
Knowledge Acquisition in 
The Consul System1 

David Wilczynski 
USC/lnformation Sciences Institute 

4676 Admiralty Way 
Marina Del Rey, California 90291 

Abstract 

Many knowledge-based systems feature general machinery that 
operates on externally supplied information, These systems must 
solve the acquisition problem: how to represent the external 
knowledge, determine if it is adequate, and incorporate it into the 
knowledge base. As a mediator between users and interactive 
services, the Consul system must understand the intent and 
behavior of programs that perform interactive functions To 
Consul, understanding a function means classifying a description 
of it in a highly structured, prebuilt knowledge base. A special 
formalism has been designed in which a service builder both 
programs functions and describes their actions. The resulting 
functional descriptions are then translated and interactively 
classified into Consul's knowledge base by Consul s acquisition 
component The acquisition dialogue with the service builder will 
be shown to be robust with respect to the information provided by 
the service builder. Inference rules are automatically generated to 
account for discrepancies between a program's specifications 
and expectations derived from Consuls knowledge base.2 

1. Introduction 
The Consul system ([3], [6] in this proceedings) is being 

designed to support natural, helpful, and consistent interactions 
between users and online services. In order to provide these 
cooperative facilities, any user interface must have a great deal of 
knowledge about the functionality of its services. However, unlike 
attempts at enhancing specific tools, Consul is being constructed 
as a general framework in which a wide variety of services can be 
embedded. The necessary functional knowledge is carefully 
organized within a central knowledge base comprising (1) user 
knowledge, service-independent, user independent knowledge 
relating basic user needs to user actions, objects, and English 
language expressions, (2) systems knowledge, a service-
independent representation of the detailed behavior of the basic 
operations found in any service (e.g.. moving, deleting, 
scheduling), and (3) service knowledge, an instantiation of the 
systems knowledge to the actual operations and data structures of 
some interactive service implemented in Consul. 

This research is supported by the Defense Advanced Research Protects 
Agency under Contract No DAHC15 72 C 0308. ARPA Order No 2223 Views and 
conclusions contained in this papet are the author s and should not be interpreted 
as representing the official opinion or policy of DARPA. the u S government or 
any person or agency connected with them 

2 
Many of the ideas in this paper were developed m collaboration with Robert 

Lingard 

Except for service knowledge, all concepts and relations in the 
knowledge base are built in. Because of the complications of 
formally integrating service-dependent information, Consul has a 
component to acquire this information from the service builder. 
Consul relies on proper classification throughout its knowledge 
base, the relations between the service-independent concepts are 
carefully built in; the proper relation between the service and 
systems knowledge is the responsibility of the acquisition 
component. It is only through proper classification that a 
function's intent and behavior can be derived; having that 
information is the basis of Consuls cooperative features. Many of 
Consul's interactions with users rely on application of service-
independent inference rules to map between descriptions in the 
knowledge base [5]. If the service-dependent information can be 
organized within the system model framework, those inference 
rules will automatically apply. The interface consistency that 
Consul provides is also a direct result of acquiring service-specific 
knowledge in terms of the carefully worked out systems model. 

2. The Acquisition Process 
A service in Consul is defined solely by its data structures and 

process scripts. Process scripts are programs that consist of two 
parts: a procedure body to perform some action and some 
descriptive information about that procedure, its parameters, its 
output, etc. The simplest process scripts, called process atoms, 
have a procedure body which consists of only a single call to 
some application code that is not further described to Consul. 

Process scripts are the basis of a software design methodology 
for buiiding interactive tools [4]. Using this method, a tool builder 
explicitly differentiates between code that is "interesting" to the 
end user (implemented using the process script language) and 
code that is not (hidden as the bodies of process atoms). 
Informally, the code implemented via process scripts is the highest 
level code generated using a top-down or composite system 
design methodology. The information about the programs of the 
service being implemented comes solely from the process scripts 
and the acquisition dialogue with the service builder; it is not 
deduced by analyzing the code called by process atoms. 

The acquisition of a service's process scripts occurs in four 
steps: 

1. translating the process script into a knowledge base 
structure; 

2. building a potential description of that structure from 
an initial classification by the service builder; 

135 



3. refining the potential description into a validated 
description. ie.. one that is consistent with the 
knowledge base: 

4. building inference rules that relate the actual process 
script parameters to their roles in the validated 
description. 

The goal of the acquisition process is recognition of the input 
structure in terms of the existing model, or in our terminology. 
classifying it in the Knowledge base. Step 3 above requires 
interaction with the service builder in order to to extract 
information about the script that is not represented explictly 

Step 4 is necessary because functions commonly name 
parameters that are not actually manipulated by the function. 
Instead, due to a desire for brevity, simplicity, or information 
hiding, these parameters act as access paths to the actual data 
structures to be processed. For example, a person may talk about 
"dialing Joe on the phone," instead of the more precise "dialing 
Joe's phone number on the phone." The casual, simpler 
statement is understandable if a unique phone number is 
associated with a person and if that association is known to be 
applicable in the context of dialing phones. Since the validated 
description shows how the process script parameters are actually 
used, the necessary inferential knowledge to account for this 
metonymic style can be explicitly represented. 

3. Acquisition Requirements 
The Consul approach is predicated on a detailed, coherent 

knowledge base. Given the complexity of the knowledge base, a 
service builder would find it impossible to update it correctly when 
adding new process scripts to the system. Consul therefore 
provides a semiautomatic acquisition process to aid the service 
builder. Major requirements of this process are: 

It supports different implementations. Consuls model of 
interactive functions does not impose any implementation 
decisions on the service builder. On the contrary, the 
knowledge base will be shown to be 1) sufficiently general to 
support services whose functions depend on fundamentally 
different architectures and 2) detailed enough to support 
cooperative interactions with the end user. 

The service builder need not know all the details of the 
knowledge base. The service builder uses the process 
script language to write his programs and an object definition 
language (still to be designed) to describe his objects. The 
acquisition process has the responsibility of translating his 
input into the system's representation, mapping it into 
Consul's knowledge base, and accounting for any inferential 
relationships discovered during acquisition. 

Acquisition must report anomalous conditions to the 
service builder in a way that will elicit an appropriate 
response. A number of anomalous situations can arise 
during acquisition: inconsistency in an object's definition 
may not be detectable until that object is used in a process 
script; a new process script may conflict with, specialize, or 
generalize existing scripts; a process script may be imprecise 
in its input specifications (as is the case in the scenario to be 
presented). Whatever the situation, the acquisition process 
must give the service builder the information that not only 
explicates the problem, but induces a helpful response. 

Consul's acquisition process is intended to be robust, i.e., to 
successfully model service-specific information without overly 
constraining the service builder. The next section shows'that this 
goal is achievable. 

4. An Acquisition Scenario 
The service-dependent concepts in this scenario are modelled 

after those in the SIGMA message system [8]. Figure 5-1 shows 
how the SIGMA concepts, prefaced by Sg, relate to the service 
independent concepts in the knowledge base3 

In SIGMA, messages are kept in a central data base. A user is 
never sent messages. Instead, he gains access to them through 
citations delivered to his pending file, his personal mailbox. 
Besides having a pointer to the referenced message, the citation 
also contains addressing information, the subject of the message, 
and other summary information. Because a message can be 
"sent" or "forwarded" for different reasons (for review, for action, 
for information, etc.), the citation type is used to identify the nature 
of the transmission. 

The SlGMAForward process script to be acquired (Figure 5-2) 
sends a citation of the SgOpenMessage -the message currently 
being worked on by the SgloggedOnUser-to a designated user 
The input to the script is the SgCitationType and the name of the 
intended recipient, SgUser. Since this scenario will be concerned 
only with the Input and DataStructuresAccessed descriptors of the 
process script, only they appear as roles in the translation shown 
in Figure 5-3. Notice that the process script itself has no 
statement of intent, since intent is derived solely through proper 
classification within the knowledge base 

Figure 5-4 shows the service-independent part of the 
knowledge base relevant to the acquisition of SlGMAForward It 
defines a Send Operation as a specialization of Move: there is a 

Consuls knowledge base is implemented in the KL ONE formalism [1] 

136 



sender, the object to be sent is a Message', the destination is a 
Mailbox whose owner is the recipient of the Message, the effecf of 
the Send is that the object is At a location which is the destination 
of the Send and that the object being sent is a valid member of the 
Mailbox. 

The following scenario shows the process of building a 
description of the SIGMAForward script in terms of the modelled 
Send operation. It results in the informal notion of "sending 
messages to people" being redescribable as an invocation of the 
SIGMAForward function. 

4 . 1 . The Acquisition Dialogue 
The scenario starts as the translation of the process script 

(Figure 5-3) is presented to the acquirer. 

Acquirer: WHAT KIND OF AN OPERATION IS THIS? 
(gives the service builder a list of top level 
system operations to choose from) 

Service Builder: Move 

Acquirer: WHAT KIND OF A Move IS THIS? (gives the 
service builder a list of Kinds of Move to 
choose from) 

Service Builder: Send 

The acquirer builds a potential Send operation 
SlGMAForwardOperation (Figure 5-5) with the SIGMAForward 
process script as the filler of the procedure role. It then tries to 
match the roles of the process script with those of the operation it 
has just built. 

Acquirer: WHAT IS THE destination*? 

Service Builder: u:Sg(Jser 

137 



Acquirer: (examines knowledge base (Figure 5-1) to see 
if a uSgUser is a kind of Mailbox) 

THE destination OF A Send HAS BEEN 
DEFINED TO BE A Mailbox. u:SgUser IS NOT 
KNOWN TO BE A Mailbox. IS IT? 

Service Builder: No 

Acquirer: CAN YOU GIVE ME MORE INFORMATION 
ABOUT THE destination of Send? 

Service Builder: The destination of Send is the SgPendmgFile 
whose owner is the u:SgUser.4 

Acquirer: (examines knowledge base to see if 
So.Pending.File is a kind ofMa/7oox; since it is, 
the destination role is validated) 

If SgPendmgFile were not classified as a Mailbox, we could add 
that relationship as part of this scenario (being aware that the 
addition of a new relation may have effects beyond the current 
acquisition session). We expect that many service-dependent 
relations will be discovered through their use and hence built 
during process script acquisition. 

Acquirer: (because the "recipient" and the "owner" of 
the Mailbox are coreferential5, the uSgUser is 
expected to be the recipient) 

I ASSUME THAT u:SgUser IS THE RECIPIENT. 
IS IT?6 

Service Builder: Yes. 

Acquirer: WHAT IS THE sender? 

Service Builder: SgLoggedOn User 

Acquirer: (sender role validated since SgLoggedOnUser 
is a kind of User) 

WHAT IS THE objecttobesentf 

Service Builder: SgOpenMessage 

Though the SgOpenMessage is a satisfactory filler for the 
objecttobesent role, its coreferentiality to the object of the 
Member At causes a problem. 

Acquirer: THE effect OF YOUR PROCESS SCRIPT IS 
THAT THE SgOperUessage WILL BE At THE 
SgPendmgFile OF THE u SgUser. I EXPECT 
THE SgOpenMessage TO BE A VALID 
MEMBER OF THE SgPendmgFile. 

In order for the Member At effect to be satisfied, the location 
must be a Mailbox whose member is the object of the MemberAt, 
The problem here is that SgPendingFiles contain SgCitations as 
members, not SgOpenMessages; so, sending an SgOpenMessage 
to it is invalid Several things could be wrong: SgOpenMessages 
could be valid members (the service builder simply hasn't told us 
yet); the SgPendingFile is not the destination of the Send: the 
SgOpenMessage is not the object of the Send (the actual case 
here). The acquirer must frame these possibilities in a question or 
questions that will elicit the right response. 

Acquirer: IS THE SgOpenMessage A VALID member OF 

SgPendingFile? 

Service Builder: No 

Acquirer: CAN YOU GIVE ME MORE INFORMATION 
ABOUT THE objecttobesent? 

Service Builder; The objecttobesent of the Send is a SgCitation 
whose summarizedobject is the SgOpen 
Message. 

Acquirer: (revalidates the objecttobesent role; validates 
the effect role; finds that one of the process 
script parameters is still unaccounted for) 

WHAT IS ct.SgCitattonType USED FOR? 

Service Builder: The ct.SgCitationType is the type of the 
SgCitation. 

Acquirer: (builds the correspondence between 
ct.SgCitattonType and the the type role of the 
SgCitation) 

SlGMAForward VALIDATED! 

At this point the description shown in Figure 5-6 is complete and 
can be classified in the knowledge base The acquisition process 
has successfully discovered the intent of the process script via the 
above dialogue. Now it remains to account lor the relationship 
between the the process script's parameters and roles of the 
validated description. 

The Jargon parser [9] accepts input like this and produces forms from which 
we generate the appropriate Kl-ONE We are assuming this class of input to be 
sufficient for now. 

Shown in Figure 5-5 by the links to the <£> structural description 

The Teiresiaa extension (2) to the Mycin (7] rule-based system generates 
expectations during rule acquisition by comparing the new rule being acquired to 
existing ones. Aa pointed out by Davis, because Teiresias has no domain model, 
some of those expectations ara wrong because coincidental correlations could not 
be separated from reeJ ones In Consul, all expectations are based on 
characteristics of the built-in systems model 

4.2. Building the Inference Rules 
The validated description of the SlGMAForward process script 

shows that there is an implied access path from a SIGMA user to 
his pending file, and one from an open message to its citation. 
Because of these relationships, the following statements are 
logically equivalent (assume that "Forward" implies a certain 
citation type): 

1. Forward the open message to Jones. 

2. Forward the open message to Jones' pending file. 

138 



Figure 5-6: The Validated Description 

Figure 5-7: An Inference Rule Built at Acquisition Time 

3. Forward a citation of the open message to Jones. 

4. Forward a citation of the open message to Jones' 
pending file. 

The last statement would instantiate the validated description of 
Figure 5-6 and is therefore executable. The first (and briefest one) 
matches the specification required by the process script, but not 
that of the validated description. Since statement 1 should cause 
the same process script to be invoked, inferential knowledge is 
needed to map it into the validated description. The necessary 
inference rule, shown in Figure 5-7 shows how a description of a 
Move operation whose object to be sent is a SgOpenMessage and 
whose destination is a SgUser can be transformed into the 
validated description7. Similar rules are constructed to account 
for statements 2 and 3. 

The inference rules are completely determined by the relation 
between the parameters as defined in the process script and the 
roles of the operation as defined by the service-independent 
model. Whenever the correspondence is not direct, inference 
rules need to be generated. Notice that in comparison to the 
validated description, the condition parts of these inference rules 
are always less precise, potentially less constrained and may (as 
in this example) have a more general classification. These factors 
combine to allow the end user a certain amount of informality in 
making his requests. However, they may also lead to problems. 
For example, the generation of a new rule may introduce 
ambiguities when distinct validated descriptions produce identical 
rule conditions. This and other issues, such as using rules to 
represent defaults, giving the service builder some control of the 
rule generation process, and recognizing and handling cases 
when new rules specialize or generalize existing ones, are 
currently under study. 

5. Conclusions 
The prototype acquisition component described in this paper 

just begins to address the requirements specified in section 3. We 
have, however, shown that acquisition has the capabilities to 
make the Consul approach feasible. The service builder can write 
his functions in a language suited to his task and have them 
interactively assimilated into Consul's knowledge base. Any 
inferential knowledge needed to account for service-dependent 
conventions is automatically generated. 

What remains to be shown is the robustness of the process. 
Even though the scenario showed how the acquirer directs the 
dialogue, how it detects some anomalous situations, and how it 
can make certain assumptions, many issues remain. Robustness 
is a critical concern if the acquirer is to interact with real service 
builders and not Consul specialists. 

The task of building a cooperative user interface is too large 
and complex to attempt for each new service. One of our goals is 
to build a framework in which many new services can be 
embedded. Acquisition, as described in this paper, is a 
fundamental part of that framework. 

The structural description indicates how roles in the rule condition 
corresponds to roles in the rule conclusion In order to simply Figure 5 7. only 
one of them is shown. 

139 



References 

[1] Ronald Brach man. 
A Structural Paradigm for Representing Knowledge. 
Technical Report, Bolt, Beranek, and Newman, Inc., 1978 

[2] Randall Davis. 
Interactive Transfer of Expertise: Acquisition of New 

Inference Rules. 
In Proceedings of the Fifth International Joint Conference 

on Artificial Intelligence. IXAI, 1977. 

[3] David Wilczynski, William Mark, Robert Lingard, Tom 
Lipkis. 
Cooperative Interactive Systems. 
In 7980 Annual Technical Report,. USC/lnformation 

Sciences Institute, 1981. 

[4] Robert Lingard. 
A Software Methodology for Building Interactive Tools. 
In Proceedings of the Fifth international Conference on 

Software Engineering. 1981. 

[5] William Mark. 
Rule-Based Inference In Large Knowledge Bases. 
In Proceedings of the National Conference on Artificial 

Intelligence, American Association for Artificial 
Intelligence, August, 1980. 

[6] William Mark. 
Representation and Inference in the Consul System. 
In Proceedings of the Seventh International Joint 

Conference on Artificial Intelligence. IJCAI, 1981. 

[7] Edward H. Shortliffe. 
MYCIN: A Rule Based Computer Program for Advising 

Physicians Regarding Anti-Microbial Therapy 
Selection. 

Technical Report Al Lab Memo AIM-250, Stanford 
University, October, 1974. 

[8] ' R. Stotz, R. Tugender, D. Wilczynski, and D. Oestreicher. 
SIGMA: An Interactive Message Service for the Military 

Message Experiment. 
In Proceedings of the National Computer Conference. 

AFIPS, May, 1979. 

(9] W. A. Woods. 
Theoretical Studies in Natural Language Understanding. 

Annual Report. 
Technical Report BBN Report No. 4332, Bolt, Beranek, and 

Newman, Inc., 1979. 


