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ABSTRACT

highly active and
presented here. This
under these conditions,

A model of Ilearning in a
competitive environment is
paper posits that learning,

can be characterized as accommodating examples
produced by the Constrained Example Generation
(CEG) process. The role of the"CEG process in the
LRCEG system is demonstrated by a typical learning
scenario.
| INTRODUCTION

This paper Introduces an emerging system
designed to learn racquetball by a process of
constrained example generation (LRCEG). Having the

capacity to generate a set of constrained examples
has been shown to be essential in many domains
[1]. [2]. Furthermore, learning as a form of
accommodating and assimilating knowledge has been
demonstrated to be wuseful to a number of systems
[6]. .The implication here is that some forms of
learning can be modeled, in part, as a process of
retrieval, modification, or construction of domain
specific knowledge, represented as examples
C33.C53. Exploring a variety of learnirg issues
within the RB domain is made possible by the
generality and robustness of the CEG paradigm [4],

Racquetball (RB) as a learning domain has some
advantages. The speed and competitive nature of
the aport facilitates investigating learning under
rapidly changing and strenous conditions. Many
important occupations require learning the
appropriate behavior for unpredictable, fast-paced,
and demanding environments (e.g., medicine,
athletics, aircraft piloting). The learning
required to perform tasks in these domains can be
very different (although not mutually exclusive)
from a typical classroom education. The generality
and robustness of the CEG paradigm allows exploring
a variety of learning-RB issues [4].

I ACQUISITION AND REPRESENTATION OF
DOMAIN SPECIFIC KNOMEDGE

Some knowledge about RB must be obtained and

represented before the LRCEG system can attempt
learning. Knowledge for the initial set of six
examples was extracted from interviews of a RB
expert.
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The syntax of the expert's information was "IF A
PLAYER ENCOUNTERS object-of-encounters THEN TRY AND
MEET object-of-meet AND RESPOND
object-of-respond.”. The context within which
learning occurs is the ‘'object-of-encounters’, and
the appropriate behavior for meeting and hitting
the ball is 'object-of-meet' and'object-of-respond'
respectively. An example of the expert's advice is
"IF A PLAYER ENCOUNTERS a fast cross-court shot
THEN TRY AND MEET the ball waist high AND RESPOND
with a ceiling shot." Both the context and behavior

knowledge is translated into velocity and RB court
X,Y,2 coordinates (i.e., '‘coordinate-velocity'
information). This knowledge is represented in a

1a,b3.

(CONTEXT (SEMANTICS (X dX) (Y dY) (Z dZ) (V dV))
(OBJECTIVE objective-function-definition)
(SITUATION situation-function-definition)
(RESPONSE response-info-4-furction-definition))

(a.)

frame-like data structure [Fig

{long-termesuccesa-rate X Y 1 ¥}

(XE ¥% I3 vE)
(ahort=term-success-rate respornge~function-def)
{b,)
Fig 1
(a.) This figure represents the LISP data
structure used to represent the
exmmples, X,Y,2, and ¥ are the
coordinates and velocity of the dall,

dx,dY,dZ, and dV specify the allowable

variance of X,Y,Z, and ¥V respectively.
{b.} An expansion of a portion of Fig 1a.
X,Y,Z and ¥ apecify the coordinates and
velocity of where to return the ball,
X%, YL, 28, and V% apecify the maximum
amount the wmodification process may
change X.Y.Z. and V,

CONTEXT, ir Fig 'a, i3 the context.or example name
(e.g., cross-court)., The values of the SEMANTICS,
OBJECTIVE, and RESPONSE slots are the correspording
damain and ‘coordinste.velocity' information.

II1 THE LRCEG SYSTEM

The LRCEG system is written in LISP and runs
on a VAX 11/780. A flow diagram of the LRCEG
system and how a user interacts with it appears in
Fig 2. System operation can be described in
thirteen steps (corresponding to box numbers in Fig
2.) as follows: (1)Initial ball X,Y,Z position and



velocity V, number of iterations, and discrete time
interval is specified by the user. (2)A snapshot
(instantaneous ball position and velocity)
information is gathered. (3)Retrieve example(s)
(from box 14) with satisfiable semantic
constraints(i.e. X,Y,Z,V from snapshot are within
dX,dY,dZ,dvV of X,Y,Z,V from semantics slot of the

example. Retrieval output is a set of examples
that are candidates for modification.
(4)Modification involves calling the
function-definition programs defined in  the

OBJECTIVE, SITUATION, and RESPONSE slots (see Fig
1a.). The objective program modifies the X,Y,Z
coordinates of where a player meets the ball, The
player computes the trajectory of the ball and
modifies where, on the RB court, to be in order to
satisify the constraint of meeting the ball at the

position specified by the "object-of-meet". The
situation function quantifies the players
"situation" which is inversely proportional to the

distance between the player and the objective. The
response function modifies the X.Y.Z coordinates of
where to hit the ball and computes the
short-term-success-rate which is a "goodness"
measure of the example's response specification.
Examples are modified if improvement can be made in
the short-term-success-rate. Each example is
trying to obtain the highest "goodness" (i.e.,
short-term-success-rate value) measure possible, in
effect competing with other examples to be selected
as the one having the best response. A Dbetter
situation, higher long-term-success-rate, slower
ball, and faster player will tend to increase the
short-term-success-rate. All  examples are sorted
on their short-term-success-rate before step 5.
This allows subsequent retrieval, modification, and
execution of the currently best examples first.
Being able to retrieve and manipulate the best
examples first is important if time and quantity
constraints are placed on the learning process.
(5)Execute action specified by objective slot of
currently best example (i.e., try to meet the ball
by updating current X,Y,Z of player).
(6)Iterations completed or player has hit the ball.
(7)Update ball X,Y,Z and V for next iteration.
(8)Execute the action specified in the response
slot by returning the example with the

currently highest short-term-response-rating.
(9)An  example has failed if executing its response
results in a missed or skipped ball (hits floor
before front wall). Otherwise, threshold the
response rating of the returned example to
determine the success or failure of its response.
(10)Self explanatory (11)Change the initial context
slightly (i.e., wvary the initial ball position
and/or velocity). (12)Compute the statistical
success rate of the example(s) and use a sigmoidal
function to update long-term-success-rate of the
example from 9. (13) Replace old
long-term-success-rate with updated one from 12 and
add the modified example to 14. This step is the
accommodation process as the new example is now
available for competition and evaluation with old
examples in subsequent environments.

The LRCEG system is learning successfully if
it returns a example having the best response
rating for a previously similar context (i.e., what
might work best in the future is what previously
worked best in similar contexts).

IV EXPERIMENTAL RESULTS

This section presents Figs,
typical learning scenario in
("player-1") learns the best
cross-court shot.
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which the system
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Il1luatrates & typical output of the display
component of the LRCEG system. The ligure
also displays a typical snapshot along with
the object axes.
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General flow disgrms of LACEG system. User

is represented by flow steps out-
aside the 'LRCEG SYSTEM FLOW DIAGRAM® ares.
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After rotating Fig 3 +45 degrees about the y

axis. ! traces the path of player1
*B' traces the trajectory of the ball start*
ing at ‘'player-2' who does not move in this
scenario. For display purposes the position
of the ball and players are not indicated for
every iteration.
Line seg 1 4
Elllp].!' 3
1
. Line seg 2
a» ? example 1
» 2 .
L | ]
-»
hd
Fig 5
Sane as Fig 4 except rotated -90 degrees

about the z axis. Line segment 1 illustrates
'player-r executing the action specified by
example number 3. Line segment 2 intersects
line segment 1 at the point where example 1's
short-term-success-rate is higher than exam-
ple 3's. At the intersection point
*player-I' begins executing the action speci-
fied by example 1. When 'player-1* meets the
racquetball example 1 specifies where to hit

Line zeg 1
exnple 3
Line seg 2
example 7
Fig 6

A new and seperate example 7 has been created
and accommodated as a result of steps 12-14
in Fig 2. Except for the
long-term-success-rate, information for exam-
ple 7 is a copy of the latest mod|f|cat|ons)
to example 1. Example 7's
long-term-success-rate was computed to be .75
The parent of example 7 (i.e., example 1)
now has a long-term-success-rate of .55
Example 3's long-term-success-rate was re-
duced to .45 (NOTE: initial
long-term-success-rates for all examples was
*5). This figure shows how example 7 begins
influencing player-Ts behavior earlier in a
similar rally. Examples 2 and 4-6 did not
influence player-Ts behavior because their
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semantic constraints were not satisfied
and/or their short-term-success-rate was not
high enough.

| F= L

Fi

Finally the long-term-success-rate of example
7 is high enough so that 'player-1' begins
executing the action specified by that exam-
ple from the first iteration.

V FUTURE IMPROVEMENTS AND EXTENSIONS
Future research will extend the limits of the
system to incorporate more functions
currently performed by the user. Once the
extensions have been implemented the following
learning issues can be addressed: (1)Determine the

LRCEC

limits of this paradigm for learning (2)Ascertain
the knowledge and proceses necessary to learn a
sequence of examples (i.e. sequence of actions)

(3)Evaluate accommodation techniques and (4)Compare

how well the system learns as a function of the
expert supplying the knowledge.
VI CONCLUSION

This paper has demonstrated how some types of
learning can be accompolished by applying the CEG
paradigm to examples representing domain knowledge.
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