
Concept Learning by Experiment

Claude Semmut

School of Electrical Engineering and Computer Science
Unlverlaty of New South Wales

P.O. Box 1, Keneington, N.S.W., Auetrelle, 2033.

1 . I n t r o d u c t i o n

Mich of the emphasis in current research on con
cept learning and rule Induction is based on two

assuaptione. F i rs t l y , a l l that needs to be known to
learn a concept can be obtained di rect ly from exaaplea
given to I t , without reference to previously learnt
knowledge. Secondly, a suff icient nuaber of exaaplee
to learn the concept is available, and a l l exaaplee
are presented slaultaneously.

Relatively l i t t l e attention has been given to
developing systems which are able to improve their
performance over time by using knowledge that has been
learnt before. Two exceptions are (Winston70a] and
[Cohen78a] •

The usual task for a learning program is: Given a
set of positive Instances and a set of negative
Instances, produce a concept description which dis-
tinguishes between these two sets. The program pas
sively accepts its input and otherwise does not
interact with the environment. Furthermore, It Is
expected that the concept w i l l be learnt in one ses
sion.

A program has been developed which learns con
cepts by searching a knowledge base which is augaented
each time a new concept is learnt . A concept descrip-
t ion aay be treated as a program which may be execu-
ted. The output w i l l be the description .of an object
which is an instance of the concept. A t r i a l concept
may be tested by executing the description as an
experiment to see if the desired result is produced.

2. Represent ing Concepts

Suppose a trainer gives the program a description
of an object which characterises the concept to be
learnt. For example, an instance of "on-top-of" is,

S1 - <shape: sphere; colour: red>
B1 =<shape: box; colour :green>
E1= <top: S1; bottoa: Bl>

Objects ere described by a l i s t of attribute/value
pairs.

The description language used is based on f i r s t
order predicate calculus (with quant i f iers) . It evol
ved froa DL [Banerj 169a] and CODE [Cohen78a]. A
description of El as a concept may be,

A concept desc r ip t ion may include references to pre
v ious ly learn t concepts, f o r example, " f l a t (X 3) " .
" F l a t " is a concept already lea rn t and is true i f
appl ied to the shape of X3 which, in the example, is
the box B l .

The equivalence r e l a t i o n "is" need be the only
b u i l t in r e l a t i o n known to the system. A l l other
r e l a t i ons can be constructed using " i s " and re fe r r i ng
to other concepts.

"has-shape" and "ha t -co lour " speci fy the range of
values acceptable at shape a and co lours , " f l a t " is a
subset of shapes, "phys-ob j " s tates that a physical
object is a thing which has shape and co lour .

If we examine the desc r ip t i on of E1 we see that
stateaent (3) Batches the f i r s t d i s junc t of "has-
shape". That i s , SI is sn instance of ob jec ts which
possess the property "shape". Thus a genera l i sa t ion
of (3) is

has- shape(X2) (7)

104

S i m i l a r l y , (4) can be generalized to

has-colour(X2) (8)

Now, statement. (7) and (8) together match the

statements in "phys -ob j " , therefore we can deduce

phys-obj(X2) (9)

We can go through the same process wi th X3:

f l a t (X 3) (10)
has-shape(X3) (11)
haa-colour(X3) (12)
phys-obj(X3) (13)

Note that we have not tested whether any of these
genera l isat ions are relevant to the concept which the
t ra iner wants the program to learn. In the fo l lowing
sect ion we describe how the program tes ts I t s general
i s a t i o n s .

4. Using Concept Descr ipt ions as Programs

Consider the fo l lowing descr ip t ion of "on- top-
o f " :

If I assert that [X: on-top-of (X)] , that i s , X is an
"on- top-o f " s i t u a t i o n , then the program w i l l construct
X. In other words the program w i l l f ind an instance
of " o n - t o p - o f " . I t does t h i s by attempting to prove
the asser t ion by s process s imi lar to reso lu t ion
theorem proving.

During the learning process, when the program
wishes to tes t its t r i a l concept, it generates an
instance of t h i s t r i a l and shows it to the t r a i n e r .
The desc r ip t i on of "on- top-o f " given above is the
correct one. However, suppose that in the process of
making genera l i za t ions , the program t r i e s phys-obj(X3)
without the q u a l i f i c a t i o n " f l a t (X 3) " . In t h i s case,
the object which is constructed may have a pyramid on
the bottom which is not allowed.

5. An Example of Learning

Given E1 as a pos i t i ve instance, the program
t r i e s to produce a generalised descr ip t ion of "on-
top -o f " . The f i r s t genera l isa t ion w i l l Involve the
replacement of statement (3) by (7). In order to test
its gene ra l i sa t i on , it proposes to the t ra iner an
a l t e r n a t i v e "on- top-o f " s i t u a t i o n ;

S2 - <shape: pyramid; co lour : red>
E2 - <top: S2; bottom: Bl>

Note that when a statement such as (3) has been rep la
ced, the object const ruc t ion a lgor i thm ensures that S2
w i l l not be a sphere. Since t h i s a good example of
on- top-o f , the genera l i sa t ion is correct .

In fac t the spec i f i ca t i on of X2 can be genera l
ized to any physical ob jec t . However, if the program
allows X3 to have any shape, then the fo l lowing object
may be const ructed:

P1 • <shape: pyramid; co lour : green>
E3 - <top: S1; bottom: Pl>

With a pyramid on the bottom, E3 does not describe a
stable s t r uc tu re , therefore the t ra iner re jec t s t h i s
a l t e r n a t i v e *

The program now makes a new genera l i sa t ion which
attempts to explain why a pyramid cannot support
another ob jec t . That is the genera l i sa t ion must be
r e s t r i c t e d so that only ob jects which may support
other objects are allowed. This r e s t r i c t i o n process
looks at the statements which have been replaced by
the incorrect genera l i za t ion to determine how to
specify the subset. In t h i s example i t is necessary
to re tu rn " f l a t (X 3) " to the concept desc r i p t i on .

6. Conclusion

The learning process may be regarded as a form of
automatic programming. The algor i thm demonstrated
here, although simple, is capable of learning qui te
complex concepts, inc lud ing l i s t reversal and other
abstract recurs ive concepts. Once " reverse" is known,
the system can ac tua l l y perform a l i s t reversal on
given input data.

Since each d is junc t of a concept is learn t
separately, it is possible to b u i l d the complete
desc r ip t ion over a period of t ime, possib ly in te r rup
ted by another learning task.

References

105

