Session No. 11 Theoretical Foundations

AN ALGEBRAIC DEFINITION OF SIMULATION
BETVWEEN FR

Robin Milner

Computer Science Department
Stanford University
Stanford, California

A simulation relation between programs is
defined which is a quasi-ordering. Mutual simula-
tion is then an equivalence relation, and by divid-
ing out by it we abstract from a program such
details as how the sequencing is controlled and
how data is represented. The equivalence classes
are approximations to the algorithms which are
realized, or expressed, by their member programs.

A technique is given and illustrated for
proving simulation and equivalence of programs;
there is an analogy with Floyd's technique for
proving correctness oi programs. Finally, necess-
ary and sufficient conditions for simulation are
given.

DESCRIPTIVE TERMS. Simulation, weak
homomorphism, algorithm, program correctness,
program equivalence.

1. INTRODUCTION

Ore aim of this paper is to make precise a
sense In which two programs may be said to be
realizations of the same algorithm. We can say
loosely that for this to he true it is sufficient
though perhaps not necessary that the programs do
the same 'important' computations in the same
sequence, even though they differ in other ways:
for example 1) we may disregard other computations
perhaps different in the two programs, which arc
'unimportant’ in the sense that they are only con-
cerned with controlling the 'important' ones, (2)
the data may ilow diiterently through the variables
or registers, (3) the data may be differently
represented in the two programs. The program pairs
in Figures 1 and 2, studied in detail in Section

4, illustrate points (1) and (5) respectively; a
trivial illustration of (2) is the following pair
of programs:

read x,y read x,y

Xi= X +y yi=Xt+y

print X print vy

Although the above prescription is vague, we give
a relation of simulation between programs which may
fairly be said to match it. The relation turns out
to be transitive and reflexive but not always
symmetric; however mutual simulation is an equiva-
lence relation, and it is the equivalence classes
under this relation which may be regarded as
algorithms - at least this is an approximation to
a definition of algorithm.

*This research was supported mainly by the Science
Research Council, Great Britain and In part by

the Advanced Research Projects Agency of the
Department of Defense (SD-183) U.S.A.

with a member of D

481

We show also that there is a practical
technique for proving simulation in interesting
cases - though unfortunately simulation between
programs handling the integers, for example, is
not a decidable (or even partially decidable)
relation. Under a simple restriction simulation
ensures the equivalence (as partial functions) of
the programs, so this is also a technique for
proving equivalence; however in general equivalent
programs will not satisfy the simulation relation.

| also claim that in order to prove by
Floyd's [1] method the correctness of a program
A, In a case where data is represented unnaturally,
pernaps for efficiency's sake, the easiest and
most lucid approach is rather close to first
designing a program B which is simulated by
program A and which represents the data
naturally, and then proving B correct. This
was in fact the original motivation for studying
simulation, and is discussed Iin more detail In
Milner [2], which contains a first attempt at the
definition of simulation. The sequel [3] gener-
alizes the definition and the current paper is a
synthesis of the two, and may be read independently

2. NOTATION

We denote relational composition by
juxtaposition; if RC A X B, 5 B ¥ C then
RS = [(a,c)L]b.(a,b)ER,(b,c)CS]. The lnverse
of R is R-1 = | (b,a)| {(«,bY€R}. We intention-
ally confuse a (partial) function F: A -, B with
the relation F = [(a,bSlb:F{a)}. R induces a

fuuction 1mR: A ~>UB; for S CA, ImR{S) =

{b[ﬂaLS.(a,b)?Hj. For a function ' we some-

times write F/S) for ImFlS). The domain of

RCANB Is dom R = ImR(A), and the range of

R 1is ran R = ImR-l(B)° For any set A, 1

A
C A x A 1s the jdentity rclation on A,

. PROGRAMS AND SIMULATION

We f[irst introduce a definition ol program
which enables simulation properties to be stated
and proved succinctly.,

Deiinition. A program (¢ 1is a quadruple

) 3
(Din’ I)comp’ lout’ F) where Din’ DCONP' DUUL

are disjoint domains and F:D —- D is a total

function (D=D, U D . D) with restrictions
in comp out

(i) F(Din L Dcomp) - Dcomp UD, .

(11) The restriction of F to D
identity 1

is the
out

)
out

We call D, , D , D
in’ “comp’ “out
and output domains of 4&.

the input, computation

Conditions (i) and (ii) ensurce that starting

and applying |' repeatedly

in

4382

we get either an infinite sequence in D or
ocomp’

a finite sequence in D followed by a single

oomp

repeated member of D We have (ii) merely

to keep F total, which the theory requires.

Why must the domains be disjoint? What about
a program which inputs an integer and outputs an
integer? Here one might argue that Dy, = D o =

[integers}; but we get into no trouble having two
formally disjoint domains with for example an
injection or a bijection between them. In fact,
In practice we can distinguish between an input
object and an output object of a program; for
example they occur on different media, or at
different spatial locations. We are concerned
with a level of abstraction (i.e. abstraction from
real computers operating on physical data symbols)
lower than that in which a program is considered
as for example a function from integers to
integers.

Definition. A com utation sequence of (¢ 1is a

sequence [d 11 > where d €D, , d, .= (d),
i >0, and either di€ Dc omp”® i >0 or f{for some
k d€D o, 0<i<kand d=d €D ., 1> k.

Definition. A program (¢ determines its
assoclated partial function

A
ad Din —> Dout
in an obvious way.
Often we would have D = N X E, where
comp

E is the set of possible state-vector values,
and for non-recursive (flowchart) programs N s
the finite set of nodes of the flowchart while for
recursive programs N is the infinite set of
possible states of a pushdown store.

Before dealing with simulation, we state
without proof some theorems concerning correct-
ness and termination of programs. Theorem 3.1
embodies Floyd's [1J method of proving partial
correctness of programs. There is also a
correspondence with Manna's work - for example in
[4] ; our Theorems 3 .1 ard 3.2 correspond to
Theorems 1 and ? of that paper. However, Manna
is concerned with the representability of verifi-
cations (as defined below) in first order predi-
cate calculus; we perhaps gain in succinctness by
stating results algebraically and ignoring the
question of representability.

Henceforward we assume that the suffix 'in'

to a symbol denoting a set implies inclusion iIn
DN“' Similarly for ‘'comp' and ‘'out'.
Definitions. & is partially correct w.r,t.

Sin’ Sout it d(S)Esout

Session No. 11 Theoretical Foundations

is total Tot.
d 1is ote{lxcorrect Wer.ot Sin’ Sout if
in addition & 1is total on Sin'

S 1s a verification of & or S wverifies
A, if SS D and F(S) C S,

Theorem 3,1

Given S, , S
in out
[d partially correct W.Tre.t. Sin’ Soutj <
h
[There is a verification Sin U Scomp U Sout
of 4] ®
Theorem 3.2
Giviz “in’ Sout
tot i gy '
|Z totally correct w.r.t Sin’ Sout] S
| For every verification
/ I /
Sin U Scomp U’iout of &,
Sin N Skr P = Sout out R4 X
: = ‘ -
Corollary. (Set Sout Dout) | [z tcital on Si‘n]
[For evefy verific?tion S, US comp J S out
of @, Sin NS in# O =8 OUt# QT
N a t =
Ow assume two programs, (Din)comp’ Dout,F)

and _ / ' b’
nd - & <Din’ Dcomp’ out’ P

Definition, Let RS D x D', Then R is a
weak simulation of @ by & it
/

1) Rc< D, x D!
(1) —'tin Din U Dcomp X Dcomp v Dout

X D
out

(i1) R F’ < F R,
Condition (ii) simply states that R 1is a weak
homomorphism between the algebraic structures
(D,FY and (D’,F’). This concept is used in
automata theory to define the notion of covering
- see for example (Ginzburg [Z, p. 98].

Now denote R N (Din X Din) by R,

define Rcomp’ Rout similarly, so that R = Rin

[
J Rcomp LJ ROut and these parts are disjoint.

, and

Theorem 5.7,

It R 1is a weak simulation of 7 by & then

(1) R, @ cdr
(11) R -1 ls a weak simulation of ¢’ by @

-1 -1

(111) Rin ac:a Rout

Proof (i) The condition R F’ C F R may be
restated

vd,d’. (d,d’y € R = (F(d),F’(d")) € R (%)
Now suppose (d dk) € R ; éy. Then for some

, (d_ d)eR anda d'-dk,

computation sequence do dl""""di""""Of‘7"

g0 there 1s a

Now consider the computation sequence

Session No. 11 Theoretical Foundations

do,dl,....dk,....of d. We may prove by induction
using (*) that (d,,d’) ¢ > 0,
g (*) A { i' i) R, 1 >0 Henccj dkiDout
(d,d,) € &, (4, /€ R and so (d_,d'y € FR__
(11) 1t is enough to show R~} F c F’ R7L,

But this follows easily from the fact that (*) is
equivalent to RF’ C FR.

(111) Follows directly using (i) and (ii). ¥
Theorem 7.3(1) says that the diagram

t

Din‘ g Dout
Y N
A

4
Din‘ — out

semi-commutes (i.e. in (1) we have ¢ not =). If
we wish to be able to use 7' to do the job of 7,
we need more: we need the following to commute

Din = A > Dout
’ 77 4
R -1
in Rout
>
/ ¥
Din > l)out
7'
i.e. we require (3" R ;/‘"' R-1 Theorem 3.4
* . q in out' orem e

below shows that for this it is sufficient to
require R to be a strong simulation of 7 by 7',
where

Definition. A weak simulation R of 7 by 7
is a strong simulation if in addition R and

in
rR-1
ou

. are total and single valued.

Note that R'l is not necessarily a strong
simulation of 7’ by &, so unlike weak simu-
lation, strong simulation is not symmetric,

Theorem %,k
If R 1is a strong simulation of (7 by (7’
then ﬁ" R e’?’ R-1
in out
Proof (©) Post multiply Theorem 5.-(i) by
-1 -1 -1
Ro;e and use R R- C 1 (Rout single valued)

out
(€) Premultiply Theorem %.,3(ii) by

-1
Rin and use IDin - Rin Rin (Rin total). X

(Note that in the above we did not use the totality

of R X nor the single valuednesB of R,).
ou

Let us retum to the discussion of algorthm
in the introduction. If there is a strong

483

simulation of a by a we say a strongly sim-
ulates a, and it is easy to show that this is a
transitive reflexive relation, i.e., a quasi-
ordering. Mutual strong simulation is therefore
an equivalence relation, and equivalence classes
may be thought of as algorithms, each of which

IS realized by its member programs. Moreover,

if we divide out by this equivalence relation we
obtain from the quasi-ordering of programs a
partial ordering of algorithms.

It is worth noticing that there is always a
weak simulation between any pair of programs -
just take R = 0 - so a similar definition of
"a' weakly simulates a" is vacuous.

We finish this section with two simple
results which exhibit the close relationship
between verifications and simulations.

Theorem 3.5

If R 1is a simulation of @ by (7' then

(1) dom R wverifies 7
(11) ran R verifies 7’

Proof 1n view of Theorem 3.3(ii) we only prove
(1). Clearly domR C D, and we only need show
F(domR) ¢ domR, i.e., Vd. d € domR = F(d) C domR,
But d€ domR =»3d’. (d,d’) C R

»3d’'. (F(d),F'(d")) € R
= F(d) C domR. X

This thcorem says that simulation ol @ by
& implies the partial correctness of (7 w.r.t.

domRin, domROut HHowever, normally we are

interested in partial correctness w.r.t an

Sin' SOut where Sout is much smaller than

domRout; for example if R

'{

is total then
out

domR =D and ¢ 1s always partially

out out’

correct w,r.,t, S, , S when S = DN .
in out out out

Theorem 3,

If S wverifies ¢ and R 1is a simulation

of @ by 7' then ImRt’S) verifies &'.

Proof We require F'(ImR(S)) - Im1S).

But F'(ImR(S)) = I, . S)

- ‘o) :) o -~
Q;ImFR 'S since KF® < FR
= lmR(PfS;)

< Im, 'S) since F(S)C S,

Thus in a precise sense a proof of partial
correctness of ~' may be factored into a proof
of partial correctness of ~ together with a
proof of simulation of ~ by &'.

4 . APPLICATION TO HOMNCHART

In this section, we show how we may demonstrate

Session No. 11 Theoretical Foundations

PROCRAM (7 PROGRAM &’

i:=0 1 =20
I
—»
-

JE°8 €8 no

(«; 0. A @ @ # i < PnD

no

1 < ene \\\ Rl;’ i Q.hn€>
o0 “i NG

no yes

1 + 1

|
it

g x)

”
1

x
n
o<
<

Figure 1

Session No. 11 Theoretical Foundations 485

™ —
>
+
!
g =
ew -:
T 7, .-
S O TR
& o -~ =
=
/-\ S

h

hh

(h
no
no

O

T
1
D
1

-~ 73] — s
i + e |W — Q - +
e o SO | o i 4 + {! -
) o~ I —
)] b an i _ IV H-',::
> - ~ fl I ..E I
'.’).‘ £ \—/ . —_— es
- . 4 &é
J I—-?—-h
1
l
Ty
o
e
- 2
t \%
— "
4 ' t
i il
\ 3
t

PROGRAM &

486

a simulation between two programs in a manner which
bears a close relation to Floyd's method for proving
correctness of a single program. Of the two examples,
the first has the same data representation but dif-
ferent control in the two programs; the second has

different data representations in the two programs.

Given a flowchart program with input domain D.
in,
and node-
out

set N, and given also an input function f. :D, E

i in
E - Dout , It I1s a simple

prol\?ram according to
= NxE and FD =D

and the tests and

state-vector domain E, output domain D

and output function f . :
out

matter to formalize it as a
our definition, with D

defined in terms of f,, T,
In ou

assignments in the boxes. Alternatively, we may
formalize it by selecting a subset M ¢ N so that
every cycle in the flowchart contains a member of
M (we call such an M a cycle-breaking set) and
define D instead as M x E. The cycle

comp
breaking property ensures that F
again total.

DD is

[\bN Suppose i rg n d d' we have D =
M E D - / / m /
X , . l
M x E Z 47

y have
been obtained by the above formalization from flow

chart programs, for example. If H is a simu-
lation o T , | »/ we have R - :

a Y.l a comp = (M x E) X
IM y E'), and to exhibit R it is sufficient

to exhibit R_/ for each "M, m'e M' where

= |/ / g d NE
Rmml t\e)e ,\I(\<m’e>$<m y € >*-- RcompJ'

In the following two examples we exhibit the Rmm

and also indicate how the proof of RF' FR would
go.

Example 1. See Figu 1).
each program are pairs <(n,x), state vectors are
trip I{i,n,xd and only x is output. The
node-41,} 1s been chosen to formalize «,
and {I ,"',7} to formali:@'. So if 4,k
denote integers and reals we have

sume that inputs to

- /
Din - Din

E' = U xd x £, D

com
7 -/ / p
{17, ",2"'} x E;

= Jy &

=I .)’ —
{1, } x E; D omp

F o=

Dout - Dout = A
and F , the transition function for &, 1is
given by
F(d) = if d€Di then {1,{0,n,x)where {n,x' = d
n
else 1f d- D then let (m,{1,n,x) = d;
c omp —
if 1 + 1 < Zn then (m,{i + 1,n,g(x))
else If 1 + 1< rn then ({,{(i + 1,n,
gix)N"
else g x)
else d.
F' for g’ 1is defined similarly.

Session No. 11 Theoretical Foundations

We postulate a simulation R by giving

i Ry, and R_, for (m,m’y € {1,°} x {17,
7',5' , as follows:
Rin ~ IDin b Rout © Inout 3 Rypze = Roys = 05
Rll' { ({i,n,x),(1,n,x))|i< 2n)
Ry, 0= { ((1,n,x),{1,n,x))|?n < 1 < 3n}
R, s= {({1,n,x),{d,n,x))|3n < 1 < Ln)}
e {{({1,n,x),{{,n,x))|kn < 1 < 6n}

For example, we may think of Rj;» as containing

all state-vector pairs attained at the node-pair
(1,”’y when @,7/ are obeyed synchronously
starting from an input pair in R, However, it

contains also many other state-vector pairs (since
there is no constraint on x in the definition
of R /), and simulation will normally have this

generous property. R-q3

empty set, because the node p a¢1l,2'Vi s
never reached.

IS here taken as the

FR we must show for all

To prove RF'c

d,d'
| (d,d’y © R = (F(d),F'(d’)) € R
and this may be done by cases

Case 1:

(d,d’> ¢ Ryn

Case _: (d,d’) € R

out
(d,d"N = ((m,e),(m",e’))

le,e') © R

Case ° ;.
mm

where

which is a fairly routine matter using the defin-

itions of F,F', and we leave it to the reader.
Nov since R is a strong simulation, and
Indeed Rin’ Rout are identities, Theorem :..L

entitles us to conclude §= 3’.

Example :See Figure "). This example
iIllustrates simulation between two programs with
different data representation. We describe this
example In less detail, to save space. Each
program is supposed to input a string c, a

character F and a string T, and to output the
result of substituting T for P everywhere in
c. Thus if S is the alphabet of characters,

|, =p’ =8y sSx¥s<r e S* is the set
N in

of strings over S) and D =D, . =5,

Program @ handles strings and characters directly
using the functions hd,tl, < > (concatenation)
and the null string ¢. The three inputs are to
the program variables £, 1, respectively,

and output is from the variable oco. On the other
hand, program ' represents each string as a
segment of an integer-indexed character array;

on input the two input strings are stored iIn
arrays s,t (indexed from 1), their lengths + 1

in integer variables hl.kl and the character in

Co»

Session No. 11 Theoretical Foundations

x, and output is the string ss(l),ss(2) ss (hh-

1)

The flowcharts are formalized as programs
(in our sense) with ____ ____ {1,2}, {1’,2'},
and we have D m{1,2] x { set of possible

comp

values for the Brogram variable vector of &, and
similarly for EJomp' and F' the transition
functions, are easy but tedious to define. We
now exhibit a simulation by giving R, , R and

In" out
the R .+ for mm’de {1,2} x {17,027}, using

an auxiliary function seq; arrays x integers X
integers — strings defined by

The string a(i),a(i+l),....a(j=1)

, if 1 <]
seq(a,i,j) =
Arbitrarily defined if i > j.
Rin= ID ’ Rout= ID ’ Rll' N R”l' = 0;
in out

Rll'= f<<00,g,go,f,ﬂ,Tn,T\,<S,h,h1,55,hh,X,y,
t,k, k1| P}

R,.’E = {((00 yO 00 ,E,T‘.aTo ,T>,<S,h,hl,95)hh)x!y!
kKDY | P

Where Pl = Cu = Seq{S,l,hl) N = Seq(s’h’hl) A
To = seq t,l,kl)a
dc = seq(ss,l,hh) " £ = x A1 < h <
hl A1 <kl A1 < hh

P AT = seqit,k,kl) A "=y A 1
k - kl,

k

and P

Nowv as in Lxaraple 1 the proof of RF' ¢ FR

must proceed by cases; it will use certain propert-

les (or axioms) concerning the string handling

functions, the array and integer handling functions

and the function seq. We leave it to the reader

again. Again, since R, , R are identities we
In out

have proved that a=a

There are some interesting points about this
example. (1) It seems that program @ is more
natural than 7', though this asymmetry was not
present in Example 1. In fact, program @' s
only a slight modification of part of a real
program written for use rather than as an example.
In the process of proving « correct (See [:-])
using Floyd's technique, | found that the assert-
lons associated with parts of the program were
most naturally expressed using the function seq.
Also (this is discussed in more detail in [-]) the
task of proving orrect factored simply into
two tasks - that of proving ~ correct (an easier
task since 7 Is more natural and closer to
programmer's intuition) and that of proving the
simulation. This 'factoring' was made precise by
Theorem 3.(.

(2) Unlike in Example 1, the flowcharts here have
identical shape, and it is meaningful iand even
true!) to say that under identical inputs the

487

programs follow the same path. In Example 1 such
a statement would not be meaningful,but in Section
5 we show that a similar statement has meaning in
cases more general then Example °, and provides us
with necessary and sufficient conditions for the
existence of a simulation between two programs.

5. PARTITIONED SIMULATION

We nowv obtain necessary and sufficient
conditions for the existence of simulation between
two programs 7 and ¢&’.

Definition. If J is any indexing set ana M, =
{leje..l},nj = [(;Jfljc J} are partitions of D ,

D’ respectively, then (m_,m/} is a arﬁ?mic?n
m p y’ (J! J/ p
pair for D , D' (Of course any two domains

comp comp
can have a partition pair, but we are only concerned
with computation domains).

Definition. Computation sequences {di} in &,
{di} in ¢’ agree for (m,,M) if Vi,).

€ = d! -

di_ Cj < diE Cj

Definition. A simulation R respects (T

If R c UoaC, ¥ ¢
comp AR]

Theorem 5.1

(Weak Simulation Theorem). C(iven R{n C

and a partition pair (WJ,H;S of

4
Din ’ Din

D . DY
comp comp

equivalent:

the following two statements are

?

a) Computation sequences {di] of @,
{d{} of @' for which (d.,dJ\¢ R: always
oy,
agree for (It J)

b)) There is a weak simulation R = R;

in
| 5 - a' whi
| Rcomp) Rout of @& by & which respects
'
(ﬁJ,ﬁJ\.
Proof 'a) = +b). It is enough to take

R = { le, e’ ‘ There are computation sequences

{di} ot a, {d{} of @' for which (d.,d’" ¢ R:

and for some k e=d e'=d£1.

k’
b)) = a). Assume R. Take any
computation sequence {di}, [d;} for which
INE ave Yi . (d,,d.) R
(d,, ,dg)¢ Rin' Then we have i ‘di’ .

« . . r - .
since R 1is a simulation, so either (di,di\ﬁ Rin

’
e <3 d.,°¢C., and d/< C
U RDut or for som] {-C; ;]
since R respects f”],ﬂj\- Thus (a) follows.
| s

1n

488

Theorem % .-

-+

(Strong Simulation Theorem). Given R

in
! v ~ / -
= Din g Din’ Rout :'Dout g Dout with R'n’
-=1 ' - 7o.mh
Rout’ both single-valued and total, and ¢(17
a partition pair of D D! the following

comp’ comp’
two statements are equivalent:

'a) g=1R] 7 R“l, and computation

in out
sequences [di} of 2, {d{} of 7 for which
I\ .
(d, ,d; < R, always agree for ¢ T WJS
'b} There is a strong simulation R = Rin
| - - . 7
L Rcomp _ Rout of 7 by @7 which respects
iy,
<WJ’ g

Proof fa) = (b). By the corresponding proof in

Theorem - .1 there is a simulation R,
in comp

R which respects (7,7’ and for which

N out J* J

(e,e’NT R = For some /d,d’\c R, , e =
out . . 1n
2(dY and e’= 7'(d ")

A
’ — - »
- {(e.e" NV R since /7 =
’ out’

Ri’n 3' R;;i and both R;n and &'
are single valued.
Thus R ~ R_ , whence R, JR o RF
out - out 10 comp out
is also a simulation respecting /7_,7’"% and

J
moreover a strong one, from the conditions of the

Theorem. (t?) = (a). Take any do€ Dyp. and
i = R:n (do). This is defined since R} 1is
total. Then by Theorem .1 the computation

sequences [di]’ [d{} agree for {WI,WSX. It

follows also from this that either both or neither
of @(d), 2 (d!) are defined. If neither, then

neither of the functions /J, R{n Z RDGE is
defined for d;. 1If both, then for some k /dk,

'Ne RT = 4d,) ‘= 5 N,
dk’ i ROUE and dk ad,), dk a7 (d, But

 p¥*e ’ '~ n* :
ik = Ro : (dk) and d; RinhdJ) so the functions
a, R*i'n d’RO't both yield result d, for argument
d,, since 0;1 is single valued,
=g A r-1
It follows that 2= R/ o R "L X

(Note that this proof nowhere uses the totality of
R*"1y

out

Now the coarsest partition pair /ﬂj,ﬂj§ has

J a singleton and any simulation respects it, We
therefore have the following corollary to Theorem
C; ll.

Corollary ».%. CGiven RIn there is a weak simu-

.
lation R =R U R L R, of 7 by &

Session No 11 Theoretical Foundations

if ad only if computation sequer{di]sin

d{d'} in c h tr<dodo’\€-l;n always

Ienqt ength“m*her C]f:)one(L:‘ndeﬁned “}:IT ’ﬂ (t

There iIs a corresponding corollary to Theaem
5. , which we omit.

Finally, we give a corollary for flowchart
progams of the sare shape.

Corollary ... Let D = Nv E, D’ =

comp comp
N . E’: call N thf node set
{

7'). Define <

E'|n< Nb. Then two computation sequences agree

f =y
or (W&, .

path, and so we have the following:

S;ommon t? 7 and
n} > E{n€& N, n! = {n} v

exactly when they trace the same nodc

Given Rin’ there is a weak simulation
— v ! . y ,
R—Rin Rcomp‘ Rout of 7 by & which
respects {ﬂw’ﬂé> if and only if every pair of

computation sequences {di] in 7, {d;] in 7

such that /d.,df%¢ R

in trace the same node path.

X

Again, there is a corresponding corollary
to Theorem “.-, If as in Section - we exhibit

R by exhibiting R , = E . L’ for
comp nn -

"R respects /T ,”é\” means

This is the situation in

! -
n,n- N, then

/
R,=C:,n¢n
nn

Example of that Section,

" GONOLEONS AND POSSH E [BHHVENIS

The idea of simulation, which is really an
application of the notion of wesk homomomphism,
Is interesting In \Wwo ways:. theoretically,
because it allows one to abstract sore irrelevant
detail from programs to are closer to a definition
of algorithm, axd practically because there is a
manageable technique for proving simulation
between programs, which in sore cases ney nde
easier the task of proving a program correct.

There are two possible directions for
development. First, we have restricted to a
single-valued, total transition function r. The
situation looks rather different when we relax
these conditions - for example we should consider
computation trees rather than sequences. Second,
we should consider simulation of parallel programs,
ad treat progams which perform the sare compu-
tations but not necessarily in the sare sequence
as serializations of the sare parallel program -
or of mutually simulating parallel programs. These
extensions nmey bear the ssre relation to the work
of Mara [9] ad Ashcroft and VMa1a [¢] on the

correctness of nondeterministic and parallel
progams * the present paper bears to Mannds
work on serial progams [4] .

Session No. 11 Theoretical Foundations

ACNOMBEDCEVENTS

This work owes much to Peter Landin who

largely pioneered the algebraic approach to
programs. This paper is in the spirit of [8],
although that paper is concerned with the structure
of a single program (as a product algebra) rather
than relations between programs. | also had
profitable discussions with Peter Landin, Rod

Burstall and John Laski.

1.

.I u! l
[]

S.

6.

REE

Floyd, R.W., "Assigning Meanings to Programs”,
Proceedings of Symposia in Applied Mathematics.
American Mathematical Society, Vol. 19, 19-32

1967).

Milner, R., "A Formal Notion of Simulation
Between Programs”, Maxo 14, Computers and
Logic Research Croup, University College of
Swansea, UK. (17/0).

Milner, R., "Program Simulation: An Extended
Formal Notion", Mo 17, Computers and Logic
Research Group, University College of Swansea,

UK. (1961).

Manna, Z., "The Correctness of Programs", J.
of Computer and Systems Sciences, Vol. 3, No.

2. 119-127 (1969).

Manna, Z., "The Correctness of Non-deterministic
Programs", Stanford Artificial Intelligence
Project, Mo Al-95, Stanford University

(1969).

Ashcrof t, E.A., and Manna, Z., "Formalization

of Properties of Parallel Programs", Stanford
Artificial Intelligence Project, Mo Al-110,

Stanford University, (1970).

Ginzburg, A., Algebraic Theory of Automata.
Academic Press (1968).

Landin, P., "A Program-Machine Symmetric
Automata Theory", Machine Intelligence 35,
ed., D. Michie, Edinburgh University Press,

99-120 (1999).

4389

