
Cancellation in a Parallel Semantic Network 

Scott E. Fahlman, David S. Touretzky", Walter van Roggen 

Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

ABSTRACT 

Handling exceptions to general rules is a persistent and 
difficult problem in systems for representing knowledge. In 
semantic networks, this often takes the form of cancelling some 
item of information, such as membership in a class, that would 
otherwise be inherited from a higher level description in the type 
hierarchy. Some conceptually clean approaches to cancellation 
lead to great inefficiency in accessing the information in the 
network, and can negate much of the speed advantage that would 
otherwise be possible in a parallel network system such as NETL. 
In this paper we explore some of the interactions between 
cancellation and parallelism in semantic networks, and we 
propose a cancellation scheme that appears to be workable for 
NETLIike systems. 

I. Introduction 

Every practical scheme for representing knowledge must 
provide some way to represent general statements about classes 
of objects ("all elephants are gray") and to perform the inferences 
necessary for this information to be inherited by the individual 
members of the class. Such inheritance machinery makes it 
possible to represent a body of knowledge much more compactly 
than if every property of every individual were represented 
explicitly. As the size of the knowledge base grows, however, 
inheritance can become costly to implement; in a complex 
hierarchy it may require a great deal of computation and search to 
answer apparently simple questions. The NETL system [1] 
performs these searches by propagating markers in parallel 
through the nodes and links of a hardware semantic network. 

In much of mathematics and in many games and puzzles, 
general statements about the members of a class can be treated 
as inviolable, but in most real world domains it is necessary to 
make occasional exceptions to general statements: "Elephants 
are gray, except for royal elephants, which are white." If there 
were no way to cancel or override the application of a general 
statement that would otherwise be inherited, we would be faced 
with two very unattractive choices: either remove the general 

'Fannie and john Hertz Foundation fellow. 

Thia research was sponsored by trie Defense Advanced Research Protects 
Agency (OOO), ARPA Order No. 3587. monitored by the Air Force Avionics 
Laboratory Under Contract F33615 7 8 C 1551. 

The views and conclusions contained in this document are those of the authors 
and should not be interpreted as representing the official policies, either expressed 
or implied, of the Defense Advanced Research Protects Agency or the US 
Government. 

statement about elephants being gray and state the color 
individually for each elephant, or remove royal elephants from the 
class of elephants and describe their elephant like properties from 
scratch. As we accumulate large amounts of information in our 
knowledge base, this dilemma is encountered more frequently; if 
we know hundreds or thousands of facts about the typical 
elephant, the probability that a given elephant will be typical in all 
of these respects becomes vanishingly small. We just happen to 
live in a universe in which there are regularities too important to 
ignore, but in which every general statement has some exceptions 
(including this one). 

The current interest in nonmonotonic logics [2] is in large 
part due to a realization that traditional (monotonic) logics cannot 
handle generalizations and default reasoning in the presence of 
exceptions, and that such reasoning is'critically important in real-
world systems. However, the majority of work in nonmonotonic 
logic has been aimed at developing a useful, consistent, and 
mathematically tractable notation and the associated rules of 
inference. Little work has been done on how to make non­
monotonic inference systems efficient enough for practical use, 
and even less on the possibility of performing the necessary 
inferences in parallel. 

Most existing Al knowledge-base systems either decline to 
handle exceptions at all [3,4] or handle them by a system of local 
masking, in which more local information ("royal elephants are 
white") masks and supersedes any conflicting information 
("elephants are gray") found at more abstract levels of the 
hierarchy [5,6]. This system of masking has several serious 
problems. First, it is often hard to determine whether the local 
information conflicts with the inherited information, and therefore 
supersedes it, or whether it is intended as additional information. 
Second, in a system whose type hierarchy allows multiple upward 
branches from a node, it may not be possible, or even meaningful, 
to determine which of two statements inherited along different 
paths is the more local. Third, the masking system works only for 
determining the properties of a given subtype or individual; it does 
not lend itself to the complementary problem of finding those 
individuals with a certain property. Finally, the masking system 
works only for properties; it does not extend naturally to the 
situation where inherited membership in a class is to be cancelled. 
These problems can be greatly reduced if the information to be 
superseded is explicitly cancelled. 

The NETL system [1] originally included a scheme for 
handling explicit cancellations in parallel during the normal 
marker propagation operations of the network. The scheme, as 
originally proposed, was able to handle the trivial cases that were 
considered at the time, but it began to break down as more 
complex situations were considered. After a considerable period 

237 



of wrestling with the problem, we developed some new insights 
into the nature of cancellation and a better system for handling 
cancellation in NETL. We believe that these insights and methods 
wiN be of value to other workers in the area of knowledge 
representation, even those working on inference systems that are 
not designed for parallel implementation. 

In the discussion that follows, we confine our remarks to the 
case where the information being cancelled is the inherited 
membership of some individual in a class or the inclusion of some 
class in a more abstract and general class. This is the hardest sort 
of cancellation to handle: it exhibits all of the problems that we 
have found in cancelling inherited properties, plus some more. 
Also, it subsumes the other cases, since in a system like NETL one 
can always transform a predicate like GRAY or LIKES PEANUTS 
into a class like GRAY-OBJECTS or PEANUT LIKERS The real 
advantage of limiting the discussion to class membership 
cancellation, however, is that we can describe our approach 
purely in terms of IS-A links and the various sorts of CANCEL links 
and avoid a discussion of roles, mapping, and quantification in 
semantic networks •• a complex set of topics beyond the scope of 
this paper. 

I I . Some Design Considerations 

Before we look at the ways in which the obvious cancellation 
schemes fail, we must describe what we want a successful parallel 
scheme to do. 

In designing a system like NETL, we cannot separate the 
design of the elements (nodes, links, flag bits) from the design of 
the parallel marker-passing algorithms (called scans) that locate 
information in the network; the representation and the algorithms 
must work together. Two scans will concern us here. The upscan 
starts with a mark on a single node and attempts to mark all of that 
nodes superiors in the tangled type hierarchy -- that is, all of the 
superior type-nodes from which the starting node is to inherit 
properties and statements. In the absence of cancellation, this 
scan consists simply of propagating markers across IS-A links 
(these are called *VC links in (1)), in the upward direction 
(following the arrow) only. Because of the parallelism in the 
network, this operation can be done in time proportional to the 
length of the longest ISA chain to be followed, regardless of how 
many nodes are marked due to branching in the network. 
Upscans are used very frequently for all sorts of access in the 
knowledge base, so any proposed cancellation scheme must 
preserve their parallel nature or pay a very heavy price in 
performance. 

The downscan is used to mark all of the subtypes and 
individuals that lie below the starting type-node in the ISA 
hierarchy; these are the nodes that inherit properties from the 
starting node. A downscan is like an upscan, except that the 
markers propagate downwards across ISA links (against the 
arrows), not upwards. This scan, too, is used very frequently, as it 
plays an essential role in all recognition operations. Again, the 
time taken is independent of the number of nodes marked, and 
this parallelism must be preserved when cancellation is added to 
the system. For the system to function properly, the upscan and 
downscan operations must be complementary: If an upscan from 
node X marks node Y, a downscan from Y should mark node X, 
and vice versa. 

In addition to working smoothly with the above scans, a 
cancellation scheme must allow for cancellations to be revoked. 
Consider the following set of assertions, which we would like our 

system to handle in a natural way: 

1. A mollusc is a shell-bearer. 

2. A cephalopod (octopus, squid, etc.) is a mollusc, but is not 
a shell-bearer. 

3. A nautilus is a cephalopod, but is a shell-bearer. 

Note also that we need the ability to add information to -the 
knowledge base in any order. As we will see, the addition of a 
seemingly innocuous assertion can sometimes clash with 
assertions that are far away in the network. This must be detected 
and dealt with, perhaps by cancelling some of the conflicting 
information. 

III. A Simple Cancellation Scheme and How It Fails 

Let us now consider the membership-cancellation scheme 
proposed in [1] and see how it fails This scheme uses a special 
CANCEL link (called 'CANVC in the original work) to represent the 
cancellation of an inherited class membership. In Fig. 1, we see a 
network (actually a fragment of the complete network knowledge 
base) in which this CANCEL link is used. According to this 
network, a D is a C, but is not a B or an A because of the CANCEL 
link. E inherits the class memberships of D. To perform an upscan 
from node E in this network, proceed as follows: 

1. First select an activation marker for marking the superiors 
of node E; select a second marker for cancellations. 
Suppose we select markers M1 and M2 for these roles. 
Begin by putting marker M1 on the starting node, E. 

2. If any CANCEL link has M1 on the node at its tail, put an M2 
on the node at its head. 

3. If any ISA link has M1 on its tail, and has neither M1 nor 
M2 on its head, put an M1 on the node at its head. (The 
effect of this is that the activation markers propagate 
upward, but will not enter or pass through a node with a 
cancellation marker.) 

4. Repeat steps 2 and 3 in alternation until step 3 no longer 
generates any activity. If there are no nodes with both M1 
and M2 markers present, stop. M1, the activation marker, 
is now present on all of the nodes from which the starting 
node, E, is supposed to inherit properties. 

5. If in step 4 a node is found with both M1 and M2, the 
network contains a lost race: a cancellation marker has 
arrived at a node too late to prevent an activation marker 
from passing into and through that node. In such cases 
(rare in practice, but possible) the scan must be run a 
second time. Remove all M1 markers, leaving the M2 
markers in place. Then put M1 on E, and run the entire 
scan again. (Note: when they are detected, race 
conditions can be eliminated by adding a redundant, more 
direct CANCEL link to the network This will get the 
cancellation marker to the disputed node sooner, in time to 
stop the activation marker from getting by it.) 

Fig. 2 shows the result of this scan. E inherits from 0 and C, 
but not from B and A. If we had started the upscan at node G, no 
cancellation would have occurred; G inherits from F, C, B, and A. 

The algorithm for oownscan ie identical, but the direction is 
reversed: cancellation markers flow down CANCEL links, and 
activation markers flow down ISA links. (They move in the 

256 



Figure 4: A Case Where Downscan Fails 

direction opposite to the arrows drawn on the links) Fig 3 shows 
the result of a downscan from A in the same network: B, C, F, and 
G inherit from A; D and E do not inherit because the CANCEL link 
places M2 on node D and this blocks any M1 from entering or 
passing through that node. 

Figure 3: The Result of a Downscan from A 

The inadequacy of this cancellation scheme can be seen in 
the example of Fig. 4. if we perform an upscan from G, we mark F, 
E, C, B, and A, but not node D, which is cancelled. Since the 
upscan says that A is a superior of G, a downscan from A should 
mark G. This is not the case, however; a downscan from A will 
mark nodes B, C, D, and E, but will not mark F and G because of 
the cancellation marker on F. We cannot fix this by arbitrarily 

deciding that downscans should not send cancellation markers 
downward; in many cases, such as the one in Fig. 3, these 
cancellation markers are essential. 

A similar problem can occur in upscans. Consider the 
network of Fig. 5. It is clear that a downscan from G will mark F, E, 
C, B, and A, but not D. Using the algorithm above, an upscan from 
A will reach B, C, D, and E, but not F and G. In a case like this, it is 
not clear what should happen. Members of class C inherit 
membership in F, while members of class D explicitly do not. What 
about members of class A, which are members of both C and D? 
Should the inheritance or the cancellation take precedence? If the 
upscan is to be complementary to the downscan in this example, 
inheritance along a non cancelled path must take precedence 
over the cancellation, but it is not clear how to implement that 
policy in a parallel scan. 

Figure 5: A Case Where Upscan Fails 

IV. The Nature of the Problem 

At first we viewed these problems as minor bugs in our 
scanning algorithms. We tried a number of fixes, such as 
cancelling particular ISA links rather than cancelling class 
membership directly at the node, but the same kinds of problems 
kept appearing no matter what we tried. Gradually, it became 
clear to us that the problem was a fundamental one, owing more 
to the nature of marker-passing parallelism and nonmonotonicity 
than to the details of our various notations and scans. Consider 

259 



again the case in Fig. 5. What we really want here is for the 
cancellation marker at node F to stop those activation markers 
that arrive by way of node D, and not to stop any activation 
markers that arrive via the uncancelled path through node C In 
other words, we need to know not only the result that A is an F, but 
also how we established that fact Is proving .that A is a 0 an 
essonlial part of the proof that A is an F. or is there some other 
path available? Obviously, our single bit markers do not carry 
such information 

One could imagine a parallel system in which such 
information is recorded and used. Each CANCEL link would 
"paint" a marker that passes one of its ends, and would block any 
marker so painted from entering the node at its other end. To 
prevent errors due to interactions between different CANCEL 
links, each CANCEL link would require its own color of paint, and 
a marker might have to carry many colors at once. This would 
solve the cancellation problem, but at a heavy cost: we are no 
longer passing around single bit markers, but arbitrarily complex 
information structures; each parallel element of the network must 
now be a complex processor, capable of storing, comparing, and 
modifying an unbounded number of these "marker" structures. 
(That is. the number of colors could be as large as the number of 
CANCEL links in the network, which is theoretically unbounded.) 
In the NETL system, we have chosen to provide only a small, fixed 
number of single-bit markers; this results m a system which we 
know how to build relatively cheaply [7]. 

Our problems with cancellation, then, are a direct 
consequence of our decision to use a very simple kind of 
parallelism in NETL. A more complex parallel system would not 
exhibit these problems, but it would be orders of magnitude more 
costly and difficult to build. 

We should note that this difficulty with cancellation is not the 
only problem arising from our choice of simple marker passing 
parallelism. For example, to locate in parallel every known 
instance of a son who is hated by his own father* we need the 
same kind of painted markers. We can start from the father nodes 
and mark their sons. A second mark can be placed on all the 
people that fathers hate. We can then locate in parallel the set of 
all sons who are hated by someone's father. But without the paint, 
we cannot be sure that the SON OF marker and the HATES 
marker came from the same father. We have produced a list of 
suspects, but we must now look serially at each suspect to see if 
he is. in fact, a member of the class in question. Painted markers 
could also be used to eliminate the copy confusion problem 
discussed in [1], section 3.7. 

Despite these arguments, there are ways to cope with 
cancellation in NETL without going to more complex hardware. 
These involve introducing some amount of serial behavior into the 
operation of the network •• in essence, achieving the effect of 
many-colored markers by using simple markers in a number of 
separate scans. For example, we could send "suspicion marks" 
rather than cancel marks down the CANCEL links during a 
downscan. Every node that receives both a suspicion and an 
activation marker might be cancelled. We check this by doing an 
upscan from that node. Once all of these possible cancellations 
have been checked, and cancellation markers have been placed 
on the appropriate nodes, we can then do a final downscan to 
locate the true, uncancelled descendants of the starting node. 

•This pioblem was put to us by Brian Smith 

Note that what was a single parallel downscan has now 
become a group of scans, one for each CANCEL link that the 
original downscan touched. In most real world systems, a single 
downscan will only initiate a few CANCEL testing scans, but in 
principle there is no limit, just as there was no limit on the number 
of colors we needed earlier. Many variations on this theme are 
possible, but they all result in additional scans, one for each 
CANCEL link that might alter the results of the scan being 
performed. 

Another approach we can take is to perform these additional 
cancel-checking scans every time the network is modified, and to 
record the results in the network in the form of additional links. 
This allows the upscan and downscan algorithms to be simple 
parallel scans, as they were initially, but requires that a potentially 
large number of cancel checking scans be run whenever any link 
is added to the network or removed from it This move is 
advantageous, since we anticipate that in the normal operation of 
the knowledge base the ratio of accessing to modifying operations 
will be large. 

A second advantage of this pre processing scheme is that in 
many situations, as in the example of Fig 5 above, it is not clear 
whether the user intends that an inherited cancellation should 
apply or should be overridden. If we locate such ambiguous 
situations at the time the network is modified, we can ask about 
how to resolve them while the knowledge base builder is still 
present; if we wait until access time to discover the problem, we 
might be dealing with a different user who could shed no light on 
the intent of the knowledge base builder Note that the builder" 
and the "user" of this knowledge base might be programs instead 
of humans, but it is still the builder's job to resolve ambiguities 

This idea of checking all possibly affected CANCEL links with 
individual scans at the time of any modification to the network, 
and of keeping the network in this pre tested, unambiguous, 
"consistent" state is the basis of the scheme described below. 
Preserving such consistency across all possible changes can be a 
tricky business, especially when complications such as multiple 
contexts are brought into the knowledge base We have not, at 
the time of this writing, dealt with many of these possible 
complicating factors. That is why we refer to this as a "partial" 
solution to the problem. However, we are reasonably confident 
that some combination of pre testing and access-time testing of 
CANCEL links can be made to do the job. 

V. A Partial Solution 

We begin with the notation and the algorithm from [1] 
described in section 3 above. CANCEL links run from node to 
node and place cancellation markers during upscans and 
downscans These cancellation markers prevent any activation 
markers from entering or passing through the nodes that they 
occupy. In this scheme CANCEL links are stronger than ISA 
links. 

In this sort of scheme, we need some way to explicitly 
override a CANCEL link in order to handle the mollusc-
cephalopod nautilus problem described earlier. We cannot just 
add an IS A link from NAUTILUS to SHELL BEARER, since the 
CANCEL link from CEPHALOPOD to SHELL BEARER takes 
precedence. Instead we must use both an IS A link and a new link 
whose effect is to turn off a CANCEL link lor a particular subclass 
that would otherwise inherit the cancellation. We call this new link 
an UNCANCEL link. The resulting network is shown in Fig. 6. 

260 



The algorithm for upscan is unchanged, except that we select 
an extra marker (M3) for use by the UNCANCEL links, and step 2 is 
replaced by the sequence of step 2a and step 2b as shown below. 

2a. If any UNCANCEL link has M1 on the node at its tail and does 
not have M3 on the CANCEL link at its head, put an M3 on this 
CANCEL link. If the CANCEL link being marked has an M2 on 
the node at its head, remove the M2 marker from that node. 

2b. If any CANCEL link has M1 on the node at its tail and does not 
have M3 on its body, put M2 on the node at its head. 

Fig. 7 shows the result of this new upscan algorithm when 
used to mark upward from NAUTILUS in Fig. 6. No cancellation 
marker is placed because the UNCANCEL link places an M3 on 
the CANCEL link, turning it off. A NAUTILUS is therefore a 
CEPHALOPOD, a MOLLUSC, and a SHELL-BEARER, according 
to this network. 

Note that the running time of this scan still depends only on 
the length of the longest IS A chain, not on the branching facto/ or 
the number of nodes in the network. The addition of UNCANCEL 
links increases the running time of the basic upscan by a small 
constant factor. 

Note too that CANCEL and UNCANCEL are sufficient; there is 
no need for UN-UNCANCEL links. If we want to create a subtype 
Of NAUTILUS, the NAKED-NAUTILUS, that is nor a SHELL-
BEARER, we simply add this node to the network below 
NAUTILUS and run a new CANCEL link from it to SHELL-BEARER. 
as shown in Fig. 6. The old CANCEL link and its UNCANCEL are 
left alone. 

Recall from the example of Fig. 5 that the difficulties for 
upscans arise in those cases in which some node lies below the 
tail node of a CANCEL link (node D in this case) and also lies 
below the head node of the cancel link (node F) by an 
independent path (one that does not pass through D). Node B in 

this example is such a node, which we call a merge point below 
this particular CANCEL link. In this case it is unclear whether B is 
to be a member of class F or whether the cancellation of F is to 
prevail. 

We propose to deal with such ambiguous cases by excluding 
them from the network. The structure in Fig. 5 is declared to be 
"inconsistent" or ill-formed. Every merge point below a given 
CANCEL must have an UNCANCEL link from it to the CANCEL. 
Therefore, the network of Fig. 6 is legal, since the merge point at 
NAUTILUS has an UNCANCEL link. This network will function 
properly for both upscans and downscans. Fig. 8 is legal as well. 

Another way to make Fig. 5 legal would be to run a new 
CANCEL link directly from B to F. In this case, B is not a merge 
point, since it is not below F by the normal rules of inheritance. 
Thus, if we see an illegal merge point like B about to be created, 
we can give the user a choice: is B an F, or is it not? If it is, we 
insert an UNCANCEL; if it is not, we insert a new, direct CANCEL 
link from B to F. 

Note too that by fixing the problem at node B, we also fix it for 
node A In general, therefore, we need only to locate and fix the 
uppermost merge points below a given CANCEL link, not every 
node that lies anywhere below both the head and tail. Since the 
IS-A network is not a total ordering, there may be a number of 
uppermost merge points below a CANCEL, but we expect this 
number to be small. 

It is not difficult to find all of the uppermost merge points 
below a single cancel. Call the node at the head of the CANCEL 
link A and the node at the tail of the CANCEL link B. The 
procedure is as follows: 

1.With one triplet of markers, M1 for activation, M2 for 
cancellation, and M3 for inactivation, perform a normal 
downscan from node B, observing all CANCEL links as the 
downscan proceeds. 

2. With a second triplet of markers, M4, M5, and M6. perform 
a downscan from node A. Because of the CANCEL link, M5 
will be placed on node B, so M4 markers will not flow down, 
through that node. 

3. We must now find the uppermost nodes with both M1 and 
M4. Have every IS-A link in the network examine the node 
at its head, if this node contains both M1 and M4, place an 
M7 mark on the node at the tail of the IS-A. Every node that 
ends up with M1 and M4 but not M7 is an uppermost merge 
point: it has no merge point above it. 

261 



4. To handle some difficult cases property, we also must find 
and fix any merge points that lie below the uppermost 
merge points found in step 3. but that have independent 
upward paths to both A and B. By "independent" we mean 
that neither of these paths go through the uppermost 
merge points found earlier. To find these nodes, we re run 
steps 1 3 above, but first we put cancellation markers, M2 
and M5, on all of the uppermost merge points we have 
found already. Repeat these scans until no new merge 
points are found. 

So far, this section has only dealt with the difficulties 
encountered in upscans and what to do about them; as we saw 
earlier, downscans have problems as well. These problems occur 
in situations like those in Fig. 4 (which is just Fig 5 turned upside 
down): somewhere above the CANCEL link from F to D, there is a 
merge point. B. It is unclear whether F should be a B or not. This 
symmetry suggests a solution, we need a form of UNCANCEL link 
(called an UNEXCLUDE link) from the CANCEL to the merge point 
at node B. Fig. 9 shows the network of Fig 4 with this 
UNEXCLUDE link added. During a downscan from node B or 
above, the UNEXCLUDE link places marker M3 on the CANCEL 
link, turning it off. lust as the UNCANCEL link turned off the 
CANCEL link during upscans. Because of this, the downscan 
from B does reach nodes F and G; upscans and downscans in this 
network are exactly complementary to one another. 

In order for a network to be considered legal under this 
scheme, there must be an UNEXCLUDE link to every lowermost 
merge point above a given CANCEL link. The procedure for 
finding these points is exactly like the procedure described above 
for finding UNCANCEL points, except that the markers all go 
upward rather than downward. Once the upward merge points 
are found, we have the option of adding an UNEXCLUDE link or of 
adding a new. direct CANCEL link, depending on what we want 
the network to say. The operation of upscans and downscans, of 
UNCANCEL and UNEXCLUDE links, is now Quite symmetrical. 
However, since every node must have some uncanceled path 
upward to the THING node, there is guaranteed to be at least one 
merge point above any CANCEL link, and therefore at least one 
UNEXCLUDE; since there is no single lowermost node in the ISA 
hierarchy, many CANCEL links will have no merge points and no 
UNCANCEL links below them. 

It seems to be easy for people to understand intuitively what 
the role of the UNCANCEL link is, but somewhat harder to 

understand what the UNEXCLUDE links are doing. The best way 
to visualize this is to think of the downscan as a query about which 
nodes are members of the class represented by the starting node 
of the scan. In Fig. 4. the CANCEL link excludes F and its 
descendants from membership in class D, and from any class 
superior to D. The UNEXCLUDE in Fig. 9 lifts this exclusion for 
class B. so that we can state that F is a B without having the 
CANCEL link take precedence. 

We have now placed a new set of constraints on the set of 
legal networks: all CANCEL links must have the appropriate merge 
points covered by UNCANCEL or UNEXCLUDE links. If the 
network is legal in this sense, upscans and downscans will work 
properly. (In fact, there will never be a race condition, so step 5 of 
the scan can be eliminated.) If the network is not in this state, 
there are no guarantees. Therefore, we must endeavor to keep 
the network in this legal state This requires that we do a certain 
amount of work every time a CANCEL or IS-A link is added to or 
removed from the network. (This is similar to the work that must 
be done to detect other kinds of inconsistency in NETL, such as 
the violation of SPLIT conditions.) 

We have already described how to find the illegal merge 
points above and below a single CANCEL link. The act of adding 
an ISA link to a network can cause some new merge points to 
appear for CANCEL links that are already present. In order to be 
sure that the network is returned to a consistent state, we must 
examine every CANCEL link that might be affected by this 
addition. This is done by performing an upscan from the top of the 
new IS A and processing any CANCEL which has either end 
attached to one of the activated nodes: then we perform a 
downscan from the lower end of the new IS A, and again process 
any CANCEL links that are touched by the scan The same 
procedure must be performed if an IS-A link is removed, and if a 
CANCEL link is added or removed. Any of these operations might 
create new merge points In processing the CANCEL links, we 
must also look for UNCANCEL or UNEXCLUDE links that no 
longer point to merge points. These can cause trouble later and 
should be removed. 

All of this is a good deal of work, but as we noted earlier, we 
assume that the network is modified relatively infrequently We 
believe that it is better to try to keep the network consistent in this 
way than to require extra scans to check each CANCEL link every 
time an upscan or downscan is performed. We expect that the 
number of UNCANCEL and UNEXCLUDE links will be no more 
than a few times the number of CANCEL links in the network, 
depending on how tangled the network is. 

An obvious question is whether we can detect that the 
consistency of the network has broken down, and how to correct 
it. This could happen, for instance, if the demands on the network 
are such that the consistency checking for a change cannot be 
done to completion. (If we record such events, we can come back 
later and finish the checking.) Some inconsistencies, perhaps 
most of them, will result in networks with race conditions: a normal 
upscan or downscan will result in a cancellation marker arriving at 
a node which already contains an activation marker. This should 
never happen in a consistent network, so it can alert us to the 
existence of an inconsistency local to the CANCEL link which 
loses 'he race. Such races will not occur for all inconsistencies, 
however, so this is not an infallible indicator. In fact, the only way 
to be really sure that a network is consistent in this sense is to re-
check all of the CANCEL links, one by one. Perhaps the system 
can do this in its spare time. 

262 



VI. Concluding Remarks 

In summary, we have argued that cancellation is an essential 
operation in semantic networks, that the simple scheme of (1] is 
not sufficient to handle all cases, and that the roots of the problem 
are deep in the nature of the marker-passing style of parallelism 
that we use in NETL. We have presented two ways of coping with 
this problem within NETL: check every relevant CANCEL link 
during every upscan and downscan, or keep the network 
consistent by adding or deleting auxiliary links every time the 
network is modified. Either solution is cosily, but perhaps not as 
costly as introducing a more powerful kind of parallelism into our 
knowledge base system. 

We do not yet have a firm theoretical understanding of the 
kinds of problems that can be handled efficiently by marker-
passing parallelism. In this work, we have explored one small set 
of problems in this new domain. We believe that much more 
exploration of the possible kinds of parallelism and their 
limitations will be needed in the years to come. 

REFERENCES 

[1] Fahlman, S. E. NETL: A System for Representing and Using 
Real-World Knowledge. Cambridge, MA: MIT Press, 1979. 

[2] McDermott, D. V. and Doyle, J. "An Introduction to Non-
Monotonic Logic." In Proc. IJCAI-79. Tokyo, 1979, 562-567. 

[3] Brachman, R. J. "Theoretical Studies in Natural Language 
Processing, Annual Report'1, Technical Report 3888, Bolt 
Beranek and Newman, Inc., 1978. 

[4] Fikes, Rand Hendrix, G. G "A Network-Based 
Representation and its Natural Deduction System." In Proc. 
IJCAI-77. Cambridge, MA, 1977, 235-246 

[5] Bobrow, D.G. and Winograd, T. "An Overview of KRL, A 
Knowledge Representation Language", Cognitive Science, 
1:1,1977. 

[6] Roberts, R. B. and Goldstein, I. P. "The FRL Manual", 
Technical Report 409, MIT Artificial Intelligence Lab, 
Cambridge, MA, 1977. 

[7] Fahlman, S. E. "Design Sketch for a Million Element NETL 
Machine." In Proc. AAA! Conference, 1980, 249-252. 


