INDUCTIVE LEARNING OF PRONUNCIATION RULES BY HYPOTHESIS TESTING AND CORRECTION

S Oakey and R C Cawthorn*

Dept.

of Computer Science, Teesside Polytechnic,

Middlesbrough, Cleveland, England

ABSTRACT
This paper describes a system that learns the
rules of pronunciation inductively. It begins
with a set of 26 rules for single-letter

pronunciation. Individual words are presented to
it, and the system uses its rule set to hypothesise
a pronunciation. This is compared with a
dictionary pronunciation, and if any part of the
pronunciation is incorrect new rules are created to
handle the word as an exception condition.

These rules checked for

are similarity with

others already produced, and where suitable a
"general" rule is produced to deal with two or more
created rules. The effect is to produce rules

that are more and more general, and these approach
the general pronunciation rule sets that have been
produced manually by other workers.

| INTRODUCTION

Conversion of unrestricted English text into its

phonetic equivalent is usually performed using
context dependent rules, which dictate how a
character string should be pronounced when in a
particular context. The rules are arranged so
that one set exists for each Iletter of the
alphabet. The rules within these sets appear in

the order in which they should be applied i.e. more
specific rules appear before more general rules.
Each set ends with a context independent rule
(default rule) which is used if no rule matches the
context.

Systems using such rules operate on one word at
a time, which is scanned from left to right. The
rules are scanned sequentially until one that
matches is found. The character(s) handled by
that rule are discarded, and the process repeated
until the whole word has been processed. The
result is a set of phonemes showing the system's
pronunciation of that word.

The first such system of any significance was

written by Ainaworth (1), who produced a speech
system that wused a set of 159 rules for which he

*Sponsored by the Science Research Council

109

claimed an error rate of about 10% A second more
recent system produced by an American group (2) is
rather more successful. They changed and enhanced
Ainsworth's rules to produce their own set of 309
rules, and claimed a success rate of 90% of words
correctly translated (and 97% of phonemes correctly
translated) in an average text sample.

The system described in this paper automates the

production of these rules by deducing them from
samples of the input and required output. It is
written in LISP, and wuses the following rule
format:-

(<ch.string><l.context><r.context><phoneme-set>)

(Two other fields are contained at the end of each
rule, but these will be described later.)

The character string being searched for is at the
beginning of the rule; then come the left and right
context character strings; followed by the Latin

equivalent of the International Phonetic Alphabet
phonemes (see Appendix 2).

As an example of rule format and the translation

operation, suppose the rule set for the letter A
was:-
A O (CONS1 E DELIM) (EY)) 1
A0 0 (AE)) 2
(CONS1 and DELIM are group identifiers - see
Appendix 1.)
The first rule states that an A preceded by

anything and followed by a single consonant, an E,
and the end of the word receives the pronunciation
EY. The second rule is the default, and will
match any other A, giving it the pronunciation AE.

If the A of the word PALE was being processed
then this would fit the first rule and receive the
pronunciation EY* On the other hand, A in the
word PAT does not fit this rule so the system tries
the next rule, which does match, giving it the
pronunciation AE.

The American group (2) produced their rule set
by following an iterative procedure which involves
looking at erroneously pronounced words and trying
to produce rules to overcome the errors. This
procedure when used to translate a large dictionary
involves a great deal of work in checking the
output, firstly to see if the words have indeed

been pronounced correctly, then in formulating new
rules to correct the errors. This process needs
repeating several times to produce a good set of
rules and for each iteration the individual
checking of each word must take place. This
process of detecting the errors in pronunciation
could be carried out automatically if some
"correct'* pronunciation (ie a standard dictionary
pronunciation) was held alongside each word in the
dictionary.

A
all

This led on to automatic rule generation.
system with the above information included has

the data available to enable it to develop its own
rules. The main problem with such a system is
deciding how to implement new rules from an
examination of the pronunciation errors produced.
Basically the approach taken is to wuse a rule
set to hypothesise a pronunciation: check this
against a standard pronunciation: if the

pronunciation is in error, create a special purpose

rule to correct the error(s): then find similar
special purpose rules and combine them to produce
slightly more-general rules, which may in turn be
combined together to produce more-general rules.
Il ROLE PRODUCTION
This is the process of taking a word in normal
lhglish, plus its pronunciation (IP A code

equivalent), and hypothesising its pronunciation by
using the current rule set. In a similar fashion
to rule-based systems, the rules are searched from
the top wuntil one that matches both contexts is
found. This requires rules to be ordered with the
more-specific preceding the more-general. (The
rule set is initialised to the single-letter
pronunciation rules given in Appendix 1, and this
is augmented by rules produced by the system.)

The hypothesised phonetic spelling and the
dictionary's phonetic spelling obtained from the
input can then be compared. If no differences are
found then the rules in the data base require no
amendment. However, if differences occur, then it
is necessary to produce new rules to augment the
database. For example:-

Initially the word PALE gets the

P/ AE/L/EH
This is compared with the correct phonetic spelling
P/EY /L
and specific rules are produced which say that ‘A’
preceded by *P' and followed by 'IlE' has the long
vowel pronunciation, and that the final E is silent

pronunciation

ie. (A (DELIM P) (L E DELIM) (EY))
and (E (DELIM PAL) (DELIM) 0)
(The DELIM's mark both ends of each word.) These

two rules would be added to the rule sets of A and
E respectively.

it was found, work best
for "exact matches".

The comparing routines,
by looking at the contexts

no

always able to find at least two
exact matches, these being the DELIM at both ends
of the word. After all of the "exact matches"
within the word are found then what's left in the
computer produced pronunciation must translate to
what's left in the actual pronunciation.

The system e

A match is deemed to be “"exact" if the
dictionary phoneme matches only one machine
produced phoneme in the locality of the one being

Checking one machine produced phoneme
Example:-

considered.
either side was found to be adequate.

D
D
D

u C
AH
AH

K
K

(word)
(computer)
(actual)

K
K

DELIM
DELIM

DELIM
DELIM

The first K in the actual pronunciation is not
an ‘"exact" match with the K in the computer
pronunciation as there is another K in the
locality. The next exact match is found with the

final DELIM's, so the rule produced is:-
(K))

(CK (DELIM D U) (DELIM)

One other factor in the process is the
LOOK-AHEAD-COUNT. This global variable determines
how far ahead the system should look to find an
exact match. If no match is found within the
limit then the system moves on to consider the next
machine phoneme. The count is initially set to 1,
but is dynamically increased by the system if the

DELIMs at the end of each word are not encountered
together. This ensures that long words will be
matched correctly. Example:-

S E A T (word)
DELIM S EH AE T DELIM (computer)
DELIM S Y T DELIM (actual)

Exact matches are found up to the S, but the IY and
EH do not match. No IY is found on the look ahead
so T and AE are compared next. These also do not
match, but within the look ahead limit the exact
match T T is found. This means the following rule
is produced:-
(EA (DELIM S) (T DELIM) (1Y))

The above system will create rules to correctly
translate all the words it has met, but as several
rules are usually needed to translate each word
this, as it stands, is not very useful. A method of
creating rules which will translate words the

system has not met is required.

I RULE INDUCTION

A. Generalisation

the system is to
consideration of the
part of

The purpose of this part of
produce general rules from
very specific rules produced by the first

the system. This process is performed every time
a new basic rule enters the system. Rules are
only considered for generalisation, if they
translate the same character string to the same
phoneme-

T The left and right contexts of the rules under
consideration are examined and a pairing off of the
context elements is undertaken.

The three different ways of combining context
elements can be shown by considering the following
example pairing from left to right:-
contextl (P CONST P P VOMEL VOWEL)
context2 (P CONS1 CONS1 T CONS1)

giving (P CONS1 CONS1 CONS1)

type A A B C D D

Type A is an exact match between elements; type
B occurs if one is a member of the other; type C if
both are of the same group; and type D is a
mis-match i.e. VOWEL versus CONS1 and any context
elements that remain when the pairing can go no
further.

It can be seen that the Type C combination is
more of a generalisation than Types A and B.
Once a group such as CONS1 has been inserted into
the resultant rule then it will allow any consonant
in that position, even though it was created using
just two consonants.

A weighting system was used to reflect these
differences in type. Types A and B are given a
value of +1; type C a value of 0; and type D a
value of - 1.

Left and right contexts are considered
separately’' and the total weight is calculated for
each. The number of letters in the character
string of the rule (the first field) is added to
both of these (these letter(s) are counted as
exact matches (type A)). If the resultant values
from left and right contexts are both positive,
then the two rules are combined to produce a
general rule.

For example, if the rules under consideration
are:-

(CK (DELIM D U) (DELIM) (K))
(CK (DELIM L U) (DELIM) (K))
the left context total weight is 4, the right is

3 so combination is allowed, and the final general
rule appears as:-

(CK (DELIM CONS1 U) (DELIM) (K))

This rule when added to the database will
correctly translate the CK part of the words
creating the rule as well as other words such as

MUCK, SUCK, etc.

But the combination of the rules:-

(A (DELIM P R I'V) (T E DELIM) (AX))
(A (DELIM W 0 M) (N DELIM) (AX))
would not be allowed. The left context weight

gives -1, as does the right.

There are two other fields in the rules. The
first of these is the list of rules used to create
a general rule. In the case of specific rules
(basic rules) this field is null, but in all others
it holds the rules which were picked out and

11

combined to form the general rule. These
sub-rules may themselves contain the rules they
were created from. Thus a general rule contains a
complete history of how it was formed.

The second field is a rule usage count. This
number indicates how many times a rule has been
successfully used. On creation of a new rule it

takes the value 1 and on creation of a general rule
it takes on the sum of the counts of its composing
rules. Each time a rule successfully translates a
letter sequence, its count is incremented by 1.
Effectively, then, the count shows how many words
the rule has translated correctly. For example:-

1 (CK (DELIM CONS1 VOWEL) (DELIM) (K)) 3

2. (CK (DELIM B A) (DELIM) (K)) 1

3. (CK (DELIM CONS1 U) (DELIM) (K)) 2

k. (CK (DELIM D U) (DELIM) (K)) 1

5. (CK (DELIM L U) (DELIM) (K)) 1
Rules 4 and 5 were combined to give rule 3, which
was combined with (basic) rule 2 to give rule 1.
The usage count appears following the rule. This
format shows pictorially the way a rule has been

derived, which is very useful when debugging and
investigating other areas of the system.

B. Rule Conflict

Rule conflict occurs when the left and right
context of two rules for the same letter are the
same with the rules producing DIFFERENT phonemes.
When this condition is detected the system
evaluates the importance of the offending general
rules by seeing which satisfies the most words
(using the rule usage count). This one is kept,
and the other discarded and replaced by its
composing rules one level down. Rules may be made
and broken several times, depending on the order of
the words accepted into the system, but usually a
clear "winner" emerges.

Unfortunately, there are other, more-complex,
types of conflict. Given two rules

A. (stringl (A-left) (A-right) (phonemel))
B. (string2 (B-left) (B-right) (phoneme2))
where phonemel does not equal phoneme2, then the

different combinations of left and right contexts
may be represented using the following table:-

Table 1: types of Conflict
LEFT
A<B | A< | AR [A8 | A*B
R A<B 1 4 3 1 b
I A=B 1 0 2 3 4
G BB 3|2 |laja} s
H Me|l 1 3te]|3]4
T A*B 4 " b 4 b

where O = confliot

1 = rule A muat preceds ruls B

2 = rule B muat precedes rule A

3 = ambiguity

4 = no conflict (order unimportant)
A<B - A is a specis) case (subset) of B
Ad8 - priority ambiguity (see below)
A*B = A ia distinet from B

Priority ambiguity can be illustrated as
follows:-
(DELIM VOWEL) — 2
Which is the more general? (1) is not restricted
to having a delimiter before it and (2) is not

restricted to just the vowel "A". Action taken on

finding conflict is outlined below.
1. No conflict (type 4)

When a new rule enters the system it is compared
with each rule in its letter list. This
comparison starts at the end of the list (with the
default rule) and finishes at the top. If no
conflict condition occurs then the new rule is
inserted at the top of the list.

2. Proper conflict (type 0)

is
is

If during
discovered then
compared with
rule with the highest count is
other rule is broken into
input to the system without trying to combine
with other rules in the list.

the above process conflict
the count of the new rule
that of the conflicting rule. The
retained, and the
its constituents and
them

3. Partial conflict (type 1 or 2)

If a type 1 conflict occurs as the comparison

operation is taking place, then the incoming rule
is inserted into the rule list immediately
following the rule it conflicts with (but see
Part 1V). If however it is a type 2 conflict
the comparison passes over (and therefore above)
the conflicting rule and continues on until
conflict occurs again, or the top of the list is
found and the rule inserted there. This partial

conflict handling therefore causes the rules to be
ordered with the more general following the less
general.
4. Ambiguity (type 3)
While this type is reported by the system, no
special action is taken. No adverse effects seem
to occur by ignoring it in this way, as

stabilisation (see Part IV) corrects any resultant
rule misplacement.

IV RULE STABILISATION

The system so far described reads in a set of
words, creates basic rules to translate these words
and attempts to form general rules from examination
of these basic rules.

112

Occasionally, rules produced towards the end of
reading a batch of words can negate the effect of
rules produced earlier. To overcome such errors
and check the rules more generally, the batch of
words are again input to the system. All the
words Bhould be pronounced correctly but if this is
not the case then the rule set must be incorrect.
The following example shows this.

Consider the two following ordered "S" rules
(where the indented rules listed below them are the
rules that were combined to form the general
rule):-

1 (s (CONS1 VOWEL) {DELIN) (8))

1w (5 (DELIM B U) {DELIM) {5))

16 (8 (DELIM T H I) (DELIN) (5))
and

2 (s (VOWEL) {DELIM) (2))

2a (5 (DELIM W &) (DELIM) (z))

2 (5 (UELIMHA) {IELIM) {zh)

2c (5 (DELIM I) (DELIM} (2))

2¢ (S (DELIM A) (DELIM) (2)}
When "WAS" is reinput, it is translated by rule 1
rather than rule 2 (since 1 precedes 2 in the rule
set), giving the wrong phoneme for the "S". This
requires the following (specific) rule to be
created:-

(S (DELIM W A) (DELIM) <Z)>

and this is checked against the current rule set in
the usual way to look for possible generalisations.
It of course finds rule 2, and attempts to combine
the two.

At this point, the system checks to see if the
rule being combined with rule 2 has already been
combined with other rules to produce rule 2.
Finding that it has (as 2a), rule 2 is broken into

its (immediate) lower-level components, and these
are re-entered individually into the system (as if
they had just been created).

This in itself is insufficient, in that if no
other action was taken these components would
merely be recombined to give the original
(over-general) rule. To stop this, during
recombination the system will only combine those

rules which have exactly the same pattern.

Using the above example, then, rule 2 is broken
to give the four separate rules 2a to 2d. With
exact matches now needed for generalisation, the
"WAS" and "HAS" rules can be combined to give:-

(s (DELIK CONS1 A) (DELIM) {z))

(S (DELIN W &) (DELIM) (2))
{6 (DELIM H &) (DBLIM} (2))
and then the "IE" and "AS" rules give:~

(& {DELIM VOWEL) (ELIM) (2))

(¢ (DELIM I) (rELIM) (2))

(s (DELIM A) (cELIM} (2))
There are occasions when this is insufficient
and the same rule is still formed. This

situation is handled by breaking the other rule (ie
the one that interfered with the rule that should
have been used - rule 1 in the example).

If this also recombined to form the same rule
(even under this stricter control) then the least
used rule is broken and its components re-entered
into the rule set without allowing any combination.

This process of re-inputting the words is
repeated until all the words are translated
correctly and the system is stable. This usually
takes 2 or 3 iterations. The system is then
complete in that it will correctly translate all
the words given to it.

V RESULTS
The system has three modes of operation. The

first is the normal reading of words and creation
of rules; the second is the stabilisation
procedure; and the third is a rule evaluation mode.
This third mode enables the system to read words,
show their pronunciation wusing its rule set and
compare this with the actual pronunciation to
enable statistics to be produced. These show the
number of words the system has pronounced correctly
and the number of phonemes correctly produced.
During this process the rule set is not changed in
any way.

If all the words that created a set of rules
were run in this way, then the statistics would
always show 100* correctness of pronunciation.
To obtain more meaningful results all the basic
rules are deleted before evaluation. The
resultant statistics give an indication of how good
the general rules produced are. It may also be
the case that some of the basic rules may not be
needed anyway as the general rules may have
developed far enough to make them redundant.

The
before
so the figures for usage are correct at the end

usage counts of all the rules are zeroised
an evaluation run and incremented during it,
of

a run. Any unused rules (usage count of zero)
can be deleted.

The result is a set of figures showing the
proportion of phonemes and words correctly
translated by the rule set. In addition, the
list of rules used is given together with an
indication (via the usage count) of the usefulness

of individual rules.
Evaluation, runs have been carried out on the
rules produced from reading the frequency based

words from the Ladybird key word books (5), and the
dictionary entries (4) for the first two letters of

the alphabet (run separately). To act as a
comparison, the same data have been run through a
manually produced set of rules. This was
obtained by Anglicising the rules produced by the

American group (2). The results are shown in the

following table:-

113

Table 2: Results
Input Total Manual Automatic
correct correct
"Ild"bi!‘d“

Phonemes 1745 91% Bix
Words L7y 8% 59%
(Rulea) (171) (65)

ll‘l!

Phonsmes 6378 L% 4%
Worda 1015 16% 21%
(Rules) (128) (64)

IEB!I

Phonemes 4630 % 85%
Words 866 7% 3%
(Rules) (121) (108)
The original American rule set was claimed to

rate of 90* words correct and 97*
phonemes correct, but it should be stressed that
these figures were derived from listening tests,
not comparison with dictionary definitions.
Their figures are also frequency weighted i.e.
correct translation of a frequent word was more
highly rated than an infrequent word.

have a success

This is shown in the table, where the best
results were obtained from the Ladybird words (the
most frequent 500 words of juvenile reading).
Here the percentage correct produced by the manual
system approaches the figures quoted. The
deficiency can be accounted for by the different
method of defining correctness and also because the
Anglicising may have led to deterioration of the
rules.

It can be seen that there is a large discrepancy

between the results for the A's and B's for both
the automatic and the manual systems. This is
caused by the difficulty of finding a rule to
define the pronunciation of initial A's. The

automatic system spent nearly 40 minutes trying to

come up with a suitable rule to define which word
should start with AE and which with AX The
problem is basically one of stress and ,it is
interesting that no set of rules appears to exist

to handle this situation.

The "B" run is a better test as it is not so
affected by the stress problem. The automatic
system took only 10 minutes to come up with a set
of rules that perform much better than the "A" set.

In both the A's and the B's, the automatic and
manual system are close in their results and only
in the Ladybird set do they differ significantly.
Frequent words often have wunusual pronunciation
(i.e. they do not follow set rules) so in most
systems they are wusually handled by a small
exceptions dictionary. This is similar to the
system's basic rules, so by deleting them the
system's performance has been seriously affected
for frequency based words input to it. This is
also reflected in the rules used, where the manual
system has wused three times as many as the
automatic system.

However, the system does successfully learn rules
governing the pronunciation of words from examples.
A number of rules produced are exactly the same as
some in the manually produced set, while others
show considerable similarity. And the rule set
produced from a section of dictionary performs
approximately as well as the manually produced set.

APPENDIX |: Constants used in the system
DELIM : word delimiter (space, full stop, etc.)
VOML : A, X, I, 0, U
CONSt : B,C,D,F,Q,H,J,K,L,M,N,P,Q,R,S,T,V,V,X,Y,Z

INITIAL RULE SET:

(A NIL NIL (AR))
(B NIL KIL (R))
(C NI KIL (X))
(D NIL NIL (D))
(E nIL KO (EH))
(r o N (P)
(@ NIL NIL (G))
(E BIL NIIL. (HH)}
(I NIL NIL (IH))
{(J ML NIL (W)
(X NIL NIL (X))
(L NIL NIL <(L})
(M NIL NIL (M))
(N NOL NI (K))
(0 NIL NIL (OX))
(P NI NIL. (P} }
(Q NIL NIL (K))
(R NIL NIt (R))
(8 NIL NIL (8))
(T NIL NIL (D))
(7 KIL R (aM))
{v NIL NIL (V))
(W NIL NIL (W))
(X NIL NIL (X B)}
(Y NIL. NIL (T¥))
(z NIL NIL (2))

114

APPENDIX | |: Phonetics used in the system

Consonante

i
[l
L

aFPle
aBle
T ssth
hi D ing
C ar
ar G ue
CH ased
J udge
M inee
o XN ion
ri NG
L ittle
¥ amily
oV
brea TH
brea TH »
8H ould
lei 8 ure
R oering
a B end
¥ oeed
Y acht
8 ix
Z inc
WH ere

82°5>rny
-~2jsfi§-

OHO
wogag8
Reg”g

8
L

QExeARBEISsRtERER
2!—0

o Eg_g'd ﬂ'l:ﬂ - - N ol R

o

[]

fur
§NMH¢EHEEggﬂ‘!ﬁazzagﬂﬂbﬂﬂ’ﬂ

REFERENCES

(1) Ainsworth, V. A. "A System for Converting
English Text into Speech." IEEE Transactions
on Audio and Electroacoustics, Vol AU-21 pp.
228-290,June 1974.

(2) Elovitz, S. Johnson, R., McHugh, A. and Shore,
J. E. "Letter to Sound Rules for Automatic
Translation of English Text to Phonetics."
IEEE Transactions on Acoustics, Speech and
Signal Processing, Vol ASSP-24, No. 6 pp.
446-459, Dec.1976.

(3) Wijk, A. "Rules of Pronunciation for the
English Language." Oxford University Press,
1966.

(4) Winsor Lewis, J. "A Concise Pronouncing

Dictionary of British and American English."

Oxford University Press.

V. "The Ladybird Key Words Reading

Ladybird Books Ltd, Loughborough.

(5) Murray,

Scheme."
Production."”

"Automatic Rule

1980.

Cawthorn, R. C.
Internal Report,

(6)

"A Rule Learning
Speech."
1981,

Oakey, 5. and Cawthorn, R. C.
System and its Application to Machine
In Proceedings of Acoustics '81, Spring
pp. 295-298.

