THE REFORMULATION APPROACH TO BUILDING EXPERT SYSTEMS*

William S. Mark"
MIT Laboratory for Computer Science

Abstract

Many of the tasks that go
of an expert system — collecting the expert
knowledge, setting it up for efficient
problem-solving, providing mechanisms for
acquisition and explanation are structured by
the choice of organization for the system's
knowledge base. This paper discusses one such
organization and the implementation approach it
entails. This approach has been used to produce
a business consultant program.

into the building

Introduction

Recently, a considerable amount of research
has been directed toward the development of
programs which provide problem-solving expertise
to the user ([Brown, et al.1, [Buchanan, et al.],
[Davis], [Hart], [Martin], [Pople], [Rubin],
[Shortliffe], [Sussman]). The methods for
building these programs differ mainly in the way
they trade off the ease with which knowledge can

be acquired and explained against the efficiency
with which it can be used to solve problems. The
approach taken here explores a different
trade-off: concentrating on a representation for
the expert knowledge which is the same time
easy to build and efficient to at the cost of
increasing the complexity of process which
applies this expert knowledge any particular
problem.

at
run,
the
to

All approaches to building expert systems are
essentially mechanisms for applying general
knowledge about a class of problems to specific
examples of that class. In existing systems,
particularization of knowledge is part of
problem-solving. For example, in rule-based
systems ([Davis], [Shortliffe]), the process of
deciding whether an expert rule is applicable to a
problem is part of the process which uses that
rule to help solve the problem. When some state
of knowledge about the problem matches the pattern
of a rule, the rule |Is automatically applied.
This creates a new state which will be wused for
further rule application a process which
continues until a desired solution state s
reached. Note that this method requires that the
same knowledge representation be good for solving

*This research was supported by the Advanced
Research Project Agency of the Department of
Defense, and was monitored by the Office of Naval
Research under Contract Number N00014-75-C-0661.

Current Address

Computer Science Department
Research Laboratories
General Motors Technical
barren, Michigan 48090

Center

Acq.-2:

29

enabling the program to see when
Frame systems [Rubin]

problems and for
knowledge is applicable.
have a similar property.

In the approach presented here, application
of knowledge is separated from problem-solving.
Knowledge representations and the problem-solving
procedures which use them are tailored
specifically to solving problems in the domain of
interest. This allows them to be easy to build
and explain, because the expert's concepts and
procedures can retain their real world
interrelationship within the program. At the same
time, this problem-solving knowledge can be
efficient to use because the system builder can
take advantage of algorithms which are
specifically designed for those
interrelationships. All of this is at the cost of
providing a separate, relatively sophisticated
procedure to find a mapping between the
specialized expert problem-solving knowledge
structures and the (presumably very different)
input problem structures.

This approach has been used to Implement an
expert system which uses a cause-effect flow model

of the firm ([Forrester], [Gorry]) to solve work
force control problems presented as one page
business cases [Mark],
Definition of Reformulation

The basis of the reformulation approach is
the following model of expertise:
input problem expert
description model | Wag everything the

expert knows
about the
domain

eformulation
modelled version of
the input problem

used for problem-
solving efforts on
a particular problem

Figure 1. The reformulation mode] of expertise

The expert knowledge is in the form of a
self-contained and self-consistent model of a
class of problems (and solution methods) in the
domain of interest. The client describes problems
in "naive" terms i.e., in a form that s
certainly not based on, and in fact may vary
widely from, the expert's formalism for describing
things in the domain. The expert's task is to
understand what the client is saying in terms of
the self-contained, self-consistent model: to
reformulate the naive description into something
which can be handled by the expert problem-solving
methods of the model. That is, the expert creates
a modelled version of the input description which
preserves the special representation and

Mark

consistency of the general expert model, but which
is particularized to the problem at hand. The
expert's specialized problem-solving procedures,
which take advantage of that representation and
that consistency, can then be used on the modelled
version in order to solve the client's problem.

consider the

As an example of this process,

case of a business consultant who views the firm
as an interconnection of regulated flows (of
goods, personnel, money, etc.). The consultant
solves problems by (1) diagnosing the client's

complaints as being caused by one or more of the
various kinds of flow problems he or she knows
about, and (2) suggesting changes in the
regulation of certain flows in order to ameliorate

these problems (see [Forrester] and [Corry] for
examples of this basic approach). Thus, the
consultant reformulates the business situation
into a modelled version which is in terms of the
flow model so that flow-based diagnostic and
solution procedures can be used. However, the
modelled version also incorporates all of the
essential characteristics of the client's firm so
that the diagnosis and solution make sense for
that firm.

Reformulation, then, s the process of
constructing the mapping between the client's
naive problem description and the specialized

expert's knowledge.

Reformulation as an Implementation Methodology

The importance of the reformulation model
shown in Figure 1 is that it can be used to define
a basic method for organizing expert knowledge in
programs:

(1) The concept structures of the expert knowledge

base are chosen with reference only to the
dictates of the expert model. For example,
for the cause-effect flow models of the
business consultant, the concept structures
look like

(Cl) (DETERMTNEDBY (EMPLOYEES)

(INFLUX (ACT-ON (PEOPLE)
(HIRE)))
(OUTFLUX (ACT-ON (EMPLOYES)
(FIRE)))).
i.e., "the number of employes is determined by
the number of new hires coming in and
ex-employes going out," In a database system

a possible concept structure would be
(C2) (ACCESS PROJECT
(CHARACTERISTICS
(JOB-NUMBER)
(JOB-TYPE))
(OPTIONAL-CHARACTERISTICS
(DATE-SPECIFICATION))),

i.e., "in order to find a particular project,
its job number and type must be specified, and
some date information may be specified”. The
point is that in choosing structures, the

Knowledge

(2)

(3)

(4)

(5)

(6)

Acq.-2:
330

concerned with the
expert knowledge, not
of the system which

expert need only be
characteristics of his
with the characteristics
will apply that knowledge.

All of the program's knowledge about a concept
is stored with that concept and nowhere else.
The fact that (HIRE) is an action which
operates on (PEOPLE) according to a certain
policy is found under the concept (HIRE) —
never as part of some problem-solving
procedure that "knows about" (HIRE).
Moreover, all of the policies that the program
knows about for controlling hiring are found
under (HIRE).

Problem-solving procedures are constructed so
as to use the given structures efficiently.
For example, the business consultant program
contains specialized procedures for tracing
cause-effect relationships through flow
structures represented as in (Cl). The
database program could have a specialized
procedure for determining the best access path
to objects described as in (C2).

Knowledge about how a
structure applies to a
not stored with the structure. All decisions
about how to apply a given piece of expert
knowledge are made by the map construction
process; e.g., the choice of a specific hiring
policy to model (HIRE) in a particular firm,
or the decision not to model (HIRE) at all,
are the responsibility of the map construction
process.

given expert concept
particular problem is

For the purposes of map construction, expert
concept structures are considered to be
patterns which must be matched with input
structures. The mapping procedure itself
consists of transformations which may be
applied to these patterns +to produce new
patterns which are closer in form to the input
structure under consideration (see Figure 3).
One kind of transformation allows the
substitution of more specific patterns for
more general ones. The program would use this
kind of transformation to change the (HIRE)
concept in (Cl) into a pattern which could
match a particular firm's hiring policy.
Another kind of transformation can be used to
delete the (HIRE) concept — and the concepts
that depend on it — from (Cl) to reflect the
fact that no match is expected at all in a
particular problem. The kinds of pattern
transformations available to the program are
listed and discussed below.

The procedure which decides when and where to
apply these transformations is controlled by
(in a sense, parameterized by) information
derived from the patterns that have already
been successfully transformed and matched to
input structures. These matched patterns are
contained in the modelled version of the
problem at hand (see Figure 2.). For example, .
(see Figures 2 and 3), the fact that (Cl) has
been expanded to model a particular hiring

Mark

policy which separates employes into SALARIED
and UNION will be noticed by the selection
procedure and used to aid the choice of viable

transformations later in the problem.
Specifically, as the modelling effort
continues — and where that much detail is
necessary — only transformations which

preserve the distinction between SALARIED and

UNION will be allowed. Deciding how detailed
a pattern to present at given point is also
part of the transformation selection

mechanism, as we will see later.

expert knowledge base

pattern :
transformation viewed as a structure
process o of patterns
™ s features drawn
- I from patterns
[transformed pattern] "

b

matched patterns =

matc modelled version

Figure 2. Reformulation as implementation

In summary, a reformulation system works by
mapping input problem descriptions into the
concepts of its expert model. It does this via a
kind of pattern-matching in which the expert
concept structures, viewed as patterns, are put
through a series of transformations in order to
make them closer to the input forms. The
particular transformations and the patterns to
which they are applied are chosen by a selection
procedure which is parameterized by information
drawn from already matched patterns.

Advantages of this Approach

Before going into the details of how this
methodology works, | will discuss its advantages
as an approach to building expert systems. First
of all, notice that the system's mode of operation
is to try to make everything it is given into
something that can be handled by its particular
expert model. Although this may seem a little
severe, it is really just an acceptance of
reality, and perhaps an advantage. In the
foreseeable future, expert systems will only be
able to do a few things, will know relatively
little about relatively restricted domains. If
the system cannot map an input problem (a request
to a database system, a business consulting
situation) into one of the things It knows about,
it will have to give up on the problem.
Therefore, it is reasonable to construct systems
which work by trying to channel all input into the
few things they know how to do.

This is the reality — the advantage is that
this allows the system to always work from its
knowledge base of comparatively few, well-formed
expert concept structures. Only transformations
which originate from these structures can
constitute legal mappings. In the well-structured
models assumed here, concepts will be basically

canonical: they will not overlap unnecessarily.
The possible ways to manipulate concept structures
which result in new legal concept structures will
be few and well understood. Thus, at any point in

KnowlpHgo Acq.-2:
331

the mapping effort, the transformation selection
procedure will have a very restricted set of root
structures from which to begin transformation
chains. Since relatively few transformations
result in new legal structures, the set of
possible transformations at any given time will
also be restricted. Furthermore, the system does
not depend on the natural parsimony of the model;

it provides its own restriction mechanism based on
information gathered from the mapping effort so
far.

This restriction mechanism is a key feature
of the reformulation approach. It is used to make
pattern-matching efficient. Remember that in this
approach patterns are equated with concept
structures, not with subgoals as in other systems.
At each stage in the pattern transformation
series, the program can look at the concept
structures it has already matched in order to see
what features of the problem restrict the choice
of transformations that can be applied. We will
see how this restriction mechanism works in the
next section. T mention it now because it is an
advantage of the approach: it provides a mechanism
for using search limiting constraints at each
stage of the pattern-matching process. This is
quite distinct from approaches wused in other
on extensive search or

schemes in their
reformulation, low
reduced; backup is
situations (see

expert systems, which rely
sophisticated
pattern-matching
yield searching
to

backup
In

failure
effort.

is greatly
limited rare garden-path
[Mark]).

possible trans-
Efomatiggg__

original
pattern

selection
procedure

[::::>features

E 4

-

-

matched
patterns

Figure 3. Pattern-matching as a series of

transformations

Another advantage of the reformulation
approach is that the information attached to each
concept structure localizes all of the system's
knowledge that is relevant to that structure.
This attached knowledge is not cluttered with
control structure information. Therefore, the
only way in which two concept structures can be
interdependent is if one mentions the other at top
level. For example, in (Cl) we can see that the
concept (EMPLOYES) depends on the INFLUX and
OUTFLUX structures in a way defined by
DETERMINED-BY. We can be confident that no other
interdependency information is hidden away in a
separate procedure or under some other unmentioned
concept.

(5)
deal with a
realistic

Finally, the control mechanism of steps
and (6) above allows the system to
number of issues which arise whenever a

amount of expert knowledge must be applied to a

problem. For any given problem, only parts of the

expert knowledge base will be relevant.
Mark

Furthermore, in
at which these

many domains the level of detail
parts are relevant will vary from

problem to problem. For example, in the business
consultant system, the labor sector of the firm is
usually modelled in detail, while the production

sector is merely sketched. However, if details of
the production process (quality control problems,
seasonality, etc.) directly directly affect labor
needs in a particular problem, the production
sector must be modelled much more thoroughly.

The problem description alone cannot
determine what the expert should model: some parts
of the client's recital may be irrelevant to what
the expert needs to know. The expert program mist
therefore sift through the input to find the
things it needs. it must ask the client questions
about things it needs but cannot find.

In the reformulation approach, the mapping
mechanism can be used to strike a balance between
what the program wants to know and what the client
is trying to tell it. On the one hand, each
mapping is firmly rooted in the expert model,
since it must consist of a chain of
transformations which begins with an original
expert concept structure. On the other hand, the

mapping mechanism is specialized to each

individual problem, because the transformation

selection procedure is controlled by information
taken from the program's current model of that

problem (see Figure 3).

To achieve this balance, the mapping
mechanism is used in the following way on each
problem:

(1) The <client's basic symptom is defined by
matching a symptom pattern in the model.
E.g., input of the form "The Dominion Co.
often hires or lays off workforce ." maps

into the symptom.
(C3) (STATE-OF (NUMBER-OF WORKFORCE))
(FLUCTUATING)).

(2) That symptom is used to select those parts of
the expert model which are relevant to the
solution of the client's problem. E.g.,
symptom (C3) is attached to a part of the
+model which deals with damping problems in

workforce flows. When (C3) is matched, that
part will be selected as relevant.
(3) Feedback from the modelled version of the

problem is used to see how those relevant
parts should be applied to the particular
problem at hand. E. g., the fact that the

Dominion Co.'s hiring policy contains no long
delays would restrict the class of damping
problems that are possible in this firm.

Note that (1) uses the problem description
and the expert model to define the expert's view
of the problem, (2) makes sure that all
transformations must be rooted in the expert's
idea of what is relevant, and (3) uses the
client's description to ensure that the model is
correctly particularized to the problem. Level of
detail considerations are handled by starting each

Knowl f>H,r> Acq.-2:
332

part selected in (2) with a default level which

can be altered by information from (3).

The next section describes in more detail the
way in which the mapping mechanism effects this
system behavior. Tn particular, it discusses the
kinds of transformations that can be applied to
expert patterns and the kinds of feedback
information that can be wused to <choose these
transformations-

Details of the Map Construction Process

Concept structures, or patterns, are made up

of two kinds of elements: concepts, like (PEOPLE)
or (JOB-NUMBER), and functional concepts, like
DETERMINED-BY, INFLUX, OUTFLUX, and ACT-ON in
(Cl)y, and ACCESS, CHARACTERISTICS, and

OPTTONAL-CHARACTERTSTTCS in (C2). A
anything that the expert chooses to
coherently describable entity. A

concept is
name as a
functional

concept groups concepts to convey a special
meaning to the expert model (like a flow or an
access specification). Functional concepts are

not matched against the input. They do not
represent the expert's point of view of something
the client might say, but rather an internal view

of how concepts are structured. There is no
restriction on concepts or functional concepts
(except that they must be identified as such),

since the intent is that they be chosen to be
convenient for the concept structures of any given
expert model.

The transformations that can be
patterns represented in this form are:

applied to

structural transformations: Patterns can be
rearranged according to rules attached to
functional concepts. This usually means that
a new functional concept will be involved. E.

(DETERMINED-BY a
(INFLUX b)
(OUTFLUX c))

(FLOW b a ¢©)

(DISPLAY-FPLOT 3-D
(X=UNIT e}
(Y-UNIT f)
(Z-UNIT g)).

{SHOW-USER e f g}

The idea is to express different points of
view of the same set of concepts: sometimes it
is important to know that a, b and c are part
of the same flow, and sometimes it i6
important to know that a_ is determined by b”*
and c_; sometimes the system only needs to know
that the user has seen e, £, and £, and other
times it must know the exact display format.

elaborations: Sub-patterns (including indivi-
dual concepts) can be substituted for concepts
within a pattern. E.g., a particular hiring
policy can be substituted for (HIRE) in (Cl);

(MONTH-NAME x)(DAY-NUMBER y)(FOUR-DIGIT-YEAR Zz))
can be substituted for (DATE-SPECIFICATIONS)
in (C2).

Mark

removed from
attached to

deletions: Sub-patterns can be
the pattern according to rules
functional concepts. E.g.,

(OUTFLUX (ACT-ON (EMPLOYES)
(FIRE)))

can be deleted
DETERMINEIVBY
one argument.

from (Cl) if necessary because
is still well-formed with only

instantiations; Client-level descriptors can

be substituted for concepts or sub-patterns.
This corresponds to pattern-matching in the
usual sense. E.g., "fire", "dismiss",

"lay-off", etc. may be matched with (FIRE); a
certain demain of Integers can be matched with
(JOB-NUMBER).

These possible transformations make up the

of knowledge which can be attached to
concept structures. In the case of a concept,
attached knowledge consists of the possible
elaborations for that concept (like the hiring
policies under (HIRE)) and possibly a match-list
of the possible wuser descriptors that the concept

kinds

can be associated with ("hire", "employ", "take
on"). For a functional concept, this knowledge
consists of structural transformation rules and
rules defining sub-structures that can be deleted
(and still allow the pattern, I.e., concept
structure, to make sense).

In addition, concepts can have arbitrary
properties which can be accessed and used by the
model's problem-solving procedures. The system

builder can make the application of any of these
properties part of the map construction process by
providing an explicit property access function as

one of the functional concepts. In this case, the
value of the property must be a valid concept
structure. For example, (NAME-OF (EMPLOYE)) in a
pattern implies that the value of the EMPLOYES
NAVE property can be substituted for that
construct. A built-in CLASSMEMBERSHIP property
is provided by the system for relating individual
concepts (e.g., (EMPLOYE) is a member of the
(PEOPLE) class). CLASS-MEMBERSHIP information is

used by the map construction process.

It Is important to understand that no
applicability information goes along with the
knowledge attached to individual concepts. Yet it

is quite clear even from the
here that some part of the system must decide on
applicability: a particular hiring policy is not
always a good model of (HIRE), "lay-off" cannot
always be substituted for (FIRE), a DETERMINED-BY
cannot always be changed Into a AOW without fatal
loss of information. The choice of what to use
when is made by transformation selection
procedure.

few examples given

the

The procedure itself s
general function which knows how to look wup
transformations and apply them to arbitrary list
structures. The whole philosophy of reformulation
is to take advantage of as much information as
possible in this procedure to choose the right

basically just a

Knowlert*p Acq.-2:

J33

transformation without extensive trial and error
search. As | said earlier, the procedure relies
on the structure of the model Itself to represent
what the expert needs to know to solve the
problem. In a well-structured model, strong
expectations of what the expert needs to know

constrain the choice of possible transformations
to some extent. However, the procedure must have
additional information in order to narrow down the
choice to what is appropriate for the particular
problem at hand. This information is what is
drawn from the patterns that have already been
matched. The information is in the form of
constraints that can be divided into three
categories:

(1) Constraints of the whole problem on the
transformations that can be applied to each
pattern;

(2) Constraints of a pattern on the
transformations that can be applied to the

individual elements of that pattern;

Constraints within each pattern element on the
transformations that can be applied to it.

(3)

In the existing business consultant program,
the first category is compressed into a single
piece of information with a single use. The piece

of information is the program's view of what the
client's symptom is; its only use Is to define
the group of patterns that are applicable to that
symptom. Thus, the mapping between the Dominion
Co. case and the symptom concept (C3) represents
the program's view of Dominion's symptom. The
fact that (C3) is attached to a group of patterns
which deal with damping problems defines that
group of patterns to be applicable to the Dominion
case.

Note that in the business consultant program,
the system does work to establish a view of the
symptom, i.e,, to construct the mapping to a
symptom pattern. The program's view may even end
up being rather different from the client's own.
In other problem areas, the expert system may not
have such a strong model of symptoms. For
example, in a database system, the client's
symptom corresponds to the overall reason why the
client is using the system during any particular
session (e.g., "to find out If there are any
workload peaks", "to see where our parts inventory
is going"). Here the system would probably not
have the facility for deducing this reason. The
client would have to provide this information (via
a statement like "I'm trying to do x.") in order to
make it available. The importance of this symptom
or statement of intent information is that It
provides a top level restriction on the patterns
which have to be considered relevant. It is
especially important because it is used at a time

the very beginning of the problem-solving
effort when none of the other problem-based
constraint information is available.

The
constraints,
constraints

second
is
exert

category,
more interesting.
primary influence

pattern-level
These
over the

Mark

choice of pattern transformations and govern the
"level of detail" mechanism. The form of the
constraint is just the pattern as it has been
matched so far, including any matched sub-patterns
that are already in the modelled version. There
are also a few special forms which will be
discussed in a minute. The constraints are used

by the restriction mechanism to govern the choice

of transformations. The restriction rule is
simply stated:
If the constraint contains an element which is
more restrictive than the pattern element
being transformed, only the elaborations and

match-list of this more restrictive element
may be used as transformations.

The comparative restrictiveness of any two
concept structures can be determined on the
following basis:

an instantiation of a concept is more

restrictive than that concept,

an elaboration of a concept is more

restrictive than that concept,

A member of a class is more restrictive than

the class itself ((EMPLOYE) is more

restrictive than (PEOPLE)),

a property value is more restrictive than the

property itself ((MARY) is more restrictive
than (NAME-OF (EMPLOYE))),

a property is more restrictive than the
concept of which it is a property ((NAME-OF
(EMPLOYE)) is more restrictive than
(EMPLOYE)),

a concept which is not related to another
concept in one of the above ways is not more

restrictive than that concept.

All of this essentially says that once it has
been determined how a concept maps into the
problem at hand, future structures which refer to
that concept are restricted to use the same
mapping. These concept structures are then wused
to restrict the other concept structures that
refer to them, and so on, until the model of that

particular problem is complete.

Note that an important side-effect of this
way of proceeding is that, as the mapping effort
goes on, the choice of pattern transformations be-
comes more and more restricted, and the matching
effort becomes more and more efficient.

A number of special mapping activities which

greatly enhance the modelling capability of an
expert system cannot be easily incorporated into
this simple restriction mechanism. These
activities are therefore handled by another
pattern-level constraint — the special form
alluded to earlier. The special mapping
activities are: MODEL, which interrupts the
mapping of the current pattern and calls the
mapping procedure on a new pattern in an

Knowledge Acq.-2:

3k

unrestricted mode; SIMILAR, which compares the

values of given properties of the current pattern
with those of another pattern; and CONTRADICTORY,
which is just like SIMILAR except that it looks

for given differences between two patterns.

These are handled by the PURPOSE constraint.
A PURPOSE is just an elaboration of the form

(PURPOSE mode pattern)

which, when selected as a transformation,
interrupts the map construction procedure, handles
the pattern in the mode indicated, and then
returns control to the mapping process.

An example of the use of MODEL arises in the

mapping of (HIRE). It is sometimes necessary to
find out the details of the production sector of
the firm before choosing between certain policy

alternatives of (HIRE) in (CI).
(PURPOSE MODEL production-pattern)

is therefore included as an elaboration of (HIRE),

causing mapping of (HIRE) to stop until
production-pattern has been matched.
The other two modes are efficiency devices.

Sometimes it is
under consideration

much easier to see if the pattern
is similar (or contradictory)

enough to an already matched pattern to obviate
the need for a separate effort on that pattern.
For either SIMILAR or CONTRADICTORY, if the
pattern named in the PURPOSE has not already been
matched, the PURPOSE is a no-op.

This checking of properties for similarity or
contradiction must be handled by specialized
procedures. Tt is not part of the normal mapping
process. In a more general sense, PURPOSES
provide "hooks" for any expert problem-solving
procedures which the system designer wishes to
build into the mapping process. For example, the
business consultant program contains an additional
"SHOW-CAUSE" PURPOSE which provides special
cause-effect tracing through flow patterns. Such
domain dependent efficiency devices can add to the
effectiveness of the mapping process without
impairing the aesthetics of the reformulation
approach, since their Interaction with the basic
process can only be through well-defined PURPOSE
channels.

Note that level of detail considerations are
handled by the interaction of the restriction
mechanism and the MODEL PURPOSE. In the main, the
level of detail at which an arbitrary pattern s
matched is determined by whether its elements or
elaborations of its elements have already been
matched. This is handled by the restriction
mechanism, which propagates the level of detail of
already matched elements throughout a new pattern.
If, in the midst of this process, a pattern has to
be mapped at a different level of detail, that
pattern can be introduced by a MODEL PURPOSE,
which removes the restrictions.

Mark

Finally, the element-level constraints on
pattern transformation are expressed in terms of
the CLASS-MEMBERSHIP property discussed earlier.
If element A has a CLASS-MEMBERSHIP property with
value B, the possible instantiations of A are
restricted by an existing mapping of B. (Remember
that B must also be a valid concept structure.)

Usually, B is simply another concept; e.g.,
(PEOPLE) is the value of the CLASS-MEMBERSHI
property of (EMPLOYE). But it may be more
complex, as in a value Ilike (INTEGER (MIN-VALUE)
(MAX-VALUE)), an implied form of match-list. In
either case, the ~choice of an instantiation
transformation for the pattern element A s

restricted in the usual way by the
(if any) of concept structure B. Thus, if
(PEOPLE) has already been matched to (MEMBER-OF
(FRED MARY JOHN)), (EMPLOYE) can only match FRED,
MARY or JOHN. If (MIN-VALUE) in the
CLASS-MEMBERSHIP property above has been found to
be 7, the number to which that property s
attached must be at least 7.

existing match

Conclusions

The reformulation methodology described here
is proposed as an alternate approach to organizing

expert knowledge. Tt offers some distinct
advantages over other approaches in domains in
which the knowledge is well structured and the
input is not. By allowing the knowledge
representation to be optimized for
problem-solving, and by providing local hooks for
all knowledge about each concept, the

reformulation approach makes it relatively easy to
build in expertise and add to it later. However,
it does not force the system designer to abandon
control of the use of that expert knowledge to a
general problem-solving method which cannot tune
itself to particular problems. Finally,
reformulation approach provides a map construction
process which can particularize the knowledge base
to specific problems in more interesting ways than
simple instantiation. This makes the approach
useful for domains in which it is inappropriate to
severely restrict the form of user input.

The primary disadvantages of the approach
result from one of its advantages: by refusing to
place external restrictions on the representation
of expert knowledge, the reformulation approach
abdicates the responsibility of providing help in
representing that knowledge. That is, there is no
built-in conceptual framework for the system
builder to use as the basis for representing the
knowledge of the problem domain (in contrast, see
[Martin]). Also, the map construction apparatus
required by the reformulation approach is
comparatively complex and hard to build, even with
more detailed versions of the guidelines sketched
here (see [Mark]). Both of these problems would
be greatly alleviated if existing concepts,
functional concepts, and PURPOSES could be shared
in new application domains. This issue of
providing a general underlying conceptual
framework, which is of course of much interest
elsewhere (again, see [Martin]), is being pursued
in the current applications of this approach.

KnowleHp-*

335

References

Brown, J. S., Benton, R. R., and Bell, A. G.,

SOPHIE: A Sophisticated Instructional Environment
for Teaching Electronic Trouble-shooting, BBN
Report #2790, Bolt, Beranek, and Neuman,

Cambridge, HA, March, 1974.

Buchanan, B. G., Sutherland, G., and Feigenbaum,
E., "Heuristic DENDRAL: A Program for Generating
Explanatory Hypotheses in Organic Chemistry,"

Machine Intelligence 4 B. Meltzer and D. Michie
(eds.), American Elsevier, New York, 1969, pp.
209-254.

Davis, R., Applications of Meta Level Knowledge to

the Construction, Maintenance and Use of Large
Knowledge Bases, (PhD Thesis), Stanford University
Al Lab Memo AIM-283, July, 1976.

Forrester, J. W., Industrial Dynamics, MIT Press,
Cambridge, MA, 1969.

Gorry, G. A., "The Development of Managerial
Models", Sloan Management Review, Vol. 12, No. 2,
Winter, 1971, pp. 1-16.

Hart, P., "Progress on a Computer Based

Consultant", Advance Papers of
Artificial Intelligence Laboratory,
1975, pp. 831-841.

IJCAl 4, MIT
Cambridge, MA,

Mark, W. S., The Reformulation Model of Expertise,
(PhD Thesis), MIT Laboratory for Computer Science
TR-172, September, 1976.

Martin, W. A., "OWL",
Symposium on Computational
1974.

Proceedings of the NYU
Linguistics, October,

Pople, H. E., Myers, J. D., Miller, R. A,
"DIALOG: A Model of Diagnostic Logic for Internal
Medicine," Advance Papers of [|JCAI 4~ MIT
Artificial Intelligence Laboratory, Cambridge, MA,
1975, pp. 848-855.

Rubin, A. D., Hypothesis Formation and Evaluation
in_Medical Diagnosis, (EE Thesis), MIT Artificial
Intelligence Laboratory TR-316, January, 1975.

Shortliffe, E. H., MYCIN: A Rule-Based Computer
Program for Advising Physicians Regarding
Anti-Microbial Therapy Selection, (PhD Thesis),

Stanford University Al Lab Memo AIM-251, October,
1974.

Sussman, G. J., and Stallman, R. M., "Heuristic

Techniques in Computer Aided Circuit Analysis",
IEEE Transactions on_ Circuits and Systems,
February, 1976,

Acq.-2: Mark

