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ABSTRACT 

The problem of matching two scenes, one contained in 
the other, arises in many practical picture processing 
tasks including stereocompilation, classification of 
photographic data, and map matching for navigation 
and guidance. Because the images are not exact rep­
licas, but rather noisy and perhaps geometrically dis­
torted versions of the original scenes, it is necessary 
to develop a body of theory capable of providing an­
swers to questions concerning effects of various types 
of error, and means for minimizing the effects of such 
errors. This paper presents a "decision space" ap­
proach to the problem for dealing with small amounts 
of noise and distortion, and a promising new technique 
for dealing with "rubber sheet" distortion. 

INTRODUCTION 

Assume we are given images of two scenes, one scene 
contained in the other, and we wish to determine where 
the contained scene appears ( i .e . , has a best match)in 
the containing scene. We further assume that the im­
ages are not exact replicas of either of the scenes, but 
rather noisy and perhaps geometrically distorted ver­
sions of each. The solution to this problem (the de­
tection of scene congruence) has applications in many 
practical picture processing tasks including stereo-
compilation, classification of photographic data, ter­
rain change detection, map matching for navigation 
and guidance, etc. 

In many of these tasks it is possible to assume that the 
noise and distortion processes result in relatively 
small random differences between the contained and 
containing scenes. Under these conditions, it is both 
possible and desirable to employ mathematical tech­
niques in contrast to the heuristic approach currently 
used for general scene analysis. [Reference (1) is a 
recent survey which considers much of the general 
scene analysis work.) This allows the formulation of a 
comprehensive mathematical model which can provide 
the insight needed to estimate system performance for 
different proposed configurations. In particular, such 
a model must address itself to the generic noise and 
distortion processes peculiar to scene imaging de­
vices, and characterize the effects of simplifications 
and uncertainties which wil l necessarily be inherent in 
any practical system. 

This paper is a summary of Fischler (2) and is con­
cerned with the development of a body of theory needed 
to implement (especially using digital techniques) 
practical systems for tasks given above. It considers 
such questions as: [1] What is the nature of optimal 
decision procedures for the detection of scene 
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congruence under fairly general noise assumptions?, 
[2] How do error processes, such as scale change, ro­
tation error, sensor amplitude gain and bias varia­
tions, etc., affect system performance, and how can 
the effects of these errors be minimized without pay­
ing an excessive cost penalty?, [3) How do various 
scene properties or characteristics influence system 
accuracy?, and [4) What procedures are available for 
situations in which the small error model is not 
realistic ? 

In any practical situation, the instruments used to 
view, process, and store scene information have finite 
resolution or bandwidth. Therefore, invoking the 
Shannon Sampling Theorem, we can restrict our atten­
tion to scenes which can be characterized by a finite 
array of bounded integers, each integer representing 
the sensed scene attribute (such as light intensity for 
a photographic sensor, or radiometric temperature if 
we are employing an infrared sensor, etc.) at some 
specified geometric location in the given scene. Ques­
tions concerning the analog-digital interface are dis­
cussed in Fischler (2) but wil l be omitted from this 
summary. 

The framework for much of the analysis presented in 
this paper is established by considering each match 
location in the containing scene (a point of potential 
match between the containing and contained scenes) as 
being associated with a distinct class. The "ideal" 
representative of each class is the fixed size segment 
of the containing scene centered at the corresponding 
match location. The containing scene is called the 
reference map (RM), and the contained scene is called 
the sensed map (SM). Any given SM is now assumed 
to be some (ideal) RM segment which has been per­
turbed by a specified set of noise and distortion proc-
cesses. Match point determination is thus reduced to 
a classification task. (See Fig. 1.) 

Each map, represented by a collection of N discrete 
numbers, is considered to be a point in a "signal 
space" of N-dimensions. Using decision theory con­
cepts [see Refs. (3) through (12)], we show that satis­
fying a minimum error criterion for match point de­
termination corresponds to measuring some weighted 
distance function between the signal space image of the 
SM and each of the RM segments. 

To present results having the greatest degree of gen­
erality and intuitive appeal, geometric arguments form 
the basis for most of the development presented here. 
These geometric arguments are supported by a paral­
lel algebraic development given in Fischler (2). 

After developing the decision theoretic model, we con­
sider the effect of scale and rotation error (due to un­
certainties in sensor position and orientation) on our 
decision metric. This analysis is followed by a discus­
sion of amplitude gain and bias errors, i .e . , linear 
transformations of the resolution element values which 
might be introduced by changes in the medium between 
the scene and the sensor, or by variations in the sens­
ing system itself. In particular, we consider how the 
effects of these errors can be eliminated (through 
"normalization") without specifically detecting their 
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c. RM Segments and Sensed Map Depicted in Signal 
Space 

Fig. 1 Formulation of the Scene Congruence Problem 
as a Classification Problem With Its Associ­
ated Signal Space Representation 

presence. The viewpoint of minimizing error effects, 
rather than detecting and correcting for them, is re­
lated to system cost considerations. 

The question of remote error (RE) is considered next. 
RE is defined as the occurrence of two or more RM 
segments which are essentially identical to the SM, bu 
are (typically) separated by some nontrivial physical 
distance in the RM. The relation of probability of RE 
to such physical quantities as signal-to-noise ratio an< 
map spatial frequency spectrum is developed. It is 
also shown that normalization increases the probabilifr 
of RE. 

In many applications, especially those concerned with 
scene matching for guidance and navigation, the RM 
(and possibly the SM) may be freely chosen. A discus 
sion of the factors affecting this choice is given, to­
gether with some supporting experimental data. 

The final section of this paper is concerned with the 
question of extreme distortion. In spite of their ap­
parent generality, unaugmented statistical decision 
theory techniques are useful only in situations where 
error and distortion processes are held under reason­
ably tight control. When this is not the case, a differ­
ent approach to decision making is required. A new, 
efficient, algorithmic technique for locating one scene 
in another is presented for cases of extreme distor­
tion. This algorithm is an important development in 
that it has a computation time requirement which 
grows linearly with map size, even though it performs 
a combinatorial search for a best f i t using a decom­
posed SM. For intermediate distortion problems, a 
simpler technique also involving SM decomposition is 
shown to be an effective solution. 

As noted in the introduction, this section wil l f i rst 
establish a decision theoretic model for match point 
determination; it then considers the effects of various 
noise and distortion mechanisms on the decision proc­
ess, as well as the significance and consequences of 
normalization. A scene characterization technique 
based on expressions devised for expected error is 
offered together with some supporting experimental 
data. 

Since this paper is actually a contracted version of 
Fischler (2), figure and equation numbers from the 
original version wil l be retained where possible to 
facilitate cross-reference. One effect of this conven­
tion wil l be the omission of figure numbers 2, 3, and 
8. References to appendices refer to the original 
paper although abbreviated appendix material is in­
cluded where deemed necessary for comprehension. 

A Decision Theoretic Model for Match Point 
Determination 

Let the vector X = (x1 , X2 , . , xN) designate the 
SM. Associated with the ith possible digital match 
location in the RM is a SM-sized subset of the RM 
which we designate as 

Thus (see Fig. 1) the RM is decomposed into a set of 
R "N-tuples" ( i .e . , vectors with N components). The 
SM is a single N-tuple, which we assume is one of the 
RM(i) which has been perturbed by a specified set of 
noise and distortion processes. 

We would now like to assign X (the SM) to some 
RM(i) according to a scheme which wil l minimize the 
resultant probability of error. That is, we wil l use a 
minimum error criterion. 

To minimize error, we must assign X to that RM(i) 
such that Pr[Yf |X] is maximized. The Bayes rule 
for computing the a posteriori probability is 
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If we assume that all Yi are equally likely to occur 
( i .e . , the SM is equally likely to have been derived 
from any location in the RM), then we have: 

Our decision procedure then consists of evaluating 
Pr [X |Y i ] for all values of i and assign­
ing X to that RM(i) for which Pr|X|Yi) is maxi­
mum. 

To obtain results having the greatest degree of gener­
ality, and sti l l leave our reasoning open to intuitive 
appraisal, we will employ geometric analysis in a 
suitably defined "signal space." Appendix B contains 
a parallel algebraic development which will be used to 
verify geometrically derived conclusions, and give 
some insight into the form of the "expected error" 
expressions under more specific noise assumptions. 

Let us consider an N-dimensional Euclidean Hyper-
space (EN) in which each of the N coordinate axes 
corresponds to one of the N components of a vector 
representing a RM(i) or SM. Thus, any given map 
will be represented by a single point in EN. Figure 1 
illustrates this concept for the case of E2 and five 
arbitrari ly contrived maps. 

A number of observations can be made about "distance" 
in signal space (see Appendix A). Given points Yi = 
(yi1 . yi2 yiN) AND Yj Euclidean distance 
between them is dij , where: 

wi l l be called the energy of RM(i), and in Appendix A 
the justification for this designation is given. Thus, 
the square of the distance of a point Yi [representing 
RM(i)) from the origin is equal to its "energy" and 
proportional to its average power. All RM(i) with 
average power less than or equal to d2 /N lie within 
the circle centered at the origin with radius d . Simi­
larly, a RM(i) disturbed by additive noise with aver­
age power would lie somewhere on a circle of 
radius dn centered at Yi . In the absence of any 
special knowledge or assumptions about noise favoring 
one cell of a RM(i) over another, or one RM(i) over 
another, it is reasonable to assume that the noise af­
fects each yik. equally and independently for all (i,k) ; 
that the noisenas zero mean value; and that the proba­
bility of a specific disturbance is inversely related to 
the magnitude or power associated with the disturb­
ance. That is, the noise is spherically symmetric with 
the same noise power for all map elements. This situ­
ation is illustrated (for N = 2) in Fig. 4a. The equi-
probability contours of a noise-disturbed signal, 
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Assume we are given a sensed map X = (x1 , X2), and 
we must decide whether it should be assigned to RM(i) 
represented by or RM(j) represented by 
Given the situation described above, a minimum error 
decision procedure would be to compute 

and 

In terms of the signal space representation, we can 
partition signal space by a hyperplane (dashed line in 
Fig. 4a) which is the perpendicular bisector on the 
line joining and Then if X falls on the 
same side of the hyperplane as we assign it 
to 

Figure 4b depicts a situation in which we know or as­
sume that our measurement of X2 is less reliable (or 
subject to more variation) than x1 . Note that in this 
case the equiprobability contours are elliptical with 
the long axis in the X2 direction. We can restore the 
situation of Fig. 4a if we scale each Xi by a quantity 
inversely related to our uncertainty in its true or nom­
inal value. This scaling results in a modified distance 
measure: 

We then have an optimal decision procedure identical 
in form to that given in relation [ 2] with d replaced 
by d' . 

Figure 4c illustrates the situation in which the disturb­
ances affecting x1 and X2 are not independent. In 
this case, since an error in x1(X2) implies something 
about the error affecting x2(X1), the symmetry axes 
of our equiprobability contours wil l no longer be paral­
lel to the coordinate axes. We note that if X1 and x2 
are positively correlated, and , the major 
axis of the equiprobability contours wil l have a 45° 
angle to the x1 coordinate axis.* To retain the de­
cision rule given in [ 2] , we must further revise the 
distance measure to effectively eliminate the inter­
active effects. In particular, a general linear trans­
formation is required to rotate the coordinate frame 
so that its axes are parallel to those of the ellipsoids. 
The coefficients TJK for this transformation can be 
approximated by the elements of a matrix which is the 
inverse of the covariance matrix of the Xi . In func­
tional form, we then have: 

Thus, we see that under rather general conditions, the 
optimal decision procedure (given by [ 2]) in deciding 
how to assign an unknown object to one of two possible 
categories is to measure the adjusted signal space 
distance (given by f 1), [3 ] , or [4]) between the ob­
ject (SM) and the expected values of the ideals repre­
senting the two categories [ RM(i) and RM(j)J . To 
decide between R possible categories, we can make 
(R - 1) binary decisions, each time eliminating the 
least likely alternative. 

The conceptual generality of the signal space approach 
has a number of practical limitations. To a large ex­
tent, these can be summarized by saying that the 
model is useful only in reasonably well controlled sit­
uations where the errors are small and random. Be­
cause these conditions can be met in many applications 
involving the detection of scene congruence, the signal 
space approach is very powerful. 

Let us now consider the significance of the quantities 
that appear in the "distance" expressions. The first 
quantity we wish to consider is , the expected 
value of RM(i) . The noise-free representation of 
RM(i) has been defined as Yi = (yi1 , yi2 . . . . . yiN) 
However, as we shall observe shortly, most of the 
error processes to be considered have a biasing** ef­
fect on the expected signal space location of RM(i) . 
Further, it is desirable to normalize RM(i) when we 
expect to encounter significant signal variations (such 
as amplitude gain and bias variation) whose parame­
ters we wil l not or cannot estimate. Normalization 
changes the expected signal space location of RM(i) 
in a known way. 

The quantity associated with the kth sample of 
any SM, is a measure of the total unbiased variation 
we can expect to encounter in attempting to measure 
yy^ . In a more general formulation, we could con­
sider this variation to be a function of the RM(i) as 
well as the sample index (k) . However, in this 
treatment we assume that the functional dependence of 
a on RM(i) is unknown and thus heuristically as­
sumed to be uniform over all RM(i) In the presence 
of scale and rotation error, wil l be a function of k 
in a manner derived in Appendix C. 

The quantity is a measure of the linear depend­
ence of the noise acting on the ith sample to the noise 
acting on the kth sample. (It in no way reflects on 
the relationship between the expected values of the 
samples themselves.) 

Given the orientation of the applications to which this 
paper is directed, it wil l not be practical in general to 
attempt to determine the values of the appearing 
in [4) . Thus, we will typically ignore the interactive 
effects and pay the associated error penalty; or we will 
assume some simple structure for the and at­
tempt to compensate for the interaction. For exam­
ple, a reasonable assumption might be that the noise 

**We wil l define biased noise as any noise or distor­
tion process that has the effect of shifting the ex­
pected location of RM(i) in signal space. 
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interaction between any two samples in the SM falls 
off exponentially with their separation. This assump­
tion is discussed in Ref. (4). 

Scale Change and Rotation Error 

Analysis of the effects of scale and rotation errors is 
a major theme in this paper. If the SM and its corre­
sponding RM(t) are translated into best alignment 
under scale and rotation error, it is obvious that cells 
near the map centers (i.e. , the true match point) wil l 
be in better registration than the cells on the map 
periphery. This point is illustrated in Fig. 5a, and a 
method for computing overlap is presented in Appen­
dix C. The two main consequences of this phenomenon 
are: 

(1) There is an upper l imit on the effective size of 
a SM. (This point is discussed in Appendixes B 
and C and the section on Extreme Distortion.) 

(2) The reliability of measurements falls off as 
distance from the map center increases. Thus, 
distance metric [3] should be employed in ap­
plying optimal decision rule [2] . This result 
is formally derived for the Gaussian case in 
Appendix B. 

Another result of the inability to completely align the 
SM with its RM(t) is the introduction of biased noise. 
That is, to the extent that two corresponding cells (one 
in the SM and one in the RM) do not overlap, a ran­
dom component having the same statistics as the com­
posite RM is added to the SM (see Eq. [B.1] ) and 
thus the expected value of every individual RM(i) is 
biased toward the point in signal space corresponding 
to 

as illustrated in Fig. 5b. The result of this biasing is 
to reduce the signal space distance between any two 
RM(i) and thus increase the probability of error in 
distinguishing between them. In the discussions on 
map normalization in the following sections, it is im­
portant to note that it is the expected value of 
RM(i), and not Yi, that is being normalized. 

Amplitude Gain Error 

Figure 6a illustrates the effect of an amplitude gain 
change on expected match point error. For no gain 
variation (G = 1), let RM(1) and RM(2), with ex­
pected values and , be alternative match point 
possibilities. Assuming that the sample variables 
have been properly scaled to equalize their variation, 
the hyperplane which is the perpendicular bisector of 
the line joining and is chosen as the decision 
surface corresponding to optimal decision rule (2) with 
distance metric (1). Under a gain change , all vec­
tors are extended radially out from the origin to 
new locations The optimal decision surface 
now becomes the hyperplane which is the perpendicu­
lar bisector of the line j o i n i n g a n d In 
general, the new and old decision surfaces w i l l not 
coincide, and any SM falling into the region between 
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them (shaded in Fig. 6a) wil l be classified in a 
nonoptimal manner. 

Figure 6b illustrates the effect of "energy" normaliza­
tion on amplitude gain error. If RM(1) and RM(2) 
are normalized by dividing each of their sample values 

by 

then they wil l have expected values and , where 
and lie on the same hypersphere centered at 

the origin of the signal space coordinate system. The 
optimal decision surface in this case can be seen to 
bisect the angle formed by -origin- If a 
gain change occurs, the angle between -origin-

in st i l l and the new optimal decision surface 
coincides with the old. Thus, the optimal decision 
surface chosen for energy-normalized maps remains 
invariant under a gain change. It can also be shown 
that the expected error for energy-normalized maps 
is invariant under gain change. These assertions are 
verified for the case of Gaussian noise in Appendix B. 
However, in Appendix A it is shown that energy nor­
malization itself raises the probability of error over 
the unnormalized case when no gain variation is 
possible. 

Amplitude Bias Error 

Figure 7 illustrates the effect of an amplitude bias 
error. For no bias variation, let RM(1) and RM(2), 
with expected values and be alternative 
match point possibilities. Assuming that the sample 
variables have been properly scaled to equalize their 
variation, the hyperplane which is the perpendicular 
bisector of the line joining and is chosen as 
the decision surface corresponding to rule (2) with 
distance metric (1). Under a uniform bias error 

= b ( l , 1 , . . ., 1), all vectors are displaced in 
a direction parallel to makes a 45° angle with 
each of the coordinate axes) to new locations 
The optimal decision surface now becomes the hyper­
plane which is the perpendicular bisector of the line 
joining In general, the new 
and old decision surfaces will not coincide, and any 
SM falling in the region between them (shaded in 
Fig. 7) wil l be classified in a nonoptimal manner. 

Thus, the hyperplane which is the perpendicular 
bisector of the line joining and is parallel to 
any bias vector The effect of acting on 
and then is simply to move , and along 
paths parallel to and thus leave unaltered. 
Thus, the optimal decision surface chosen for maps 
with zero mean value remains invariant under a 
uniform bias change. 

It is worth noting at this point that under nonuniform 
bias change, the appropriate normalization is to 
spatially differentiate (perhaps more than once) the 
maps. In the limiting case, this could result in a two-
level binary map in which intensity contours would 
provide the necessary information. For such a 
scheme to be effective, noise cleaning techniques 
which eliminate high-frequency noise without blurring 
edges would have to be applied to the differentiated 
maps prior to match point determination. 

Remote Error 

It is useful to consider two distinct types of error 
processes. The f irst type, which we shall call "Ac­
curacy Errors" (AE), are local deviations about the 
"true" match point, and reflect the fact that physically 
adjacent maps wil l have small signal space separation 
due to system bandwidth limitations. We define a sec­
ond class of errors, called "Remote Errors" (RE), 
which correspond to falsely detecting a match at a 
point typically remote from the true match point. An 
RE can arise due to the chance occurrence of more 
than one area in the RM closely resembling the SM. 

Thus, we define Remote Error (RE) as the chance 
occurrence of a RM(g) sufficiently close (in signal 
space) to the "true" RM(t) so that RM(g) falls into 
the expected sphere of error surrounding RM(t). 
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We can now determine that probability of a remote 
error as follows: Let us assume that the maximum 
number of distinct RM(i) is DM (see Appendix A) * 
Then the probability of a remote error for a RM with 
R components is: 

By the statement of the problem, Pr(g| t) = Pr(g) 
For the case where all distinct RM(i) are equally 
likely to occur, we have: 

where is the maximum value of the average signal 
power in a RM(i), is the average noise power, N 
is the number of independent samples in a SM, and R 
is the number of elements in the RM less the number 
of elements in the SM . 

Thus, we see that the approximated probability of a 
RE is proportional to the size of the RM, but in a 
stronger sense is inversely related to the size of the 
SM and the signal-to-noise ratio. In particular, a 
large number of independent samples can assure a 
very low probability of remote error. 

In some applications, it may be possible to reduce the 
probability of RE by rejecting any match point deci­
sion which does not exceed a confidence level based on 
the relative "cost" of a RE versus the "cost" of no 
decision (or reject). Reference (5) presents an 
analysis of this situation. 

Scene Characterization and Scene Selection 

Scene characterization is defined as a number associ­
ated with a scene which rates the probable effective­
ness of the scene in terms of its ability to minimize 
match point error. The importance of such a charac­
terization derives from the fact that in many applica­
tions in which the scene congruence problem arises, 
scene selection is a parameter which can be opti­
mized. For example, in map matching for navigation 
and guidance, the ground reference scene (RM) may 
be freely chosen, and we might even have some 
latitude in choosing the SM . 

Based on the definition given above, one appropriate 
scene characterization measure would be the expected 
probability of digital match point error using the given 
scene. In this sense, Eq. [ B . l l ] o r [B .13 ] can be 
used for scene characterization. We note that any use­
ful measure tor scene characterization is meaningful 

*It is important to distinguish between the RM(i) 
which are the components of some given Reference 
Map (and not necessarily distinct), and a catalog of 
all possible RM(i) which are distinct. 

only with respect to a particular decision procedure 
and noise environment. If the noise environment is 
assumed constant, then the "average weighted signal 
space distance (D')" between a RM(i) and one of its 
immediate neighbors (see Eq. [B. 14]) can be com­
puted directly from a given scene and used as the 
desired metric. 

In a situation in which we can choose among a large 
selection of possible scenes, the computational com­
plexity of a scene characterization measure can be a 
critical factor. For rough or initial screening. 
Eq. [B.14] can be approximated by simply measuring 
the sum of the squared difference of adjacent samples 
in the x and y directions. (These measures wil l be 
called the x and y Variation while the measures 
corresponding to Eq. IB. 14] wil l be called the 
Weighted Variation.) The following table gives the 
results of some preliminary experiments** on the 
correspondence between Weighted Variation and match 
point error for a fixed error package and decision 
rule Eq. [B.6] . 

It can be seen that for the particular error package 
employed, a map with a (squared) Weighted Variation 
of 50 or more in the x or y direction had no dis­
placement error in the corresponding direction. 

To a large extent, Variation measures are also meas­
ures of the high frequency content of a map. It is in­
tuitively reasonable to expect that a potential for very 
accurate positioning should be dependent on the pres­
ence of a significant amount of high (spatial) frequency 
energy in the scene. Further, for a given sampling 
rate, the relative independence of the measurements 
increases as a function of the high frequency content 
of the map. Thus, a high Variation measure also im­
plies a lower probability for remote error. 

As noted earlier, errors due to gain or bias changes 
can be minimized by either normalizing the scenes 
(both SM and RM) with respect to average value and 
to "energy" content, or by choosing scenes which are 
relatively uniform in these quantities. Thus, in addi­
tion to the proposed Variation measures, additional 
measures relating how statistically uniform the scene 
is can provide useful information. 

**Data used in these experiments were obtained from 
aerial photography of the San Francisco Bay Area. 
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EXTREME DISTORTION 

It has been noted that one effect of scale change and 
rotation error is to produce a "decorrelating" phenom­
enon as scene or map size increases. Thus, under 
scale and rotation error, there is an upper l imit to the 
useful size of a coherent map (see Appendix C). Un­
fortunately, SM size is the parameter that offers the 
greatest latitude for maintaining or improving match 
accuracy in the presence of excessive noise. 

The Concept of SM Decomposition 

One solution to the problem of extreme distortion is to 
acquire a large sensed map, and decompose it into 
segments of not greater than critical size. Each of 
these segments is applied separately to locate a match 
point, and the set of match points then combined (by a 
curve-fitting technique, such as direct or weighted 
averaging, least squares, etc.) either to derive a best 
estimate match point or to estimate the actual scale 
and rotation error. In the latter case, the sensed map 
can be computationally adjusted to eliminate the exist­
ing scale and rotation factors, thus allowing the entire 
sensed map to be applied coherently. (The process of 
error estimation and correction can be applied 
iteratively as many times as desired.) 

Figure 9 illustrates some of the above concepts. In 
Fig. 9a we depict a situation in which the SM is a ro­
tated contracted version of its intended image in the 
RM In Fig 9b we see that if the SM is treated as a 
coherent entity, and if region A of the SM is in 
proper registration, then region B of the SM will be 
correlated with the top left corner of the RM , result­
ing in a low correlation score. However, it the SM is 
decomposed into subregions (nine are shown in this 
example) and each subregion independently correlated, 
a pattern of match points similar to that shown in 
Fig 9c wil l be obtained. From this pattern we can 
estimate the desired parameters ( i .e. , match point, 
rotation error, scale factors). 

The Linear Case* 

Given a correlation pattern similar to that of Fig. 9c, 
a curve-fitting technique such as least squares forces 
us to assume something about the distortion process 
which produced the given pattern. The simple assump­
tion made up to this point is that the distortion process 
is linear and thus we would look for the best rectangu­
lar (or square) grid which fits the pattern in Fig. 9c in 
a least squares sense. The center of the grid is the 
desired match point, while the slope and stretching of 
the grid specify the corresponding rotation and scale 
errors in the associated SM . 

If a remote error occurred in one or more of the 
match points in the correlation pattern given in Fig. 9c, 
a rather large error could be introduced into our 

T h e concept of SM decomposition and its use in 
linear parameter estimation were independently ar­
rived at by Lynn Quam of Stanford University. He is 
currently preparing a Ph.D. dissertation which will 
include his results in this area. 

c. Set of Match Points Obtained for 
Independently Correlated SM 
Subregions 

Fig. 9 Decomposition of the Sensed Map To Reduce 
Scale and Rotation Error 
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parameter estimates. Therefore, it is desirable to 
employ some type of "clustering" technique which wil l 
permit us to eliminate "wi ld" points prior to making 
the least squares estimate. 

The "Rubber Sheet" Case 

In many problems of interest, the linear distortion as­
sumption of the preceding section would not be ade­
quate. More to the point, we are frequently faced with 
a situation in which it is not possible to offer a com­
pletely defined distortion mechanism suitable for prob­
abilistic analysis. In this case, we must f irst offer a 
procedure for locating the SM image in the RM ; and 
then provide a second procedure for finding the match 
point as a function of this RM image. 

Without a model for probabilistically relating a SM (or 
segment thereof) to a RM, we must (heuristically) se­
lect a distance measure to be used as the basis for 
classification. Consider some metric which 
defines the "distance" between the kth element of the 
SM and the jth element of the R M * Let us now con­
sider the use of this metric with the rather general 
class of distortion processes which sequentially con­
strain the elements of the SM . That is, for any given 
SM element xk, a constraint (ft) is placed on the re­
gion in which xk+1 can l ie. We now define the RM 
image of the SM to be that collection of yj for which 

[15] 

is minimized subject to a sequential constraint on the 
x k . 

Evaluation of metric Eq. [5] can be accomplished con­
ceptually (but not practically) by selecting N elements 
at a time from the RM and determining if they satisfy 
the constraint For those N-tuples which do sat­
isfy , we select the one which minimizes metric 
Eq. [5] as the required RM image of the SM . 

A procedure (which is comparable in computation time 
to conventional correlation), has been devised for find­
ing the RM image of the SM, and is presented below. 

Let the RM be represented by the sequence 

Assume we are given a distance function ; a sequen­
tial constraint set ; and we are asked to find the 
best (according to and embedding of X in Y . 

*In general, can also be a function of the physical 
distance between the embedded locations of xk and 
Xk-1' Xk-2 ....,X1 

Consider an M x N tableau where the rows are in­
dexed by the elements of Y and the columns by suc­
cessively larger subsequences of the elements of X . 

We now define the following quantities: 

The "best" embedding is then given by , and 
the "distance" between X and its image in Y is 
given by 

The example presented in Fig. 10 illustrates the oper­
ation of the above algorithm. The constraint set se­
lected for this example would include the case where 
the scene was stretched by pulling outward on the up­
per left and lower right corners of a rubber sheet 
containing the scene. 

and let the SM be represented by the sequence 
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Fig. 10 An Example of Two-Dimensional Embedding 

For some applications, we might expect parts of the 
scene to remain coherent while other parts undergo 
"rubber sheet" distortion. This situation can be han­
dled by the preceding algorithm by simply allowing 
certain of the xi to represent fixed arrangements of 
resolution elements, rather than single elements. 
This point is illustrated in the example of Fig. 11. 

Fig. 11 An Example of Two-Dimensional Embedding 
With Coherent Objects and Rubber Sheet 
Distortion 

For a RM with M elements and a SM with N ele­
ments, simple correlation would require on the order 
of kMN computations where k is a constant of pro­
portionality which takes into account one multiplication 
and one or more additions and subtractions. For the 
algorithm given above, the number of computations is 
st i l l proportional to MN, where the constant of pro­
portionality is now determined by both the distance 
metric and the constraint set 

Given that we have successfully embedded the dis­
torted RM in the SM, the need to locate a specific 
match point ( i .e . , the point in the RM at which the 
sensor is pointing) might not be relevant and, in fact, 
might not even be meaningful. However, if this re­
quirement does exist, then the match point can be de­
termined by comparing the resulting configuration to 
a number of stored models for distortion, all of which 
are subsumed by A best fit to one of these mod­
els would then determine the specific procedure which 
derives the match point from the embedded SM . 

The algorithm for rubber sheet distortion has a one-
dimensional version which offers significant simplif i­
cations . Let us consider the constraint set 

i .e. , we have a situation in which the sequence repre­
senting the RM is stretched relative to the SM . In 
a practical situation, if it is not clear whether the SM 
has shrunk or expanded, the desired situation can be 
obtained by linearly "stretching" the RM sequence. 

Fig. 12 An Example of One-Dimensional Embedding 

SUMMARY 

It is shown that the scene congruence problem can be 
formulated as a classification problem in a suitably 
defined signal space; this allows both geometric anal­
ysis, and the application of decision theoretic method­
ology. It is then shown that an optimal procedure for 
match point determination wil l typically be based upon 
a weighted Euclidean distance metric. (See section on 
decision procedures and Eq. [B. 6] .) 

The principal effect of scale and rotation error is 
shown to be a "decorrelating" effect as map size in­
creases . This in turn results in an upper bound on 
the effective size of a sensed map which is a function 
of scale factor and rotation. (Match accuracy can 



98 Session No. 3 Scene Analysis II General Papers 

decrease if map size exceeds this critical size.) Fur­
ther, the reliability of a sensed measurement de­
creases as its distance from the sensed map center 
increases. It is this nonuniformity which must be 
accounted for in the signal space distance metric. 
(See section on scale and rotation, Eq. [B.20] and 
Appendix C.) 

Normalization techniques to minimize the effects of 
amplitude gain and bias error are presented, and their 
significance is geometrically analyzed. In particular, 
normalization involves the effective reduction of signal 
space dimensionality (and the consequent increase in 
remote error probability) to produce a situation where 
the corresponding error process no longer affects 
either the decision procedure or the error probability. 
(See sections on gain and bias error, remote error, 
and Appendix A.) 

An analysis of the remote error problem shows that 
for signal-to-noise ratios greater than 1, the number 
of independent scene measurements is the predominant 
factor in assuring protection against remote error. 
(See section on remote error and Appendix A.) 

It is shown that a scene property, closely related to 
the high spatial energy content of the scene, is a good 
indicator of the quality of the scene with respect to po­
tential match point error, (See section on scene 
characterization and Eq. (B.14) .) 

For the "large error" case, two alternatives are of­
fered : sensed map decomposition in the case of linear 
distortion; and a new highly efficient algorithm which 
can be applied to "rubber sheet" distortion. (See 
section on extreme distortion.) 

Appendix A (Abbreviated) 

SIGNAL SPACE RELATIONS 

If v(t) has duration T and bandwidth W then 

[A.6) 

[A.7) 

[A.8] 
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corresponding RM element when the SM and corre­
sponding RM are in best registration under the con­
straints imposed by scale change and rotation factors. 
Appendix C gives a procedure for evaluating 

Assuming that the SM is equally likely to have been 
derived from any location in the RM, the decision 
procedure for minimum error is to assign X to 
RM(t) if: 

where is the Gaussian cumulative distribution 
function: 

where M is an empirical constant and 

[B.13] 

[B.14] 

Decision rule Eq. [B.6] takes into account the biased 
noise effect produced by scale change and rotation 
errors. For practical reasons, it is sometimes de­
sirable to ignore these effects and assume that = 1 
for all k . This simplification results in error 
probability (compare with Eq. [B.10]): 

Note that all for k* such that =0 ( i .e . , the k* 
elements in the SM and RM no longer have any area 
of overlap), the expected value of the summation in 
the numerator of Eq. [B.20] over the k* terms is 
zero. However, the contribution of these terms to the 
denominator is positive. This means that if the SM 
is made large enough so that becomes zero for 
part of the map, the resultant expected error is 
larger than that which would have resulted from using 
a smaller SM . 

Consider a situation in which scale and rotation errors 
are absent, but assume that an uncompensated ampli­
tude gain change can occur. The error probability in 
this case is (G = 1 for no gain error): 

For the case where RM(t) and RM(i) have equal 
energy 

a gain error can be ignored since it will not cause a 
change in the value of Eq. [B. 28] . 

Appendix C (Abbreviated) 

THE GEOMETRY OF SCALE AND ROTATION ERROR 

The Overlap Between Corresponding Elementary 

Areas in SM and RM Under Scale and Rotation 
Suppose the Cartesian plane is subjected to scale and 
rotation changes. That is. it is expanded by a multi­
plying factor of in the x-direction and in the y 
direction (the origin being the fixed point in both oi 
these expansions), and then rotated counterclockwise 
about the origin by an angle of 0 . Suppose further 
that R is a square centered at the point (x,y). which 
has sides parallel to the axes of the unexpanded, unro-
tated Cartesian plane and of length one, and that R' 
is R subjected to the above scale and rotation 
changes. We derive an expression approximating the 
area of 

Let R" be the square whose sides are of length one 
and are parallel to the axes oi the unexpanded 
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unrotated Cartesian plane, and whose center is 
(u.v). 

Based on the results ot the preceding section, it is 
possible to compute an upper l imit on the size of a SM 
beyond which its area of overlap (with respect to reso­
lution cells) with its original image in the RM ceases 
to increase. The entries in the following table give 
this l imit as the dimension of one side of a square 
array of cells, as a function of rotation and uniform 
x,y scale factor. 

*Note that if the map samples are not independent 
measurements, then the effective value of wil l 
be larger than the value given above. We are cur­
rently examining the heuristic of making an ex­
ponentially decreasing function of the distance between 
(x. y) and (u. v ) . 

Scale Factor 

1.00 
1.02 
1.04 
1.06 
1.08 
1.10 

Rotation (deg) 
0 2 4 6 

>50 
>50 
>50 
34 
26 
21 

>50 
>50 
>50 
40 
30 
25 

30 
33 
33 
30 
26 
23 

21 
21 
22 
22 
21 
19 

Note: (1) The values given in the above table are 
upper bounds rather than least upper 
bounds on map size. 

(2) If the map samples are not independent 
measurements, then the table entries 
should be scaled upward. Thus, if sam­
pling occurs at r times the Shannon rate, 
the table values can be r times their 
listed values. 
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