THE SUPERIORITY OF RELATIVE CRITERIA IN
PARTIAL MATCHING AND GENERALIZATION

Paul

Center

J.

Kline

for Cognitive Science

The University of Texas at Austin

ABSTRACT

Some familiar justifications for concluding
that a data element D is an unacceptable match to a
pattern element P are examined for their
suitability for partial-matching applications. All
of these absolute criteria are found to be
unacceptable in that they rule out some plausible
partial matches. A partial matching program,
REIAX, is described which justifies the conclusion

is an unacceptable match to
that some other
to P. The use of

that a data element D
a pattern element P on the grounds
data element D, is a better match

such relative criteria makes it possible to compute
all of the kinds of mappings that Kling [9] has
claimed are required to account for intuitions
about similarity. The ability to form
unrestrictive mappings allows RELAX to construct
generalizations that have eluded other approaches
[5, 6].
| INTRODUCTION
The work described in this paper grows out of

to simulate the behavior of junior-high
learning geometry. An examination
they were using [8] made

to appreciate

an attempt
school students
of the geometry textbook
it clear that students were expected
the similarity of their exercise problems to the
examples provided in the text, and to use those
examples as a guide in finding solutions. Protocol
analyses of students using this text suggests that
students do often (but not always) appreciate the
similarities that are intended [3].

One way to model such behavior is to represent
the worked-out examples as <conditiony,......... > =>
<actionq,...> rules, where the left-hand side
describes the example problem and the right-hand
side indicates the steps required for its solution.
The description of an exercise problem can then be
compared against the left-hand sides of these
rules. Interpreting these rules as productions
would imply that the description of the exercise
problem would have to completely satisfy all
conditions of one of the rules before any action
could be taken towards formulating its solution.
In other words, a full-match comparison using this

This work was sponsored by NSF grant no.
IST-7918474 to Jane Perlrautter and by ONR contract
no. N00014-78-C-0725 to John R. Anderson.

296

representation could only account for a student's
ability to remember the solutions to problems that
have been solved previously. However, if instead
of merely looking for a full match we are able to
find a rule whose left-hand side "closely
approximates" the description of the exercise
problem, then we may be able to provide a
computational account of what happens when a
student recognizes the similarity of an exercise
problem to a previous example.

Even if this can be done, however, the success
is achieved at the cost of a considerable
complication in the notion of executing the
right-hand side of a rule. In those cases where it
turns out that a full match is achieved to a rule's
left-hand side, executing the right-hand side
amounts only to a straightforward execution of a
fully instantiated procedure. However, in cases

where only a partial match has been achieved, the
right-hand side actions will need to be modified to
reflect the departures from a full match. This
paper will only be concerned with the question of
how to partial-match problem descriptions in a way
that properly models students' abilities to detect
similarities between problems.

Il SOME _ABSOLUTE CRITERIA

An approach which might be expected to yield a
satisfactory partial matcher would be to examine
the operating principles of a full matcher for a
production system and to determine which principles
could be retained and which principles would have
to be discarded. Each condition in the left-hand
side of a production rule is a proposition which
can consist of constants, variables (existentially
quantified), or other propositions. As an example
we have (believes Vsubject (flat earth)), where
(flat earth) is an embedded proposition. The V
prefix indicates that Vsubject is a variable. We
might choose to interpret the constants believe and
flat as predicates and the constant earth as an
argument of the predicate flat, but there is no
need for the matcher to be concerned with these
semantic issues. As the term proposition suggests,
(believes Vsubject (flat earth); can be true or
false, but what is more important from the point of
view of the matcher is whether there is some
proposition in the data base like (believes Bill
(flat earth)) which can serve as its

instantiation.

uses the following criteria to
of instantiations constitutes

matcher
a set

A full
decide whether

a satisfactory match to the Ileft-hand side of a
production rule:
1. There must be an instantiation of each

condition proposition.

in a condition
in

2. The constants contained
proposition must also be contained
its instantiation.

3. There should be a one-one function that
associates each variable with a unique

binding so that all condition
propositions containing that variable
have instantiations containing its
binding.

4. Each condition proposition should have
the "same" structure as its
instantiation. In the simplest case
they should have the same number of

terms and corresponding terms should be
in the same order. In some production
systems allowances are made for unequal
numbers of arguments or symmetric
predicates; however, the important point
is that there is never any ambiguity
about whether an instantiation has the
proper structural requirements and those
that don't are simply unacceptable.

A. FEailure of the Absolute Criteria

We now examine each of these criteria in turn
to determine their suitability for partial
matching. We will find that while each constitutes
a worthwhile goal for a partial matcher to attempt
to achieve (so that a full match will be found if
one is available), none of these criteria can be an
absolute requirement if we want to be able to
detect the same similarities that students can
detect.

1. Every condition has an instantiation

sometimes provide more information
in the statement of example problems than s
strictly required for their solution. This extra
information would prevent the examples from being
seen as relevant to the solution of exercise
problems not sharing those inessential features if
we were to retain the full-match criterion that all
propositions in a problem description must receive

an instantiation.

Textbooks

Many full matchers will allow two variables to

be bound to the same constant; however, additional
mechanisms are then required to deal with the
inevitable cases where this is inappropriate.

These additional mechanisms play no role in partial
matching, so it simplifies the discussion to make
the one-one assumption.

297

2. Constants

involving the algebraic
won

Students find problems

relation "<" very reminiscent of the versions
of those problems. In such cases partial matches
between these problems would have to violate the
full-match criterion that a condition and its
instantiation contain the same constants. The
unsuitability of full-match criteria (1) and (2)

partial matching is not controversial. All
algorithims reviewed in [4] for inducing a
description of a concept from examples can
these kinds of departures from a full

for
four
general
deal with

match.
3. Variable Binding Requires 1-1 Functions

Imagine a person who has seen many National

League baseball games, but is watching American
League baseball for the first time. In the
National League, besides playing in the field, a
pitcher takes his turn at bat; in the American
League, however, the pitcher is replaced in the
batting lineup by the designated hitter. If the
baseball fan tries to instantiate his pattern for
National League baseball using the lineups for this

game should he bind the variable V-NLpltcher to the
pitcher or to the designated hitter? The correct
answer seems to be both; to the pitcher if he s
instantiating propositions describing the National
League pitcher's role in the field, but to the
designated hitter when instantiating propositions
about the National League pitcher's role as a
batter. On the other hand, an American League fan
watching National League baseball for the first
time has the problem of too few players rather than

too many. He is in the position of having the same
constant, NLpitcher, as the binding of two
different variables, V-AlLpitcher and
V-AlLdesighitter.
4. Only Match Propositions Hmving the Same
Structure
Y ' ' ‘
R 0 N Y
"
0
R
X
a b
1 b
Fig. 1: &) Prove RN * QY. b) Prove R'XN' - O'XY"'.

Marked objects are known to be congruent.

Fig. 1 shows two problems that some students
can see as quite similar — Fig. 1b being just an
angle version of the problem in Fig. 1a. This
apparently requires that a partial matcher accept
the proposition (angle VR' VX VO') as an
instantiation of the proposition (segment VR VO).
That segment can be matched by angle is just
another example of matching one constant to
another. What is more interesting is that the
second argument, VO, of segment must be bound to
the third argument, VO/, of angle rather than to
the second argument, VX.

a variable such as
all of the

DP predicates. Also, when
V-NLpltcher receives a second binding,
propositions mentioning that variable, whether they
already have an instantiation wusing the first
binding or not, are checked to see if they have an
instantiation using this new binding. Thus RELAX
computes all of the kinds of mappings that Kling
claims are necessary for capturing the
correspondences between similar problems and does
so using "best use" criteria which express
preferences that are meaningful only to a program
that is aware that it has these options regarding
the form of its mappings.

A. Best Use of the Condition

One use for the output from partial matching a
set of conditions to a set of data is in computing

a generalization, i.e., a new set of conditions
which receives a full match when instantiated by
either the original conditions or the original
data* Since the original conditions and the
original data play entirely parallel roles in the
definition of generalization, one is led rather
naturally (though not Inescapably) to the idea that

of the partial match should not depend
in any essential way on which set of propositions
we call data and which set we call conditions. In
fact, in implementing RELAX we found that there are
computational advantages to viewing the matching

the output

process as searching for conditions to instantiate
data at the same time as it is searching for data
to instantiate conditions. For example, this
viewpoint suggests that in addition to the
requirement that each instantiation be the best
available use of its data proposition, there should
also be a complementary requirement that each
instantiation be the best available use of its
condition proposition. In this third (and last) of
RELAX's relative criteria for partial matching,
cost is again measured in terms of multiple
assignments; but since in this context conditions
are thought of as instantiations of data
propositions, a multiple assignment means that a
constant in the data is the binding for more than

one condition variable. The two instantiations
mentioned above for (male V-NLpltcher) are equally
good in this respect since both ALpitcher and
Aldesighitter are bindings of only one variable;
thus both instantiations are permitted in the
partial match. However, any attempt to get a
second instantiation for (male V-KLcatcher) would
be ruled out by this new criterion.

IV SOME EXAMPLES

A. A Generalization Example

Fig. 2 shows the generalization problem that
led Hayes-Roth & McDermott to be concerned with
multiple assignments for variables. The
generalization that Hayes-Roth A McDerraott wanted
but were unable to get SPROUTER to produce was:

There is a small square
circle and one of these small
inside a large triangle.

above a small
figures s

300

Ll
O

Example 2

0
O

Fxampise 1

kX

<

Fig. A generalization problem used by

Hayes-Roth & McDermott.

When partial matching the description of Example 1
using the description of Example 2 as data, the
variable ysqr1 requires two bindings so that we can
have both of the instantiations

gabove Vagry Veriy) <> (above Vegr, Verl,)
an
(inside Vsqr, Viri,) ~> (inside Verl, Vtri,).

instantiations are taken from Table 1
the full set found by RELAX. The 15
in Table 1 are the survivors of the
that RELAX considered in
computing this match. Of these 185 pairings, 100,
or 54% were rejected by the "best use" criteria
without the need for any search at all. In 21
cases, pairings which satisfied these criteria when
first made subsequently were rejected by them as
the match proceeded and better uses were found for
their conditions or their data.

These two

which shows
instantiations
185 instantiations

The set of instantiations found as the
in Fig. 2.

Table 1:
partial match of the examples

Example 2

(mquare Veqr,}

{eircle Verl,)
(triangle \'triz)

(size Vaqr, small)
(size Verl, small)
(s1ze Viri, large)
{samenize Vegr, \'crla.\
(above Vaqr, Verl,)
(below Vorl, Veqr,)

-> (above Vaqr, Vtri,)

«> (inpide Verl, Vtri,)
Y " "

-2
-
-

Example |

(square Vaqr,)
Verl,)
Verd,)
small)
amall)
large)
verl, }
Verl,)
\'aq!‘.‘)
Very,y)

-3
-
-~
->
-
-
->
-
-

{circle
(triangle
(size
(size

Veqr,
Ye rl,
Veri,
Vaqr,

(size
(samenize
{above
(pelow verl,
{inelde Vaqr,

" "

Vaqr.,

(balow
(above Vtri,
(containa Viri,

Verly Virig)

Verly)

{containg Viri, Verly)
?sqr1) L] "

(veiow Veri, Vagr,)

The demonstration that this partial match will
lead to the correct generalization will have to be
postponed until a later section which gives the
details of the approach taken toward disjunctions.
However, there are a number of things we can say at
this point to defend the view that this is the

correct partial match for these examples. The fact
that exactly the same correspondences are obtained
when Example 2 is treated as the set of conditions

and Example 1 is treated as the data provides a
demonstration that RELAX at Ileast functions as
Intended. However, how can correspondences such as

i {inside Vsqr, Viri,) -> (above Veqr, Viri,)
(below Verly Vert,) -> (inside Verl, Vtri,)

be defended? The answer to this is that there is
an obvious alternative to viewing Fig. 2 as two
examples in need of a generalization. That

alternative is to see Example 1 as the situation at

time _ty and Example 2 as the situation at a later
time t2, where the task is to characterize the
transformation that has occurred. One

characterization of the transformation that changes

Example 1 into Example 2 is:
The triangle that originally contains the
square moves down to contain the circle.

The questionable correspondences mentioned above

have an obvious relevance for characterizing this

transformation.

B. A Transformation Example

The next example comes from observations of
two subjects learning to program in LISP made by
John R. Anderson and his collegues at CMU. As an
exercise in their textbook [10] these subjects had
to write a LISP function to compute the powerset
(i.e., the set of all subsets) of the set (YALL
COME BACK). This problem is quite difficult for
novices and both subjects had little success until
they hit upon the representation for the problem
shown in Table 2. Once in this form, it appeared
that both subjects simply did some pattern matching
to arrive at the following solution: POWERSET(YALL
COME BACK) requires two copies of POWERSET(COME
BACK) and the second copy must have YALL CONSed
onto the front of all of its sublists.

Table 2: The results of successive calls
to the function POWERSET(L).

L « (COME BACK) L = (YALL COME BACK)

()

(COME)

() (BACK)
{COME) (COME BACK}

(HACK) (Yall)
(COME BACK) (YALL COME}
{YALL BACK)

{YALL COME BACK)

In pattern matching terms, the need for one
is trivial — it results from a full match of
in POWERSET(COME BACK) using the sets in
The need for the
match of
sets in

copy
the sets
POWERSET(YALL COME BACK) as data.
second copy, however, requires a partial
POWERSET(COME BACK) to the remaining
POVERSET(YALL COME BACK).

When the problem of finding this partial match

301

{)
(utt. ‘5
» 4
()
{ come)
4 3 '
{ YALL COME)
+ 4
(come
{ tack)
+ v 3
{ ALL BRACK)
X
(back
{ come back)
¢ 4 + ¢
{ YALL COME BACK)
+ ¢
{ come

Fig. 3: The partial match obtained for the lists
in Table 2. Lowercase entries are from
POWERSET (COME BACK); uppercase from
POWERSET (YALL COME BACK).

was given to RELAX the results were as shown in
Fig. 3. Here each sublist was successfully matched
starting from the left end up until the point where
the YALL was encountered and also was successfully
matched starting from the right end until the YALL
was encountered. Extending the match from the left
end any farther was ruled out by the
best-use-of-the-data and best-use-of-the-condition
criteria.

If the
used as
construct a
had been
characteristic
found in each case.

results of this partial match could be

data by other rules, then we could
rule that would recognize that an atom
CONSed onto each sublist because the
transformation produced by CONS is
In general, however, without
some notion of a constituent, REIAX would not be
able to detect other cases where a list (rather
than an atom) has been CONSed onto each sublist.
Thus, while REIAX falls short of accounting for all
of the pattern matching that subjects can display
in an exercise like this, it does appear to be a
promising beginning.

¥ DISJURCTIONS

Exclusive disjunctions arise in two different
ways in the process of forming generalizations.
What we might call external disjunctions have their
source in the fact that for any set of examples e”,
..., _e there is the logically correct, but
unillumlnating, generalization @y or 83 or ... @
The goal of generalization programs that attempt to

account for external disjunctions [7, 11] is to
merge as many of the @& as possible into
conjunctive generalizations so as to minimize the

number resulting disjunctive

normal

of disjuncts in the
form generalization.

Internal disjunctions, by contrast, do not
emerge until a partial match has been computed
between two examples e; and ej. Then each
instantiation in the partial match

(el 8y «v. ap) <> (rel' af ...)
yields the again logically correct, but
unilluminating, generalization

({rel or rel') (a; or a;) ... (a, or a’).

Just as in the case of external disjunctions, the

way to produce pleasing generalizations seems to be

to remove as many disjunctions as possible. The
simplest case of this is the reduction of all
disjunctions of the form (c or c¢) to the single

constant £. Less obvious cases where disjunctions
can be removed are best understood by reference to
Fig. 4a which shows a portion of the full network
of bindings that can be extracted from Table 1.

\‘lqr1—-—‘--\"lqrz Lparen———s=Lparen
J Tall

Verl) ——f=m-Verl, Come ———a=Cous
2 .}

Fig. 4: A summary of selected variable bindings
ja) from Table 1 and b) from Fig. 3.

REIAX operates on this network in order to
determine a way of realizing each of these bindings
is to choose a

in a generalisation. The goal
different label for each link in this network,
where possible labels are the terms at either end

link or the disjunction of those terms. Link
because three

of a
x in Fig. 4a receives the label Vsary

"conditions are satisfied: 1) Vag, has only one
connection to the network, 2) Vagry; can have the
binding Vsqr, in a full match, and 3) the label
Vsqry is not already used as the label for some
other link. Link z receives the label Verlg
because these conditions are also satisfied there.
Link is then forced to have the label (Vsar; or
chJz,)¥ because both of its endpoints have already

been used as labels.

Table 3: The generalization resulting from
the partial match in Table 1.

(inaide (Vsqr, or Verl,) Vtri)
(conteins Viri (Vaqr, ur Verl,)
{{below or ineide) Vorly ?tr13
{(ineide or above) Vs r‘ veri)
(sameasze Vaqr, Verl
(above Vaqry Verl,)
(size Vaqr, llllli
{esize Vtri large)
(square Yaqr,

(below Verl, Vaqr,)
(aise Vorl -1113
{triangle Gtri)
{aircle ?urlz)

REIAX produces the generalization in Table 3
from the instantiations in Table 1. It can be seen
that Table 3 contains propositions expressing the
generalization that Hayes-Roth & NcDermott wanted
for the examples of Fig. 2.

302

Example 1 from Fig. 2 producea a full match to
this generalization by matching the flrat member of
every disjunction, while Example 2 produces a full
match by matching the second member of every
disjunction. In fact, there is a new full-match
criterion requiring that the same position be
matched in all disjunctions a rule. Now it
should come as no suprise that when partial
matching we will want to violate this criterion and
match different positions or even both positions of
some disjunctions. However, this anticipates an
approach to partial matching disjunctions that
there is insufficient space to elaborate on here.

in

Although
partial match

the natural way of viewing the
found in the POMERSET example
presented above is as a characterization of the
tranaformations required to go from POWERSET(COME
BACK) to POWERSET(YALL COOME BACK), it is also
informative to look at the generalization that
would result from this partial match. Fig. 4b
shows the pattern of bindings found for the partial
match of the sublist (COME) to the sublist (YALL
COME) and indicated convergences that should lead
to disjunctions. The generalization obtained for
this sublist (ignoring the need for type-token
distinctions) is:

(before Lparen (Come or Yall))
(before (Lparen or Yall) Come)
(before Come Rparen)

This generalization provides a disjunctive
representation of the fact that YALL ia an optional
firat element of these lists. In the case where
the YALL's are present, the second position of
every disjunction is matched and the firat two
propositions of this generalization are
inatantiated by (before Lparen Yall) and (before
Yall Come), respectively. On the other hand, when
the YALL's are absent, the first position of every
disjunction is matched so in this case these two
propositions are both instantiated by the single
proposition (before Lparen Come).

A+« Implications for Semantic Approaches

Obtaining a sensible generalization for this
problem is important because it helps bolster our
confidence in the unorthodox correspondences made
by REIAX in partial matching these lists. If a
left parenthesis must be matched to the atom YALL
to get the correct generalization, then what about
partial-matching programs that compare the semantic
categorization of terms before making assignments?
Surely these two terms are sufficiently different
semantically that such programs should be reluctant
to see them aa corresponding.

How serious a problem this poses depends
largely on whether these partial matchers use
semantic relatedness as an abeolute criterion or aa

a relative one. Programs such as Kling's ZORBA
[9] which make semantic relatedness an absolute
criterion will either reject the assignement of
LPAREN to YALL or will have to decrease the amount
of semantic relatedneas required to the point where
this criterion has little ability left to
discriminate useful from useless matches. On the

other hand, in Winston's program [12] the closer

two terms are semantically the more
assignment contributes to an overall
which determines the best partial match. By making
semantic relatedness a relative criterion in this
manner, Winston allows for the possibility that
other factors can compensate for the semantic
divergence of two terms. (Winston's partial
matcher relies totally on one-one mappings, so
presumably there is no way for his program to
produce the correct generalization for this
particular example, however.)

"points" that
match score

VI THE LAST ABSOLUTE CRITERION

Now RELAX does obey one absolute criterion,

namely, that a proposition and its instantiation
must have the same structure. However, as was
discussed above, the problem in Fig. 18 may be
seen as a version of the problem in Fig. 1a using
angles instead of segments. Detecting the
similarity of these problems requires that the
condition (segment VR VO) have the instantiation
(angle VR' VX VO'). To enable RELAX to find the

correct partial match for this example we followed

the lead of Hayes-Roth & McDermott (cf. their use
of SCR's) and switched to a more fine-grained
representation. Finer grain was obtained by
"exploding" each proposition in the description of

these problems in such a way that every link in the
semantic network representation of that proposition
itself becomes a full proposition in the exploded
version. Thus (segment VR VO) becomes the set of
propositions

(Rel segment VsegRO)
(Arg1 VR VsegRO)
(Arg2 VO VsegRO).

For these condition propositions,
instantiations

RELAX finds the

(Rel segment VsegRO) -> (Rel angle VangR'XQO'")
(Arg1 VR VsegRO) -> (Arg1 VR' VangR'XO')
(Arg2 VO VsegRO) -> (Arg3 VO' VangR'XQ').

No use is made of the data proposition (Arg2 VX
VangR'XQ').

RELAX was able to calculate the correct
partial match for the two problems in Fig. 1 when
they were described in this detail. In the

process, Arg2 was matched to Arg3 five times and to
Arg2 three times. This success suggests that the

relative criteria outlined in this paper are also
adequate, at least in principle, for matching
different structures. However, finding the 36

instantiations in the final match required searches
to evaluate 230 candidate instantiations. Thus it
was clear that by recoding whole problems into this
fine-grained representation we had placed a large
computational burden on REIAX. Work is in progress
on defining principles that would permit the
program to switch dynamically to the more
fine-grained representation for just those portions

of the problem description where it is required.
This capability would effectively free RELAX from
the need to rely on any absolute criteria
whatsoever.

303

ACKNOWLEDGEMENTS

The author would like to acknowledge the
hundreds of hours of discussion that he has had
with John R. Anderson about these topics. The lack
of a shared consensus on these issues has, if
anything, only made these discussions more
valuable. Helpful comments on a previous draft of
this paper were also provided by G. Iba,
J. Perlmutter, M. Schustack, and the IJCAI
reviewers.

REFERENCES

[Anderson, J.R.

Language, memory, and thought.

Lawrence Erlbaum Associates, Hillsdale, N.J.,
1976.

[2] Anderson, J.R. and Kline, P.J.

A Learning System and its Psychological
Implications.

Proc. of 6th IJCAI :16-21, 1979.

[3] Anderson, J.R., Greeno, J.G., Kline, P.J.,

and Neves, D.M.

Acquisition of Problem Solving Skill.

In Anderson, J.R., editor, Cognitive Skills
and their Acquisition. Lawrence Erlbaum
Assoc, Hillsdale, N.J., 1981.

[4] Dietterich, T.G. and Michalski, R.S.

Learning and Generalisation of Characteristic
Descriptions: Evaluation Criteria and
Comparative Review of Selected Methods.

Proc. of 6th IJCAI :223-231, 1979.

[5] Hayes-Roth, F. and McDermott, J.

Knowledge Acquisition from Structural
Descriptions.

Proc. of 5th IJCAI :356-362, 1977.

[6] Hayes-Roth, F. and McDermott, J.

An Interference Matching Technique for
Inducing Abstractions.

CACM 21(5):401-410, 1978.

[7] Iba, G.A.

Learning Disjunctive Concepts from Examples.

A.l. Memo 548, M.|.T., Sept., 1979.

[8] Jurgenson, R.C., Donnelly, A.J., Maier, J.E.,
and Rising, G.R.
Geometry*
Houghton-Mifflin, Boston, 1975.
[9] Kling, R.E.

A Paradigm for Reasoning by Analogy.

Artificial Intelligence 2:147-178, 1971.
[10] Siklossy, L.

Let's talk LISP.

Prentice-Hall, Ehglewood Cliffs, N.J., 1976.
[I'1] Vere, S.A.

Inductive Learning of Relational Productions.

In Waterman, D.A. & Hayes-Roth, F., editor,
Pattern-Directed Inference Systems.
Academic Press, 1978.

[12] Winston, P.H.

Learning and Reasoning by Analogy.
Communications of the ACM 23(12):689-703,
1980.

