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ABSTRACT

Although most commonly occurring default rules
are normal when viewed in isolation, they can
interact with each other in ways that lead to the
derivation of anomalous default assumptions* In
order to deal with such anomalies it is necessary
to re-represent these rules, in some cases by
Introducing non-normal defaults. The need to
consider such potential interactions leads to a new
concept of integrity, distinct from the conven-
tional Integrity Issues of first order data bases.

The non-normal default rules required to deal
with default interactions all have a common pattern,
Default theories conforming to this pattern are
considerably more complex than normal default
theories. For example, they need not have exten-
sions, and they lack the property of semi-monoto-
nicity.

I INTRODUCTION

In an earlier paper [Reiter 1980a] one of us
proposed a logic for default reasoning. The objec-
tive there was to provide a representation for,
among other things, common sense facts of the form
"Most A's are B's", and to articulate an appropri-
ate logic to characterize correct reasoning using
such facts.* One such form of reasoning is the
derivation of default assumptions: Given a particu-
lar A, conclude that "This particular A is a B".
Because some A's are not B's this conclusion must
be treated as a default assumption or belief about
the world since subsequent observations in the
world may yield that "This particular A is not a B".
The derivation of the belief that "This particular
A is a B" is a form of plausible reasoning which is
typically required whenever conclusions must be
drawn from incomplete information about a world.

senses of
One

It is important to note that not all
the word "most" lead to default assumptions.
can distinguish two such senses:
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of the National Science and Engineering Research
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* Other closely related work with much the same
motivation is described in (McCarthy 1980], [McDer-
mott 1980] and [McDermott and Doyle 1980].
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1. A purely statistical connotation, as in
"Most voters refer Carter." Here, "most" is being
used exclusively in the sense of "the majority of".
This setting does not lead to default assumptions:
given that Maureen is a voter one would not want to
assume that Maureen prefers Carter. Default logic
makes no attempt to represent or reason with such
statistical facts.

2. A prototypical sense, as in "Most birds
fly." There is a statistical connotation here -
the majority of birds do fly - but there is also
the sense that a characteristic of a prototypical
or normal bird is being described. Given a bird
Polly, one is prepared to assume that it flies
unless one has reasons to the contrary.* It is
towards such prototypical settings that default
logic is addressed.

The concept of a prototypical situation la
central to the frames proposal of [Minsky 1975] and
is realised in such frame Inspired knowledge repre-
sentation languages as KRL [Bobrow and Vinograd
1977] and FRL [Roberts and Goldstein 1977]. That
these are alternative representations for some
underlying logic has been convincingly argued in
[Hayes 1977]. Default logic presumes to provide a
formalization of this underlying logic.

The approach taken by default logic is to
distinguish between prototypical facts, such aa
"Typically mammals give birth to live young", and
"hard" facts about the world such as "All dogs are
mammals." The former are viewed as rules of Infe-
rence, called default rules, which apply to the
latter "hard" facts. The point of view is that the
set of all "hard" facts will fall to completely
specify the world - there will be gaps in our know-
ledge - and that the default rules serve to help
fill in those gaps with plausible but not infalli-
ble conclusions. A default theory then is a pair
(D,V) where D is a set of default rules applying
to some world being modelled, and V is a set of
"hard" facts about that world. Formally, V la a

* One way of distinguishing between these two
senses of "most" is by replacing its setting using
the word "typically". Thus, "Typically voters
prefer Carter" sounds inappropriate, whereas
"Typically birds fly" seems more accurate. In the
rest of this paper we shall use "typically" when-
ever we are referring to a prototypical situation.



set of first order formulae while a typical default
rule of D 1o dengted ™
a(x} : MBy(X),...,MBy(x)

wix)
where o(X), Bl(i),....ﬂnfi), w(X) are all first
order formulae whose [ree variables are among those
of ¥ = ¥Xy,...,%y. Intuitively, this default rule is
interpreced am waying "For all individuals
Xlyos-a¥p if a is believed and if each of
BY(X),...,B () 1s consistent with our beliefs, then
u}f} may be balieved." The set(s) of beliefs sanc-
tioned by a default theory is precimely defined by
a fixed point comstruction in [Reiter 1980a]. Any
such set is called an extension for the default
theory in question, and is interpreted as an accep-
table set of beliefs that one may entertain about
the world being represented.

It turne out that the general clasa of default
theories is mathematically intractable. According-
ly, many of the results in [Reiter 1980a] (e.g. that
extensions always exist, a proof theory, conditions
for balief revision) were obtained only for the
claas of so-called normsal default theories, namely
theories all of whose defaulte have the form

o : Mw .

w(X)

Such defaults are extremely common; for example
"Typically dogs bark.:

DOG{x) : M BARK{(x)

BARK{x)
"Typically American adults own a car.":
AMERICAN(X) A ADULT(x) : M((Ey).CAR(y) A OWNS(x,y))
(Ey) .CAR(y) A OWNS(x,y)

Many more examples of such normal defaults are dea-
cribed in {Reiter 1980a]. Indeed, the claim was
made there that all naturally occurring defaults
are normal. Alas, this claim appears to be true
only when interactions involving default rulea are
ignored. For normal default theories such inter-
actions can lead to anomalous conclusiona,

It is the purpose of this paper to describe a
variety of settings in which interactions involving
defaults are important* and to uniformly generalize
the notion of a normal default theory so as to cor-
rectly treat these interactions. The resulting
semi-normal default theories will then be seen to
lack some important properties: for example they
need not have extensions, and they lack the semi-
monotonicity property which all normal theories en-
joy. We shall also see that the interactions in-
troduced by default rules lead to a new concept of
data base integrity, distinct from the integrity
issues arising in first order data bases.

This paper is an abridged version of [Reiter

and Criscuolo 1980].
II INTERACTING NORMAL DEFAULTS

In this section we present a number of examples
of default rules which, in isolation, are most
naturally represented as normal defaults but whose
interaction with other defaults or first order for-
mulae leads to counterintuitive results. In each
case we show how to "patch" the representation in
order to restore the intended interpretation. The
resulting "patches" all have a uniform character,
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vhich will lead us in Section OIB to introduce the
notion of a semi-normal default theory.

A, "Typically" is not Necessarily Transitive

Consider:
“Typically A's are B'a":
Alx) ¢ MB{x
B{x
"Typically B's are C's":

Bix} : MC{(x)
¢{x) (2.2}

These are both normal defaults. Default logic then
admits the conclusion that "Typically A's are C's"
in the following sense: If a is an individual for
which A(a) is known or believed, and if "6(a) and
~C(a) are not known or believed, then C(a) may be
derived. In other words, normal default theories
impose transitivity of "typically". But this need
not be transitive, for example:

"Typically high school dropouts are adults."! (2,3)
"Typically adults are employed." J

From these one would not want to conclude that
"Typically high school dropouts are employed."*
Transitivity must be blocked. This can be done in

2.1}

general by replacing the normal default (2,2) by the
non-nnrmal Adafanlt
B(x) : M{"A(x) A C(x)) (2.4)
C{x) '
To see why this works, consider a prototypical in-

dividual a which is an A i.e. A(a) is given. By
(2.1) B(a) can be derived. But B(a) cannot be used
in conjunction with (2.4) to derive C(a) since the

consistency condition ~A(a) A C(a) of (2.4) is vio-
lated by the given A(a). On the other hand, for a
prototypical Individual b which is a B (i.e. B(b) is

given) (2.4) can be used to derive C(b) since pre-
sumably nothing is known about b's A-ness - we do

not know that A(b) - so that the consistency condi-
tion of (2.4) is satisfied.

The introduction of non-normal defaults like
(2.4) is a particularly unpleasant solution to the
transitivity problem, for as we shall see in Section
HIB, the resulting non-normal default theories
lack most of the desirable properties that normal
theories enjoy. For example, they sometimes fail
to have an extension, they lack semi-monotonicity,
and their proof theory appears to be considerably
more complex than that for normal theories. Accor-
dingly, to the extent that it can be done, we would
prefer to keep our representations "as normal as
possible." Fortunately transitivity can be blocked
using normal defaults whenever it is the case that
in addition to (2.1) and (2.2) we have "Typically
B's are not A's". This Is the case for example

(2.3): "Typically adults are not high school drop-
outs". Under this circumstance, the following nor-
mal representation blocks transitivity:

A(x) : MB(x

A0); MB(x) (2.5)

Bix) : M~ Alx (2.6)

= A{x)

* Nor would we want to conclude that "Typically
high school dropouts are not employed." Rather we
would remain agnostic about the employment status
of a typical high school dropout.



B(x) A "~ A(x) : MC(x)

5] (2.7)

Notice how, whem given that B(a), a simple back-
chaining interpreter would establish the goal C(a).
Back-chaining into (2.7) yields the subgoal
B(a) A - A(a). This splits into the subgoal B(a)
which is given and hence solved, and the subgoal
~ A(a). This latter back-chains into (2.6) yielding
the subgoal B(a) which is solved. There remains
only to verify the consistency requirements associ-
ated with the defaults (2.6) and (2.7) entering into
the proof i.e. to verify that (C(a), * A(a)} is con-
sistent with all of the first order formulae in
force. Such a back-chaining default reasoner is an
Incomplete realization of the complete proof proce-
dure of [Relter 1980a]. The reader might find it

Instructive to simulate this back-chaining inter-
preter for the case that A(a) is given, in order to
see how a derivation of C(a) is prevented.

Notice also that the representation (2.5),

(2.6) and (2.7) yields a very interesting predic-
tion. Given an individual a which is simultaneously
an Instance of A and B, nothing can be concluded
about its C-ness. This prediction is confirmed with
respect to example (2.3): Given that John is both a
high school dropout and an adult, we do not want to
assume that John is employed. Notice that the non-
normal representation (2.1) and (2.4) yields the
same prediction. We shall have more to say about
defaults with common instances of their prerequi-
sites in Section IIC*

A somewhat different need for blocking transi-
tivity arises when it is the case that "Typically
A's are not C's" i.e. in addition to (2.1) and (2.2)

we have
A(x) : M " Ci(x
~C(x) (2.8)
For example,
"Typically university students are adults." ]
"Typically adults are employed.” I (2.9)
|

"Typically university students are not

employed."” J

Under these circumstances, consider a prototypical
instance a of A. By (2.1) and (2.2) C(a) can be
derived. But by (2.8) ~ C(a) can be derived. This
means that the individual a gives rise to two diff-
erent extensions for the fragment default* theory
(2.1), (2.2) and (2.8). One of these extensions -
the one containing C(a) - is intuitively unaccep-
table; only the other extension - the one containing
" C(a) - is admissible. But a fundamental premise
of default logic is that any extension provides an
acceptable set of beliefs about a world. The prob-
lem then is to eliminate the extension containing
C(a). This can be done by replacing the normal de-
fault (2.2) by the non-normal (2.4), exactly as we
did earlier in order to block the transitivity of
"typically". Now, given A(a), B(a) can be derived
from (2.1), and - C(a) from (2.8). C(a) cannot be
derived using (2.4) since its consistency require-
ment is violated. On the other hand, given a prot>-

* 1f am 14 HBL(:).“..HB,.(;)
is a defaulp(®yle then o(x) is its prerequisite.
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typical instance b of B, C(b) can be derived ualng
(2.4).

Once again a non-normal default has been intro-
duced, something we would prefer to avoid. As
before, a normal representation can be found when-
ever it is the case that "Typically B'e are not
AV\ This is the case for example (2.9): "Typi-
cally adults are not university students". Under
this circumstance the following normal representa-
tion will do:

A{x) : ME(x)

B{x)
B{x) : M "~ A(x)
* Alx)
B{x) a ~ A(x) : MC{x)
C(x)
A(x) : M~ Cix)

~ C(x}

Notice that this representation predicts that
any Individual which is simultaneously an Instance
of A and B will be an Instance of not C, rather than
an inatance of C. This is the case for example
(2.9): Given that Maureen is both a university stu-
dent and an adult one wants to assume that Maureen
is not employed.

Figure 2.1 summarizes and extends the various
cases discussed in this section. The first three
entries of this table are unproblerAtic cases which
were not discussed, and are included only for
completeness.



Typically A's area B's.

Typically B's are C's. Dafanlt Represencation

(x) . A(x) > ~ ¢(x)

A(x) : MB(x
No A ia a C. B(x)

B(x) : HC!:Q
cix)

{x) . A{x} > C({x)

Alx) : MBix)
All A's are C's. B{x)

B{x) : NC(x)
T{x)

Alx) : MB(x)

B{x)

B(x) : MC(x)

C(x)

It i{s not the case that A's|A(x) : MB(x)
are typically C's. Tran- B(x)
sitivity must be blocked. B{x) : M{™ Alx) A C(x))

C(x)

A(x) : MB(x)

Typically B's are not A's. B{x)

It is not the case that .

A's are typically C's. !S!lt;i%;s_éﬁzl

Trangitivity muet be

blocked. B{x) A " A(x) : MC{x
C(x)

Alx) : MB(x}
B(x)

Typically A's are not Bix) : M(" A(x) » C(x))
C's. C(x)

A{x) : M~ Cix)
~ C{x)
Alx) : MB(x)
B(x)

Bix) @ M~ A(x)
~ Afx)

Typically A's are C's.

Typically B's are not A's.

Typically A's are not C's. | g(x) & ~ Alx) : MC(x)
Cix)
A{x) : M~ C(x}
- C(x)
Figure 2.1

B. Intersctions Between "All" and "Typically"

Fhenomena closely related to those stemming
from the non-transicivity of "typically" arise from
interactions betwesn normal dafaults and certain
universally quantified first order formulae. Con-
silder

"All A's are B's". (x).A(x) > B(x) (2.10)
"Typically B's are C's". B(x) : MC(x (2.11)
Cix '

Dafault logic forces tha conclusion that "Typically
A's are C's" in the sense that if & is & proto-

typical A then it will also be a . But this con-
clusion is not always warranted, for example:
Y411 21 year olds are adults.”
“Typically adults are married."
Given chat John is a 21 year o0ld, we would not want
to conclude that he is married. To block the un-
warranted derivation, replace (2.11) by

B{x) : M(~ A(x) A C(x

Ci{x

(2.12})

(2.1

As was the case in Section ITA the introduction
of this non-normal default can be avoided uhene\*rer
it 1s the case that "Typically B's are not A's"" by
weans of the representation (2.10) together with

B(x) : M~ A(x)

~ A(x)
B{x) A ~ A(x) : MC(x)
c(x}

(2.14)

Notice that this representation, as well as the
representation (2.10) and (2.13) predicts that no
conclusion is warranted about the C-ness of any
given common instance of A and B.

A related proeblem arises when it is the case
that "Typically A's are not C's" wo that, in addi-
tion to (2.10) snd (2.11) we have

Alx) : M~ C(x)

= C(x)
For example:
"All Quebecois are Canadians."
"Typically Canadians are native English speakers."
"Typically Quebecois are not native English
speakers."
As in Section IlA,a prototypical instance a of A will
give rise to two extensions for the theory (2,10),
(2.11) and (2.15), one containing C(a); the other
containing " C(a). To eliminate the extension con-
taining C(a), replace (2.11) by (2.13).

{2.15)

As before, the introduction of the non-normal
default (2.13) can be avoided whenever it is the
case that "Typically B's are not A's", by means of
the representation (2.10), (2.14) and (2.15).

Figure 2.2 summarizes the cases discussed In
this section. The first three entries of this
table are unproblematic cases which were not dis-
cussed, and are included only for completeness.

C. Conflicting Defsult Assumptions: Prerequisites

with Common Instances

In this section we discuss the following pat-
tern, in which a pair of defaults have contradictory
consequents but whose prerequisites may share ocommon

* Note that example (2.12) seems not to have this
character. One Is unlikely to include that typi-
cally adults are not 21 years old" in any represen-
tation of a world.



instances®:
Alx) : ¥ - C(x}
~ C{x)
B{x) : MC(x)
Cix)
Tha problea here is which defsult assumption (if
any) should be made when given an instance s of both
A and B i.e. should C(a) be assumed, or ~ C(a) or
neither? Two cases have already been considered:
1. If 4t is the case that all A's are B's, then row
6 and possibly row 7 of Figure 2,2 provide represen-

(2.16)

All A'e are B's.

Typically B's are C's, Default Representation

(x) . A(x) > = C(x)
(x) . Alx) > B(x)

B(x} : MC(x)
Cix)

(x) . A(x) 2 C(x)
(x) . A(x) = B(x)

Bi{x) : MC(x
Cix

{x) . A(x) > B(x)
!!x! H HE!:!

C{x)
It is not the case that A's|(x)} . A(x) = B(x)

are typically C's Transi- B(x) : M(~ A(x) A C(x))

tivity must be blocked. c

Typically 8's are not A's. (x) . Ax} > B(x)
It 1is not the case that A's{B(x) : M - A(x)

No A is a C.

All A's are C'a.

Typically A's are C's.

are typically C's. Transi- - A(x)
tivicy sust be blocked. Bix) A~ Alx) : MC{x)
c(x)_

(x) . A(x) > B(x)

Bix) : M{~ Alx) A C(x))
Typically A's are not C's. c(x)

A(x) : ¥ - C(x)
= C(x)

(x} . A(x) > B(x)
B(x) : M - A{x

Typically B's are not A's. ~ A(x)
Typically A's are not C's. B(x) A" A(x) & MC(x)
Cix)
A(x) : M ~ C(x)
~ C(x)

Figure 2.2

. 1f ua) H mlﬁ}n-"l"&nm
v

is a default rule, then o(X) is its prerequisite
and w(d) s conssquent.
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tations; in both - C(a) is derivabls vhemavar A{a)
and B{a) are simultansocusly given.

2. If it is the case that "Typically A's are B's"
then row & and possibly row 7 of Pigure 2.1 provide
teprasentations in both of which -~ C(a) ls deriv-
able given A{a) and B{a).

The problamatic setting is when there is no
entailment relationship between A and B. PFor
example:

"Typically Republicans are not pacifists.” ] (2.17)
lIT " *
ypically Quakers are pacifists. of
Now, given that John Is both & Quakar and a Republi-
can, we intultively want to make no assumptions
about his warlike nature. This can be done in the
general case by replacing the representation (2.16)
by the non-normal defaults

A(x) : M~ B(x) A ~ C(x))
= C(x)
B{x} : M{~ a{x) C{x))
This representation admits that a typical A is not

C{x}
aC, a typical B is & C, but a typical A which is
also & B leads to no conclusion.

{2.18)

When it is the case that “Typically A's are mox
B's" and "Typically B's are not A's" the non-normal
defaults (2.18) can be replaced by the following
normal ones:

Alx) ' M~ B(x

~ B(x)
B(x) : M " Alx
- A(x
Al{x) A - B(x) : M ~ C(x}
- C(x)
Bi{x) A = A(x) : MC(x)
C(x)

This appears to be the case for example {2.17):

“typically, Republicens are not Quakers."
"“Typically, Quakers sre not Republicans."

It im not ailways the case that the pattern
{2.16} should lead to no default assumptions for
common Iinstances of A and B, Conaider:
"“Typically full time students are not employed.”
“Typically sdults are employed."

Suppose that John is an adult full time student.

One would want to assume that he iy not smployed.
S0 in general, given the setting (2.16) for which

the default assumption - C is praferred for common
instances of A and B, use the following non-normal
representation:
Alx) : M ~ C(x)
- elx)
Bx} : M{~ Al{x) » C(x))
C(x)
Whenever, in addition, it is the case that "Typi-~
cally B's are not A's", use the following notrmal
repressntation:
Alx) : M - C(x)
- C(x)
Bi{x) : M - Alx
~ Alx
B{x) A ~ Alx
Cix



11 DISCUSSION

In this section we discuss some Issues raised
by the previous results of this paper. Specifically,
we address the question of data base integrity ari-
sing from default interactions, as well as some of
the formal problems associated with the non-normal
default rules Introduced to correctly represent
these interactions. We conclude with a brief dis-
cussion of semantic network representations for de-
fault reasoning.

A. Integrity of Default Theories

A very nice feature of first order logic as an
Artificial Intelligence representation language is
the extensibility of any theory expressed in this
language. That is, provided that some axiomatlza-
tion of a world has that world as a model (so that
the axiomatlzation faithfully represents certain
aspects of that world) then the result of adding a
new axiom about the world is still a faithful repre-
sentation. It is true that specialized deduction
mechanisms may be sensitive to such updates (e.g.
adding a new "theorem" to a PLANNER-like data base);
but semantically there is no problem. Unfortunately,
as we have seen, default theories lack this semantic
extensibility; the addition of a new default rule
may create interactions leading to unwarranted con-
clusions, even though in isolation this rule appears
perfectly correct.

This observation leads to a new concept of data
base integrity, one with quite a different character
than the integrity issues arising in data base
management systems [Hammer and McLeod 1975] or in
first order data bases [Nicolas and Yazdanian 1978,
Relter 1980b]. For such systems an integrity con-
straint specifies some invariant property which
every state of the data base must satisfy. For ex-
ample, a typical integrity constraint might specify
that an employee's age must lie in the range 16 to
99 years. Any attempt to update the data base with
an employee age of 100 would violate this constraint.
Formally one can say that a data base satisfies some
set of integrity constraints if the data base is
logically consistent with the constraints. The role
of integrity constraints is to restrict the class of
models of a data base to include as a model the par-
ticular world being represented. Now the objective
of the default representations of Section Il had
precisely this character; we sought representations
which would rule out unwarranted default assumptions
so as to guarantee a faithful representation of real
world common sense reasoning. But notice that there
was no notion of an Integrity constraint with which
the representation was to be consistent. Indeed,
consistency of the representation cannot be an Issue
at all since any default theory will be consistent
provided Its first order facts are [Relter 1980a,
Corollary 2.2]. It follows that, while there is an
Integrity Issue lurking here, it has a different
nature than that of classical data base theory.

We are thus led to the need for some form of
integrity maintenance mechanism as an aid in the de-
sign of large default data bases. The natural ini-
tial data base design would involve representing all
default rules as normal defaults, thereby ignoring
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those potential interactions of the kind analyzed in
Section Il. An integrity maintenance system would
then seek out possible sources of integrity viola-
tions and query the user as to the appropriate de-
fault assumptions to be made in this setting. Once
the correct interpretation has been determined, the
system would appropriately re-represent the offend-
ing normal default rules. For example, when con-
fronted with a pair of default rules of the form
(2.16), the system would first attempt to prove that
A and B can have no common instance i.e. that

W u {(Ex).A(x) A B(x)} is inconsistent, where W is
the set of first order facts. |If so, this pair of
defaults can lead to no integrity violation. Other-
wise the system would ask whether a common instance
of A and B is typically a C, a " C, or neither, and
depending on the response would suitably re-
represent the pair (2.16), if necessary by non-
normal default rules.

B. Semi-Normal Default Theories

In Section II we had occesion to introduce cer-
tain non-normal default rules in order, for example,
to block the transicivity of "typically”. Inspec-
tion of the rapresentations of that eeccion will e
veal that all such non-normal default rules share a
common pattern; they all have the form
Afx) : M(~ B{x} A C(x))

c(x) )

Accordingly, 1t is natural to define a default rule
to be semi-normal If it has the form
a(X) : M(B(H) A w(X)

w(x)
where o, B and v are formulae of first order logic
with free variables among ¥ = x3,...,xy, A default
theory 1s semi-normal 1ff all of its default rules
are semi-normal. Normal default rules are a epecial
cage of semi-normal, in vhich B(X) is the idenci-
cally true proposition.

[Reiter 1980a] investigates the properties of
normal default theories. Among the results obtained
there are the following:

1. Every normal theory hae an extension.

2, Normal theories are mewmi-monotonic i.e. if Dy
and Dy are sets of normal default rules and if
E; i an axtsnsion for the thaory (D7, W), then
the theory (D) v Dy, W) has an extension E;
such rhat E] c E3.

One condequence of semi-monotonicity is that
ona can continue to maintain one's cld baliefs when-
ever a normal theory is updated with new normal de-
faulta. Ancother is a reasonably clean proof theory.

Unfortunately, semi-normal default theories en
joy none of these nice properties. For examplas, the
following theory has no extension:

: M(A A ~ B) :H[Bh"CI : M{C » ~ &)

~ B - C ~ A
To ses that semi-monotonicity may fail to hold for
semi=normal theories consider the theory

t M(A » B)
B

This has unique extension Th({{B}) where, in general,
Th(S) is the closurs of the set of formulae $ under
first order theoremhood. If the new default rule



M- A

"A is added to this theory a new theory is
obtained with unique extension Th({~ A}) and this
does not contain Th({B}).

Most of the formal properties of semi-normal
default theories remain unexplored. Two problems in
particular require solutions: Under what conditions
are extensions guaranteed to exist, and what is an
appropriate proof theory?

Default Inheritance in Hierarchies; Network
Representations

In Section Il we focused on certain fairly
simple patterns of default rules. Our choice of
these patterns was conditioned by their frequent
occurrence in common sense reasoning, and by the
fact that they are typical of the kinds of default
knowledge which various "semantic" network schemes
presume to represent and reason with. Most such
networks are designed to exploit the natural hier-
archical organization of much of our knowledge about
the world and rely heavily for their inferencing
power upon the inheritance of properties associated
with a general class "down the hierarchy" to more
restricted classes.

Space limitations prevent a thorough discussion
of the relationship between the considerations of
this paper and network representations for default
reasoning. Instead we summarize various conclusions
which are argued at length in [Reiter and Criscuolo
1980]:

1. Except in the simplest of settings, network in-

terpreters fail to reason correctly with defaults.

2. Network representations are best viewed as in-
dexing schemes for logical formulae. An impor-
tant role of indexing is the provision of an
efficient path tracing heuristic for the consis-
tency checks required by default reasoning.

3. Such consistency checks are examples of the kind
of resource limited computations required in
common sense reasoning [Winograd 1980].

IV CONCLUSIONS

Default theories are complicated. Unlike
theories represented in first order logic, default
theories lack extensibility. Whenever a new default
rule is to be added to a representation its poten-
tial interactions with the other default rules must
be analyzed. This can lead to a re-representation
of some of these defaults In order to block certain
unwarranted derivations. All of which leads to a
new concept of data base integrity, distinct from
the integrity issues arising in first order data
bases. These observations also suggest the need for
a default integrity maintenance system as a tool for
aiding in the design of large default data bases.
Such a system would seek out potentially interacting
defaults during the data base design phase and query
the designer about the consequences of these inter-
actions.

Semi-normal default theories are complicated.
They have none of the nice properties that make nor-
mal theories so appealing. Moat of their formal
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properties are totally unexplored® At the very
least a proof theory is needed, as well as condi-
tions under which extensions arc guaranteed to exist.
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