CONCEPT LEARNING BY STRUCTURED EXAMPLES - AN ALGEBRAIC APPROACH
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ABSTRACT: A system learning concepts from
jects is described. It
to get a unified mathematical
structures are transformed
gorithm developing decision trees
in psychological experiments. It
search with reexamination of past
The generalization ability
is shown that
about one hundred of
Additionally, the problem of
discussed in the paper.

formalism

events.

1. Introduction

Concept learning on sets of structural de-
scriptions has become one of the most
challenging problems in Al-research in
the last decade / 1/ ,/3/, /7], 19/, [/10/,
113/7,/114].

There is increasing success of programs
that make use of domain-specific knowl-
edge like DENDRAL and METADENDRAL. But
there remain areas, where a priori knowl-
edge may be not or only partially avail-
able or the aquisition and application of
knowledge would be difficult as in con-
structing rules from large sets of empir-
ical data.

On the other hand in order to leave the
empirical stage and to establish theore-
tical foundations Al has to discover gen-
eral principles and to find appropriate
formalizations for them. Therefore uni-
fied mathematical models should be ap-
plied as far as possible-

There are practical applications of con-
cept or discrimination learning in which
first the structures and training samples
are large, second the concepts may be
disjunctive sets of subconcepts and third
matching is complicated because of the
existence of many isomorphic descriptions
(alphabetic variants).

It is felt that in such cases well elabo-
rated general algorithms such as the in-
ductive generalization in the predicate
calculus and even the version space meth-
od /8/ would face problems of combina-
torial explosion, (Refinements of the
predicate calculus-based methods are de-

veloped in our laboratory /5/ which, it

is hoped, will overcome some of the dif-
ficulties in dealing with practical pro-
blems.)
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training samples consisting of structured ob-

invariant under isomorphism. In order
theoretic results are used- The

that a concept learning al-
is an extension of algorithms found

to a general-to-specific depth-first

the blocks world example and it
problems with samples of
in a reasonable time.

learning context dependent concepts is

In this paper first a new method of the
description of structures is represented
which is based on recent graph theoretic
results in the detection of isomorphiem
4/ .

From descriptions being almost invariant
under isomorphism feature vectorse are for-
med describing the structures unambi-
guously. This enables us to use well
known techniques of concept learning on
feature vectors to solve or at least to
reduce the complexity of the concept
learning task. In particular we adopt a
method of sequentially constructing deci-
sion trees representing the hypotheses in
terms of discriminant descriptions of a
possible multiclasg problem.

The algorithm corrasponds to a general-
to=-specific depth-firast search with re-
examination of past instances.

As o first practical example a set of 89
chemical compounds with up to 15 nodes
each ie treated successfully.

In addition, our approach gives the posei-
bility of learning concepts defined by
relations to other concepts (context), a
problem which until now has not yet been
a subject of Al-research.

2. Description of structures

Definition 2.1.
A structured object (briefly structure) is
a relational algebra

z: (V H P1' LN I Psi' R
with the set of glementary objects V., the

set of gne-place relations Pi' i= rese,S,

1 22, Rgz)

gnd the set of two=place raelations RJ.
j= 1,...,:2 {(Higher order relations may



be tranaformed into sets of two-place
ones).

It is supposed that 2 is represented in
the memory by a labelled graph Ggp with
the set of nodes N corresponding to the
set of slamentary objects 'tlz by the bi-
Jection

d:vge—=n={1,2, ..., n}.

Different maps d leed to isomorphic de-
acriptions (alphabetic variants). A node
is labelled with all relations of which
the elementary object corresponding to
the node is an element., An arc is la-
belled.by the corresponding two-place re-
lations (fig. 1).

3(QW W : wedge
B : brick
sSuP SUP SUP: supports

BES: beside
DT : doesn‘'t
"Cab BES,OT \'.32 touch

Fig. 1: Labelled graph describing an arch

Suppoee a training sample 5 = { Gl' Gz,

van, G }cf descriptions of structures is
given. Each combination (vector) of rela-
tions found in the training aample a co-
lour or new complex relation is ascribed

(flgo 2)-
3(u, u, — 8

u
W Wy w
]
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Fig. 2: Ascribing colc:urs to nodes and
arce of fig. 1

Let U be the set of node colours and W
the set of arc colours found in the trai-
ning sample. We refer to U and W as the

est of glementary properties {feature

vectors)} of nodes and arce reapectively.

l:grnally, we have the following defini-
ons:

ODefinition 2.2.
A description of a structure 3 is & col-

oured graph Gz b (Nl Q, Uzn wzo fl g)
with the set of nodes N, the set of arcs
QEN x N and the colouring functions

f i N—»UpSU, g: Q —mWpEW.

Dgfinition 2.3.
wo descriptions G and G* are isomorphic
if there exiet & bijective map d : Ne=N’
with

(d(1}, d(J)) € Q'w= (i, j)eQ

f(i} = f(d(1)) and g(i, j) -

= g(d{1), d(j}}.

An sutomorphige of G is an isomorphism
onto iteelf.

Isomorphic graphs in the training sample

— BES, DT
— SUP

N » N

are supposed to describe the same real
structure EW and to arise from using dif-
ferent coding strategies. (Therefore they
must belong to the same class in the case
of consistent training samples.) Identi-
fying isomorphic descriptions is especial-
ly in practical applications a very impor-
tant task. As enovel approach to this pro-
blem in our system descriptions invariant
under isomorphism are used in order to get
efficient concept descriptions, matching
and generalization possibilities. An in-
variant characterization of a structure
would be the set of all n! descriptions
generated from a description given in the
training sample (or as test item to be
matched) by permutations of the nodes.
But this set is, in general, much too
large.

(A normalization to a standard descrip-
tion by alphabetic ordering would hide
similarities of structures which are used
in the construction of efficient concept
descriptions, see below.)

To reduce the number of descriptions ge-
nerated a method used in algorithms de-
tecting isomorphism of graphs /4/ was
adopted*ll*ll)

Definition 2.4.

wo nodes 1, } of 8 description G are
{(elemantary) distinguishable iff f{i) #
f{j), i. e. they have different colours.

By this definition & partition of the set
of nodes into equivalence classes of
equally coloured nodes

su = {J / 1eN, (3} = u}l veldyg ,

is induced, this partition being inva-

riant under isomorphism. The number of

desrinr:iptiuns 15 therefore reduced from n!
y ; .

to I.“chz-n'cl Su.. For example in fig. 2

there are the equivalence classes Su and

Su with card Su = 2 and card S,=1

2 1 2
=1, i. 8. 3! > 21«11,

To reduce the number of descriptions
turther context dependent features of
nodes and arce are introduced.
Detinition 2.5,
et 1N, (i, jle qQ, then

n,li} = card {3 / 9(i, 3} = N}. wewW,
is the number of neighbours of node i
which can be reached by a w - coloured
arc. For arcs similarly

n“(i,j)-card{k/f(i,k)-s and
Fli.k)=t},

{s,t)eU x W or (s,t)eW x U ar
{9,t)EW x W is defined.

]The suthors would like to thank Dr. D.
Patschke for many helpful theoreticel
discussions. :
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resulting by reconetruction in the parti-
ally labelled graph of fig. 3.

9’ o o 40&.11

Fig. 3: Context dependent arc features

n
w

The nw(i), weW can be ordered to get to-

gether with the original colour f{i) s
new (context dependent) feature vector
(f(i), n, s n2, ave, nr} for every node i.

Similarly one gets new feature vectors
for arcs (1, j?.

These feature vectors can be used in lear~-
ning concepts which are defjined by con-
text (@8 most human concepts are!), i. e.
when the membership of &n object to a
class (concept) is defined by relations

to other objects. In this case & training
sample consists of & set of gdistinguished
elementary objects {ncdes) together wit
structures in which they are embedded and
the class of the nodes (being poeitive or
negative instances) depends on the exis-
tence of certain subgraphs in the embed-
ding structures. The theory is outlined

in /12/0

The step described in Def. 1.5. is done
for all descriptions in the training sam-

ple and leads to new sets UL2) ang w(?)
of node and arc colours respectively with

new colouring functions f(l) and 9(1)
each graphe. ?In a sequential learning

task the sets Ufi}, wfi) may be sequen-
tially updated.) Nodes i,j which sre not
elementary distinguishable (definition
2.4) may now become distin?uishable by

context i. e, f(l) (1) ¥ ¢ 1)(J}-

Example: The nodes 1 and 2 in fig. 2 not
elementary distinguishable become distin-
guishable by context if the asymmetric
relation LEFTOF is added to arc {1,2).
Additionally, the new features & U 1 .

w are easlly computable graph charac-

for
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teristics, which can ba used for the con-
cept learning task (see below).

Proposition 2.1. (1)
e new partition of N according to U

is equal or finer than the partition ace-
cording to U and the number of permuta-
tions may be further reduced. Proof: see
12/«

The step of def. 2.5. may be repeated and
leads in that case after a finite number

of iterations to stable f(i)'s and g(i)'s.
thereby getting possibly exgctly ong dg-
scription of 3 (automorphism partition of
the nodes /4/).

In practical cases and sequential lear-
ning taske one would stop after a fixed
number i of steps depending on the pro-
blem. Let the set of descriptions of 3}
generated by the remaining permutations

by o&t)

3. JTransformation of graphs into
feature vectors

Now we want to transform the graphs

Qéi)e.ﬂéi} into linear represantations
{feature vectors) which can be easily
handled by well elaborated algorithmes of
concept learning on sete of feature vec-
tors., First we represent all edges (3,k)

of G,Si) together with their adjacent nodes
jsk by triples (“jk' “j' uk) of their col-
ours. If Uy B Y then j and k belong to

the same eguivalence class and have to be
distin guished by an additional number in
order to save the full graph information
(for instance the pair (1,2) in fig. 2
has to be described by {w,, (u,, 1),

(uys 2))). ALl different triplds occcur-

ring in the training sample are construc=-
ted (or sequentially updated) and enumer-
ated* These triples correspond to elemen=
tary propositions with the labels u,w
indicating complex semantic features of
case arguments and relations respectively.

Another possibility of defining features
for the graph classification task con-
sists in choosing subgraphs of several
orders (gestalt features). A method of
selecting subgraphs and using them as
tests to be built into decision tree-
classificators has been developed in our
laboratory successfully and applied to
practical problems [II/-

A feature vector v(i) corresponding to a

graph Géi)e.oéi) is now defined as fol-
lows

V(i), (xi,..-,x H yl,a-..ys: 21,...,zt}

r
x, =1 iff the node colour ujc.U(i)accura

1 times in



Géi)a l=0,1,

Yy ® 1 iff the arc colour "€ wil)

occurs 1 times in Géi)

z = {1 iff triple j occurs in G{:i)
h| 0 otherwise

Let Véi} be the set of all vectors gener=

ated from all graphse G(iJ in D(l)

Theorem: The map X HV{") is a bijec-

tion, i. e. the set V.‘(:i) describes unam-

biguously the structure % The proof is

given in /f12/.

4. Concept learning

As an algorithm for concept learning a
method of sequentially constructing hypo*-

theses in form of decision trees is used,
which is more appropriate to problems
with large feature vectors# It is a gen-
eralization of human behaviour observed
in learning concepts represented by pro-
positional functions /12/ and it is simi-
lar to the algorithm of learning discri-

mination nets for syllables described in

/2/. It corresponds to a general-to-spe-
cific depth-first search with reexamina-
tion of past events. (Due to limited STM

capacity human beings are keeping only
one hypothesis per step in memory. This
method is preferred to a possible
breath-first search since in case of
large structures, large training samples,
and disjunctive concepts the number of
hypotheses to be pursued simultaneously
would be probably to large even in the
case of the lattice-theoretic approach
used in /8/. In large samples it is also
not easy to get initial clusters for dis-
junctive concepts.) Since the decision
trees are built up serially by adding no
more than one new test attribute (test
node) per step to the tree, the set of
attributes A = {v ,...,v } constituting

the feature vectors is a priori reordered
by some elementary discrimination measure
known in pattern recognition. (In a more
sophisticated approach this procedure is
applied to each branch of the tree repre-
senting the current hypothesis.)

The algorithm can be defined in terms of

simple data driven production rules. In
the case of finite consistent training
samples it can be proved /12/ that it re-

in a final hypothesis which matches
instances correctly. In /12/
inconsistent

sults
all training
extensions to the case of
training samples,
and continuously varying attributes (al-
gorithmic construction of feature inter-
vals during learning) can also be found.

Generalization
First, one gets a simple generalization

probabilistic decisions,
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by means of the fact that the construction
algorithm, in general, stops before all
attributes are exhausted on each path.

Second, irrelevant attributes in the tree
(or conditionally irrelevant attributes
in subtrees) may be contained leading to
symmetric branches which can be detected.
An equivalence transformation of the tree
is then performed using a calculus first
described by MCCARTHY /6/ for optimizing
propositiona1l functions in tree-form. At-
tributes being dependent on others already

certain path are also detected
thus getting additional
feature dependencies

used on a
and eliminated
rules describing
the structure of the domain.
Now let us consider the tree
which represents a hypothesis in a con-
cept learning problem on structures. A
test node is labelled by a triple z , i.e.

If z exists in the structure
ched, the structure passes the
if not it passes the O-branch.
in the tree represents a subclass
concept) by a conjunction of the z

or their negations
labelled branches), the whole concept
being the disjunction of all paths with

terminal nodes labelled by the concept.

(The extension of the formalism to multi-
class discrimination problemsis obvious.)
Since the z 's correspond to triples des-
cribing an aVc together with its adjacent
nodes, unambiguously identified "by their

colours (possibly with additional numbers),
the positive z 's on a path can be combi-

and

in fig. 4

to be mat-
1-branch,
Each path
(sub-
's (1-

labelled branches) (0-

ned into a subgraph characterizing the
concept (fig. 4). The negated z 's on
this path correspond to the "must not"
conditions of /14/ i. e. they are forbid-
den in the substructure.
] 1
°l " T '
B8 - B (‘l‘:‘)
e “a u, u
. 3
@'212671-0 Azzu I—TO
-
O (-)u.,
ZaNZ -‘--——-—v
* Wy, Wy
Fig. 4: Decision tree and description of

a subconcept

Generalization on node and edge features

Generalization on node and edge features
may depend on the place in the structure
where the elementary object or relation



is embedded, therefore a priori given ge- shown in fig. 5 b). The selected arc fea-

neralization hierarchies on elementary ture (fig. 3) discriminates all arches
features may not be helpful. For instance, from the non-arches. (Note the generali-
it may be irrelevant for the concept zation on the form of the top object.)

"arch" (fig. 1), whether the top object
(and only this) is a brick or wedge.
Therefore, generally, the system has to
learn context dependent generalization
hierarchies.

Irrelevant features of such kind lead to
substructures in the trees constructed by
our algorithm having an "analogous" compo-
sition in the sense that the substructures

can be made identical and merged by intro- "non-arch"” "srch” “non-~arch® "arch"
ducing variables for corresponding con- a b)
stituents in corresponding triples. This Fig. 6: Decision trees of a blocks world
procedure is the tree-analogue of VERE's example (for reading the tests in
algorithm of inductive generalization in S i
the predicate calculus /13/. the decision trees se fig. 1).
5 E . ¢ Our program is written entirely in
experiments FORTRAN and consists of about 3 000 exe-
. . . cutable statements. It runs in 150 K

To illustrate general issues and techni- bytes of memory on the BESM-6 computer
ques of our approach one particular con- '
cept learning problem, originally discus- 6. Application
sed by WINSTON /14/ will be described. It
involves the learning of how to identify In pharmacology there is the problem to
simple classes of structures built of chil- find atoms or groups of atoms (substruc-
drenstbl?cks. Thi tas.I;h|s to !earnfthb? K tures) in chemical compounds necessary to
concept of an arch, wi a series o oc evoke a specific biological activity. The
strrl:ctures berllng glven, eachh Ialbelled as knowledge of such substructures may be a
either an arc or a non-arch. In compari- . . ;
sion with WINSTON”s world our sample is ztﬁrtslng point for the synthesis of new
supplemented by additional structures. It As gn.example a training sample of 89

consists of 10 or 11 elements (see fig. 5). carboxamides the structural formulas of
which were known was investigated. These
compounds scaled by their biological ac-
tivity were divided into four classes.
The structural formulas of the compounds
were transformed into coloured graphs-
Each atom or group of atoms is considered

-

non arch ;
as a node in the graph, each type of bond
as an edge*
Our algorithm described above was applied
to this four-class problem* From 89 graphs
@) b) (objects) the computer generated by the
arch norn arch permutation of some of them 103 descrip-
Fig. 5: Some of the additional training tions with altogether about 300 complex
examples features(triples) including the context
: after the second iteration (see 2%*).
The described algorithm constructs com- A disjunction of characteristic substruc-
plex features to characterize all ele- tures was obtained for each class. Our
ments of the training sample (see 2.). results were confirmed by the empirical
The decision tree approach selects only knowledge of chemists.
those tests from the set of the a priori The central processor time needed on the
reordered attributes that it needs to BESM-6 was about 20 minutes.
identify all training examples-
The results are illustrated in fig. 6. 7. Summary and conclusions
The decision tree resulting from the sam-
ple that does not contain the structure A concept learning system has been de-
shown in fig. 5 b) is illustrated in fig. scribed which is based on descriptions of
6 a). It contains only one node feature. structures invariant under isomorphism
The label '2' in the test of the decision and transformation into feature vectors.
tree means/ that there must be at least The generalization abilities are demon-
two nodes 'of that type' in a structure. strated in case of the blocks world ex-
The algorithm produces the decision tree ample.
shown in fig* 6 b), if the training sam- The algorithm can treat training samples
ple contains additionally the structure of about one hundred of relatively com-
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plicated structures in a reasonable time.
Since the use of all possible features
(graph properties) characterizing a
structure would lead to combinatorial ex-
plosion, subsets of feature are extracted
by a unified principle. Global character-
istics (subgraphs) relevant to the concept
are subsequently synthesized in the form

of Boolean functions constituting the fi-

nal concept description. Complex or ele-
mentary features irrelevant to the con-
cept and yet included in the final hy-

pothesis can be eliminated by a second-
ary generalization and optimization pro-
cedure.
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