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1. Introduction

Mich of the emphasis in current research on con-
cept learning and rule Induction is based on two
assuaptione. Firstly, all that needs to be known to
learn a concept can be obtained directly from exaaplea
given to It, without reference to previously learnt
knowledge. Secondly, a sufficient nuaber of exaaplee
to learn the concept is available, and all exaaplee
are presented slaultaneously.

Relatively little attention has been given to
developing systems which are able to improve their
performance over time by using knowledge that has been
learnt before. Two exceptions are (Winston70a] and
[Cohen78a] «

The usual task for a learning program is: Given a
set of positive Instances and a set of negative
Instances, produce a concept description which dis-
tinguishes between these two sets. The program pas-
sively accepts its input and otherwise does not
interact with the environment. Furthermore, It s
expected that the concept will be learnt in one ses-
sion.

A program has been developed which learns con-
cepts by searching a knowledge base which is augaented
each time a new concept is learnt. A concept descrip-
tion aay be treated as a program which may be execu-
ted. The output will be the description.of an object
which is an instance of the concept. A trial concept
may be tested by executing the description as an
experiment to see if the desired result is produced.

2. Representing Concepts

Suppose a trainer gives the program a description
of an object which characterises the concept to be
learnt. For example, an instance of "on-top-of" is,

S1- <shape: sphere; colour: red>
B1 =<shape: box; colour :green>
E1= <top: S1; bottoa: BI>
Objects ere described by a list of attribute/value
pairs.

The description language used is based on first
order predicate calculus (with quantifiers). It evol-
ved froa DL [Banerj 169a] and CODE [Cohen78a]. A
description of El as a concept may be,
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[x1:
@X1, X3: top of Xl 18 X2 {1)
& bottow of I{ 1s X} 2}
& shape of X2 i sphers (3)
& colour of 2 i red (&)
& shape of X3 {3 box (%)
& colour of X3 is red (6)

A concept description may include
viously learnt concepts, for example, "flat(X3)".
"Flat" is a concept already learnt and is true if
applied to the shape of X3 which, in the example, is
the box BI.

references to pre-

need be the only
system.  All other
"is" and referring

The equivalence relation "is"
built in relation known to the
relations can be constructed using
to other concepts.

3. Ths Gensralisstion Frocess
Supposs tha following coucepts are already known,

Elat = [X1: whape of X1 18 box
{ shape of Xl is table

= [X1t shape of X| is sphere
| shape of X1 i¢ pyramid
| flat(Xx1)

]
has—-shapa

|
has=colour = [Xl: colour of Xi is red
| colour of Xl is blue
| colour of Xl is gresn

i
= [X1: has-shape(Xl}

phys-obj
& has-colour(Xl)
}
"has-shape" and "hat-colour" specify the range of
values acceptable at shapea and colours, "flat" is a

subset of shapes, "phys-obj" states that a physical
object is a thing which has shape and colour.

If we examine the description of E1 we see that
stateaent (3) Batches the first disjunct of "has-

shape". That is, Sl is sn instance of objects which
possess the property "shape". Thus a generalisation
of (3) is

has- shape(X2) (7)



Similarly, (4) can be generalized to
has-colour(X2) (8)
Now, statement. (7) and (8) together match the

statements in "phys-obj", therefore we can deduce
phys-obj(X2) (9)

We can go through the same process with X3:

flat(X3) (10)
has-shape(X3) (11)
haa-colour(X3) (12)
phys-obj(X3) (13)

Note that we have not tested whether any of these
generalisations are relevant to the concept which the
trainer wants the program to learn. In the following
section we describe how the program tests Its general-
isations.

4. Using Concept Descriptions as Programs

Consider the following description of "on-top-

of":

(X1:
@X2, X3: top of X1 1ts X2
& bottom of Xl {s X?
& phys-obj(X2)
& flat{X3)
| & phys-obj{X1)
1

If | assert that [ X: on-top-of(X)], that is, X is an
"on-top-of" situation, then the program will construct
X. In other words the program will find an instance
of "on-top-of". It does this by attempting to prove
the assertion by s process similar to resolution
theorem proving.

learning process, when the program
trial concept, it generates an
and shows it to the trainer.
The description of "on-top-of" given above is the
correct one. However, suppose that in the process of
making generalizations, the program tries phys-obj(X3)
without the qualification "flat(X3)". In this case,
the object which is constructed may have a pyramid on
the bottom which is not allowed.

During the
wishes to test its
instance of this trial

5. An Example of Learning

Given E1 as a positive instance, the program
tries to produce a generalised description of "on-
top-of". The first generalisation will Involve the

In order to test
trainer an

replacement of statement (3) by (7).
its generalisation, it proposes to the
alternative "on-top-of" situation;

S2 - <shape: pyramid; colour: red>
E2 - <top: S2; bottom: BI>

Note that when a statement such as (3) has been repla-
ced, the object construction algorithm ensures that S2

will not be a sphere. Since this a good example of
on-top-of, the generalisation is correct.

In fact the specification of X2 can be general-
ized to any physical object. However, if the program

allows X3 to have any shape, then the following object
may be constructed:

P1 ¢ <shape: pyramid; colour: green>
E3 - <top: S1; bottom: PI>

With a pyramid on the bottom, E3 does not describe a
stable structure, therefore the trainer rejects this
alternative™

The program now makes a new generalisation which
attempts to explain why a pyramid cannot support
another object. That is the generalisation must be
restricted so that only objects which may support
other objects are allowed. This restriction process
looks at the statements which have been replaced by
the incorrect generalization to determine how to
specify the subset. In this example it is necessary
to return "flat(X3)" to the concept description.

6. Conclusion

The learning process may be regarded as a form of
automatic programming. The algorithm demonstrated
here, although simple, is capable of learning quite
complex concepts, including list reversal and other
abstract recursive concepts. Once "reverse" is known,
the system can actually perform a list reversal on

given input data.
Since each disjunct of a concept is learnt
separately, it is possible to build the complete

description over a period of time, possibly interrup-

ted by another learning task.
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