on the resolution of the
image; the higher the resolution, the wider spatial effect for a
point has to be selected. Therefore, in the case of images with
0.5 m/pixel resolution, a typical parameter setting σi,x = 12×
wi, σi,y = 24× wi, and σi = 20× wi was applied.

In the case of MHEC, the behavior of the detector was
similar to the Gabor case, but the number of points was
lower. Therefore, we set the σi,y/σi,x ratio higher; to represent
the orientation sensitivity more efficiently, we applied σi,x =
2× wi, σi,y = 6× wi, and σi = 3× wi for lower resolution,
and σi,x = 2× wi, σi,y = 8× wi and σi = 6× wi for higher
resolution. As the variance of the weight values was high, the
multipliers of the wi weight values are smaller than in the case
of SUSAN.

According to Fig. 4, the orientation-sensitive representation
was able to improve the performance of urban-area detec-
tion. The improvement was the most significant for Gabor
points, where no additional calculation was needed. Moreover,
it caused a slight increase in the performances of SUSAN and
MHEC as well.

V. CONCLUSION

We have proposed a feature point set based on the modi-
fication of the Harris corner detection method for urban-area
extraction in aerial images. The point extraction method is fully
automatic and is able to emphasize edge and corner points
in the image equally; therefore, it serves as a suitable base
for the construction of the voting matrix [7] for urban-area
detection. Moreover, for the voting matrix formulation, we
have introduced an improved orientation-sensitive technique
using the 2-D elliptical Gaussian function, which exploits the
orientation information of the feature points. Altogether, our
proposed contributions increased the detection accuracy of ur-

ban areas by 17% on the used data set. Our further plans include
more improvement (Otsu’s thresholding step may result in false
detections if no urban area is presented in the image) and solv-
ing complex problems (e.g., extraction of building contours),
where the introduced method will be used as a preprocessing
step for decreasing the field of interest and presenting valuable
information about the given area.
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Abstract—This letter addresses the automatic detection of ur-
ban area in remotely sensed images. As manual administration
is time consuming and unfeasible, researchers have to focus on
automated processing techniques, which can handle various image
characteristics and huge amount of data. The applied method
extracts feature points in the first step, which is followed by the
construction of a voting map to represent urban areas. Finally, an
adaptive decision making is performed to find urban areas. This
letter presents methodological contributions in two key issues to
the algorithm: 1) An automatically extracted Harris-based feature
point set is introduced for the first step, which is able to represent
urban areas more precisely. 2) An improved orientation-sensitive
voting technique is proposed, exploiting the orientation informa-
tion calculated in the local neighborhood of points. Evaluation
results show that the proposed contributions increase the detection
accuracy of urban areas.

Index Terms—Aerial images, modified Harris detector, orienta-
tion sensitivity, spatial voting, urban-area detection.

I. INTRODUCTION

THE automatic detection of urban areas in optical aerial
images means a great support in urban development anal-

ysis, map updating, and disaster management, and also helps
municipalities in long-term residential area planning. Unfortu-
nately, the images may cover large areas, and they can be taken
in altering weather and illumination conditions, causing very
different image features. Moreover, as urban areas are usually
dynamically changing, continuous administration is required
to have up-to-date information. Since manual administration
is time consuming and unfeasible, researchers have to focus
on automated processing techniques, which can handle various
image characteristics and huge amount of data.

A wide range of automatic urban (a.k.a. built-in) area detec-
tion techniques have been introduced in recent years. The first
group of such methods needs specific training data to detect
urban areas, such as [1], using a differential morphological
profile to record structural image information then applied
feature extraction and neural network for classifying the fea-
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tures, and [2], presenting a multiple conditional random-field
ensemble model to incorporate multiple features and learn their
contextual information.

Our letter followed another methodology, i.e., to construct
a direct method that does not need any training data for
urban-area extraction. Martinez-Fonte et al. [3] showed that
corner detectors (Harris [4] and SUSAN [5]) are efficient
tools for distinguishing different types of structures (manmade
versus natural structures) present in the image. Since then,
other works also applied interest point detectors for urban-
area detection; [6] used scale-invariant feature transform (SIFT)
integrated with graph theory. The results were promising, but
the computational complexity and time were quite significant.
To reduce computational requirements, the same authors intro-
duced a novel technique using Gabor feature points and spatial
voting [7].

In this letter, we first introduce a new automatically extracted
feature point set, which is called Modified Harris for Edges and
Corners (MHEC) for urban-area detection, which was applied
for effective object contour detection in our earlier work [8].
As the density of extracted feature points is higher in the
residential areas [3], building a probability map based on this
feature point set can identify urban areas. After having a local
feature point set, we apply the voting matrix strategy of [7]
to get a probability map of the urban area. To improve the
accuracy of this step, we also propose a novel orientation-
sensitive technique for constructing the voting matrix. Finally,
urban areas are calculated by a decision making step. Fig. 1
shows the main algorithmic steps of the method. In the ex-
perimental part, we will show that the introduced method is
able to outperform other interest point detectors; moreover,
the proposed orientation-sensitive voting matrix is also able to
improve the performance of the previously introduced Gabor-
based algorithm [7].

II. MODIFIED HARRIS FOR EDGES AND CORNERS

We introduce a novel MHEC feature point set for urban-
area detection, which is based on the Harris corner detector [4]
but adopts a modified characteristic function. The advantage of
the improved detector is that it is automatic and it is able to
recognize not just corners but edges as well. Therefore, it gives
an efficient tool for characterizing contour-rich regions, such
as urban areas. The improved characteristic function was also
successfully applied earlier for object contour recognition with
parametric active contour algorithms [8].

By considering the behavior of the Harris matrix and its
eigenvalues (denoted by λ1 and λ2), we proposed the following

1545-598X/$31.00 © 2012 IEEE



2 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Fig. 1. Simplified diagram of the workflow.

modification of the R characteristic function in our earlier
work [8]:

Rmod = max(λ1, λ2). (1)

As our aim is to emphasize edge and corner regions si-
multaneously, we can exploit the fact that they both have one
large eigenvalue. Therefore, the suggested Rmod value is able
to separate homogeneous and nonhomogeneous regions of the
image.

Feature points are calculated as the local maxima of Rmod. A
pixel pi = (xi, yi) is the element of the P feature point set, if it
has the largest Rmod(pi) value compared with its neighbors in a
surrounding bi = {[xi − 1, xi + 1]× [yi − 1, yi + 1]} window
and its Rmod(pi) value exceeds a given Tmax threshold, i.e.,

P =

{
pi :Rmod(pi)>Tmax AND pi=argmax

r∈bi
Rmod (r)

}
. (2)

Here, the Tmax threshold is calculated by Otsu’s method [9]
for each image adaptively; therefore, it can handle different
image characteristics.

By investigating the smaller eigenvalue min(λ1, λ2), edge
and corner points can be separated. If min(λ1, λ2) is over an
adaptive Tmin threshold (also calculated by Otsu’s method),
then the point is a corner point candidate; otherwise, it is an
edge point. The separation of edge and corner points will be
used in Section III-B.

The proposed feature point detector is completely automatic
and does not need any parameter tuning, unlike the referred
Gabor mechanism [7]. The method is also not sensitive to
the g scale parameter of the Gaussian smoothing used in the
Harris corner detection; we picked the g = 0.5 value for every
test case, regardless of resolution or any other image feature.
Therefore, we did not present it in Fig. 1 as the input parameter.
Additionally, the aforementioned Tmin and Tmax thresholds are
defined with Otsu’s adaptive method.

In the next step (see Fig. 1), we calculate a weight value
(presented in [7]) for each feature point that represents the
strength of the point’s neighborhood. Following [7], we binarize
the Rmod map with the adaptive Tmax threshold to get a B
binary map. In B, pixels of Rmod over Tmax get 1; others
get 0 value. By definition, every member of the P feature
point set will have a value of 1 [see (2)]. Let wi denote
the weight of the pi point, which is calculated as the natural
logarithm of the number of pixels connected to pi in the B
binary map. Two pixels are connected in B if both pixels are 1,
and a path of pixels with a value of 1 exists between them.
If the number of connected pixels is less than 10 (defined
based on the recommendation of [7]), the point is classified
as nonsignificant and eliminated from the feature point set.
Points in larger sections, like roads, may have higher weights
than others, resulting in an unbalanced weighting function;

Fig. 2. Steps of the urban-area extraction for the Szada1 image with the
proposed MHEC feature point set. (a) Extracted feature point set. (b) Voting
matrix of the referred nonoriented process [7]. (c) Detected urban area apply-
ing the nonoriented process. (d) Detected urban area applying the improved
orientation-sensitive process.

therefore, the reason for applying the natural logarithm function
on the calculated weights is to get steady wi values.

The modified Harris point set for the Szada1 image is shown
in Fig. 2(a). The modified (extended) point set has members
in edge regions (like roads) as well, and points are densely
located in the built-in area. Only a few points are situated in
the nonurban area.

III. ORIENTATION-SENSITIVE URBAN-AREA EXTRACTION

A. Orientation-Sensitive Voting Matrix Formation

Sirmaçek and Ünsalan [7] assumes that, around Gabor fea-
ture points [10], an urban area can be found with a high
probability. Thus, it defines a Gaussian domain around each
pi point with σi standard deviation, where the highest vote
is the point, and according to the spatial distance, the vote
is decreasing. σi controls the spatial effect of a point; if it is
higher, a point has wider impact. The significance of a point is
proportional to its weight; thus, σi is estimated by wi. The V
voting matrix for the (x, y) pixel is defined as

V (x, y) =

K∑
i=1

1

2πσ2
i

e
− (x−xi)

2+(y−yi)
2

2σ2
i (3)

where K is the total number of feature points, and σi = 5× wi.
Fig. 2(b) shows the generated V map for the Szada1 image.
Finally, the urban area is defined by an adaptive decision
making step. Otsu’s thresholding technique [9] is applied on
V to distinguish the urban area from the background. The
detection result is shown in Fig. 2(c).



KOVÁCS AND SZIRÁNYI: HARRIS FEATURE POINT SET FOR URBAN-AREA DETECTION 3

Fig. 3. Detection results for the Szada5 image with different voting matrix formation techniques. (Left) Original image. (Middle) Result of the original
nonoriented method [7] (F -measure value: 0.548). (Right) Result of the proposed orientation-sensitive method (F -measure value: 0.717).

The disadvantage of the method is that it is not able to detect
straight lines accurately because of the circular Gaussian repre-
sentation. If a straight urban-area border (like a road segment or
a row of houses) is represented by sparse feature points, then the
voting matrix will have high values only in the neighborhood of
the points; therefore, the detection will result in a less accurate
wavy urban-area border. Moreover, high curvature boundaries
are also inaccurately detected.

To compensate these drawbacks, we introduce the
orientation-sensitive extension of the voting matrix. Our
idea is to use the direction information of Gabor filters [10]
when constructing the voting matrix. Therefore, we propose to
apply the 2-D elliptical Gaussian function at the feature point
(xi, yi), which can model orientation:

Gi(x, y) =Ai · Ei(x, y)

Ei(x, y) = e−(ai(x−xi)
2+2bi(x−xi)(y−yi)+ci(y−yi)

2) (5)

where the calculation of Ai is given in (7), and ai, bi, and ci are
calculated in the following way:

ai =
cos2 θ

2σ2
i,x

+
sin2 θ

2σ2
i,y

bi = − sin 2θ

4σ2
i,x

+
sin 2θ

4σ2
i,y

(6)

ci =
sin2 θ

2σ2
i,x

+
cos2 θ

2σ2
i,y

where σi,x and σi,y are the spreads of the blob in the x- and y-
directions, and θ is the orientation for the (xi, yi) feature point.

This interpretation represents a 2-D elliptical Gaussian func-
tion, which is rotated by a clockwise angle θ. If we define θ as
the orientation of the Gabor filter, which extracted the feature
point, then we can exploit the additional direction information
in the voting matrix formulation by expanding a point’s impact
in the main θ-direction.

Regarding this consideration, we define the following ori-
ented voting matrix:

Vθ(x, y)=
K∑
i=1

Gi(x, y)=
K∑
i=1

1

2π(σ2
i,x + σ2

i,y)
· Ei(x, y). (7)

We set the σi,y/σi,x = 2 ratio to avoid too moderate voting
in the minor axis direction, resulting in false negative hits in the
detection step.

The effect of the orientation sensitivity is shown in Fig. 3,
where the middle image shows the result of the original nonori-
ented method for Gabor points [7], while the right image
shows the result of the improved orientation-sensitive technique
(σi,x = 3× wi and σi,y = 6× wi). To quantitatively compare
the results, the gained F -measure scores are also presented.
(For further evaluation details see Section IV.)

B. Orientation-Sensitive Voting Matrix Formation for the
Novel Feature Point Set

In case of a Gabor feature point set, defining a point’s
orientation does not need any extra computation; therefore, it is
favorable to exploit the additional information. However, there
may be other interest point detectors where the orientation has
to be calculated in a distinct step. Moreover, in some cases, no
such direction can be interpreted for points without further con-
sideration. For example, when using the Harris corner detector,
more than one main direction can be assigned to a point, which
may pose many interpretation questions. (How is it to decide if
a direction is significant? How many significant directions have
to be calculated?)

In our case, the feature point set proposed in Section II
will consist of both edge and corner points. Thus, calculat-
ing multiple directions featuring corner points is problematic.
Meanwhile, edge points represent a main orientation, which
can be defined, for example, by analyzing the small neighbor-
hood, as in [11]. Therefore, we propose to apply a mixture of
voting matrices (V and Vθ). After dividing the feature point
set into two subsets, i.e., corner and edge points (as described
in Section II), the original circular Gaussian field [V in (3)]
is calculated for corner points, and the improved orientation-
sensitive elliptical field [Vθ in (7)] is calculated for edge points.
The final voting matrix is then given as the pixelwise sum of
the two precalculated matrices. Fig. 2(d) shows the result of the
joint detection technique for the proposed MHEC point set.

IV. EXPERIMENTS

For testing the performance of the proposed feature point
set and the improved orientation-sensitive voting matrix, we
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used the Szada data set provided by the Hungarian Institute
of Geodesy, Cartography, and Remote Sensing (FÖMI; earlier
used in [15]). The Szada test set contains 11 aerial images taken
by FÖMI in 1984, 2000, and 2005, showing the Szada village
and its close proximity. Our aerial images have a different
spatial resolution, i.e., 1.5 or 0.5 m/pixel; images are either
grayscale or colored. The size of the images is varying from
320 × 256 to 996 × 558 pixels. Therefore, the data set contains
diverse images to represent different urban region characteris-
tics and to show the robustness of the proposed techniques.

In the first part of the evaluation process we investigate the
efficiency of different interest point detectors for urban-area
detection with the original nonoriented voting matrix technique.
In the second part, we test the performance of the improved
orientation-sensitive voting matrix for selected feature point
detectors.

For comparing the results, we use P precision, R recall, and
F -measure values, i.e.,

P =
TP

TP + FP
R =

TP

TP + FN
F = 2 · P ·R

P +R
(8)

where TP, FP, and FN denote the number of true positive, false
positive, and false negative detected pixels, respectively.

When defining an urban area, various interpretations might
be considered.

• Are roads and gardens parts of the urban area?
• Should buildings be separately or collectively marked?

To handle these subjective cases, we asked three individuals
to label the urban area manually. If a pixel was labeled as urban
by at least two persons, then it was treated as a part of a built-in
area in the ground-truth-based evaluation process.

A. Tests on Different Interest Point Detectors

To evaluate the performance of our proposed feature point
detector, we tested the original voting matrix technique for
different point detectors. Since there exist a large number of
point detection methods [16], we picked detectors so as to cover
a wide range of detection techniques. Harris [4] and SUSAN
[5] were proposed in [3] for extraction of manmade structures;
previous works of Sirmaçek and Ünsalan used Lowe’s SIFT
[14] method in [6], Gabor filtering [10] in [7], and Features
from Accelerated Segment Test (FAST) [12] and Lindeberg’s
blob detector Laplacian of Gaussian (LoG) [13] in [17]. Thus,
we chose these detectors for evaluation and comparison.

Table I shows the calculated average F -measure values
[see (8)] for different interest point detection methods. Our
proposed MHEC method outperforms the other detectors and
achieves more than 0.8 for a mean F -measure value.

The computation time was calculated for the MHEC feature
point extraction step on the Szada1 test image (with 320 ×
256 size), and altogether, 0.6 s has been achieved on a personal
computer with an Intel Core i7 2.67-GHz central processing
unit with 4-GB random access memory and MATLAB R2011b.
This is a fairly good time compared with [7], where Gabor
filtering and local feature point extraction steps needed approx-
imately 1.5 s for an image with a similar size (235 × 265).

TABLE I
AVERAGE F -MEASURE SCORE (MEAN ± STANDARD DEVIATION)

FOR THE EVALUATED FEATURE POINT DETECTOR METHODS

FOR THE SZADA DATA SET

B. Tests on Orientation Sensitivity

To test the orientation sensitivity, we first chose interest point
detectors, where the orientation is reasonable. As mentioned in
Section III-B, this additional information cannot be interpreted
for every detector (like Harris detector or blob detectors) and
sometimes needs more consideration like MHEC).

For the originally used Gabor points, orientation information
for a point is given when determining the direction of the
Gabor filter. Therefore, exploiting orientation information does
not need any additional computation. Furthermore, detectors
based on edge-enhancing techniques extract edge points as
well, which can be thus used for orientation-sensitive urban-
area detection with further considerations.

In our evaluation step, we picked the proposed MHEC
method and the SUSAN detector to show the performance
of the orientation-sensitive voting matrix. In both cases, we
used the mixture of nonoriented and oriented voting matrix
techniques (see Section III-B), as edge and corner points can
be separated. The separation procedure for the MHEC method
was described in Section II. For the SUSAN method, the
main principle can be used for both edge and corner detection
purposes. Depending on the value of the geometric threshold,
the algorithm is able to find edge or corner points (see [5] for
further details); therefore, it can be used to distinguish edges
and corners.

Fig. 4 shows the comparison of the performance for the three
selected algorithms. The light bar is the original F -measure per-
formance value achieved by the referred nonoriented method,
while the dark one is the result achieved by the improved
orientation-sensitive voting technique.

Spreading the parameter values of the orientation-sensitive
voting matrix, σi,x and σi,y were selected based on the number
of detected points and on the distribution of weight values.
While the σi,y/σi,x ratio handles the orientation sensitivity, i.e.,
the shape of the effect (depending on the number of points),
σi,x and σi,y values are responsible for the coverage of a point
(depending on the variance of weight values).

In case of Gabor points, we applied σi,x = 3× wi and σi,y =
6× wi values. As this detector gives the highest number of
points and the weight values have a large variance, orientation
and saliency are represented by effectively by the points.

In case of SUSAN, the oriented σi,x, σi,y (for edge points)
and nonoriented σi (for corner points) values were manu-
ally tuned with the following restrictions: σi,y/σi,x = 2 ratio
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Fig. 4. Detection results based for different voting matrix techniques.
(Left) Original nonoriented method [7]. (Right) Proposed orientation-sensitive
method.

and σi,x < σi < σi,y (a typical spreading parameter setting
was σi,x = 8× wi, σi,y = 16× wi, and σi = 14× wi used
for Szada1 in Fig. 2). These considerations were empirically
defined to balance the effect of corner and edge points. The
variance of the weights was much lower than in the case of
the Gabor detector; therefore, we selected larger multipliers in
the case of σi,x and σi,y to exaggerate the saliency effect. The
exact parameter values also depended on the resolution of the
image; the higher the resolution, the wider spatial effect for a
point has to be selected. Therefore, in the case of images with
0.5 m/pixel resolution, a typical parameter setting σi,x = 12×
wi, σi,y = 24× wi, and σi = 20× wi was applied.

In the case of MHEC, the behavior of the detector was
similar to the Gabor case, but the number of points was
lower. Therefore, we set the σi,y/σi,x ratio higher; to represent
the orientation sensitivity more efficiently, we applied σi,x =
2× wi, σi,y = 6× wi, and σi = 3× wi for lower resolution,
and σi,x = 2× wi, σi,y = 8× wi and σi = 6× wi for higher
resolution. As the variance of the weight values was high, the
multipliers of the wi weight values are smaller than in the case
of SUSAN.

According to Fig. 4, the orientation-sensitive representation
was able to improve the performance of urban-area detec-
tion. The improvement was the most significant for Gabor
points, where no additional calculation was needed. Moreover,
it caused a slight increase in the performances of SUSAN and
MHEC as well.

V. CONCLUSION

We have proposed a feature point set based on the modi-
fication of the Harris corner detection method for urban-area
extraction in aerial images. The point extraction method is fully
automatic and is able to emphasize edge and corner points
in the image equally; therefore, it serves as a suitable base
for the construction of the voting matrix [7] for urban-area
detection. Moreover, for the voting matrix formulation, we
have introduced an improved orientation-sensitive technique
using the 2-D elliptical Gaussian function, which exploits the
orientation information of the feature points. Altogether, our
proposed contributions increased the detection accuracy of ur-

ban areas by 17% on the used data set. Our further plans include
more improvement (Otsu’s thresholding step may result in false
detections if no urban area is presented in the image) and solv-
ing complex problems (e.g., extraction of building contours),
where the introduced method will be used as a preprocessing
step for decreasing the field of interest and presenting valuable
information about the given area.
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