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Abatraot 

Raouralva r u l e s , such as "Your paren ts ' 
ancestors are your ances tors" , a l though vary uaafu l 
f o r theorem p rov ing , na tu ra l languaga 
understanding, quest ion-answering and In fo rmat ion 
r e t r i e v a l systems, present problems f o r many such 
systems, e i t h e r causing i n f i n i t e loopa o r r e q u i r i n g 
tha t a r b i t r a r i l y many copies of them be made. 
SNIP, the SNaPS Inference Package, oan use 
reoura lva r u l a s w i thout e i t h e r o f these problems. 
A raoura lva r u l e oauaaa a cycle to ba b u i l t in an 
Active connection graph* Each pass of data through 
the cyc le r e s u l t s in another answer. Cyc l ing stops 
as soon as e i t h e r the desi red answer is produoed, 
no more answers oan be produoed or resource bounds 
are exceeded. 

This work was aupportad in pa r t by tha Nat iona l 
Science Foundation under grants MCS78-02274 and 
MCS80-06314. 

1. Introduction 

Raouralva r u l e s , such aa "Your paren ts ' 
anoestors are your ances to rs " , occur n a t u r a l l y in 
in faranoe systems used f o r theorem p rov ing , 
quest ion-answer ing, na tu ra l languaga undaratandlng 
and in fo rmat ion r e t r i e v a l . T r a n s i t i v e r e l a t i o n s , 
a . g . V ( x , y , z ) [ANCESTOR(x,y) a ANCBSTOR(y,z) -> 
ANCESTOR(x,z)J, Inher i tance r u l a a , e . g . 
V ( x , y , p ) [ I S A ( x , y ) 4 HAS(y,p) -> HAS(x ,p ) ] , c i r c u l a r 
d e f i n i t i o n s , e . g . "a l imb la a l ag or arm" and "a 
l e g la a l i m b " , and equivalences, e . g . ¥ ( x , y , z ) 
[RECEIVE(x,y,z) <=> PTRANS(z,y,z,x) ] , are a l l 
ocourranoaa o f raoura lva r u l e s . Yet , raoura lva 
ru laa present problems f o r system implementors. 
In ference systems which use a "na ive cha in ing " 
a lgor i thm oan go in to an i n f i n i t e l oop , l i k e a 
l e f t - t o - r i g h t top-down parser g iven a l e f t 
raoura lva grammar [ 6 , 1 1 , 15, 2 3 ] . Soma systems 
f a l l to uaa a raoura lva r u l e more than onoe, i . e . 
are incomplete [ 8 , 2 0 ] . Other sys tems b u i l d t ree 
l i k e data s t ruc tu res con ta in ing branches tha leng th 
of which depend on the number of t imes the 
recurs ive r u l e la to be app l ied [ 4 , 2 1 ] . Since 
some of theae b u i l d the s t ruo tu re before us ing i t , 
the co r rec t l ang th of these branohaa la 
prob lemat ic . Some ayatama e l im ina te reoura lva 
r u l es by d e r i v i n g and adding to tha data baaa a l l 
imp l i ca t i ons o f the reoura lva ru laa In a apac la l 
paaa before normal infaranoe la dona [ 1 6 ] . Another 

measure taken to avoid the problem of circular 
d e f i n i t i o n s and equivalences in one system was to 
use "a depth f i r s t expansion po l i c y and to l i m i t 
the t o t a l depth o f the expansion" [ 2 ] . This i s 
e s s e n t i a l l y the same s o l u t i o n proposed by Blaok [ 1 ] 
and by Simmons and Chester [ 2 2 ] . 

Not too s u r p r i s i n g l y , recurs ive ru les cause 
problems f o r many programming languages developed 
f o r a r t i f i c i a l i n t e l l i g e n c e (AI ) research. A I 
languages, such as MlcroPLANNER [ 2 3 ] , FUZZY [ 1 1 ] , 
and PROLOG [ 1 5 ] , have d i f f e r i n g approaches to a 
baalc problem: there e x i s t w e l l formed statements 
in the language which cause i n f i n i t e loopa in the 
language i n t e r p r e t e r when some theorem, procedure 
or clause is used. Using the terminology from 
MlcroPLANNER, these languages are sens i t i ve to the 
order o f a s s e r t i o n , or equ i va len t l y the order o f 
r e t r i e v a l of theorems, and to the a p p l i c a t i o n of a 
theorem aa a subgoal of i t s e l f . Both i n t e r a o t to 
make a c o l l e c t i o n of theorems incomplete, i . e . 
statements which are l o g i c a l l y imp l ied by i t s data 
baae of asser t ions and theorems are not der i vab le 
beoauae the system gets i n t o an i n f i n i t e loop . 

A t y p i o a l example would be the ANCESTOR 
example mentioned p rev ious l y . In a MlcroPLANNER 
l i k e ayntax, such a statement can be represented as 
the consequent theorem: 
(CONSEQUENT (ANCESTOR ?X ?Y) (Z) 

(GOAL (ANCESTOR $X ?Z))(G0AL (ANCESTOR $Z 
$Y))) 

The use of t h i s theorem f o r so l v i ng some goal 
in t roduces a problem. If there la no other way in 
which to deduce instanoea of ANCESTOR, e i t h e r by 
f i n d i n g asser t ions in the data baaa or through 
a p p l i c a t i o n o f some other r u l e , or I f the order o f 
a p p l i c a t i o n of theorem a p icks this theorem first 
regardless of any other ava i l ab le theorem a then the 
above theorem reuses i t s e l f w i thou t making any 
progress towards f i n d i n g a s o l u t i o n , i . e . uae of 
the theorem causes the i n t e r p r e t e r to enter an 
I n f i n i t e l oop . 

MlcroPLANNER provides a p r i m i t i v e , THUNIQUE, 
which oan be uaad to check whether a theorem has 
prev ious ly been entered w i t h the cur ren t b indings 
and doaa solve the i n f i n i t e regress problem f o r 
recurs ive theorems. However, the user must 
e x p l i c i t l y ino lude the appropr ia te statement, so 
the p o s s i b i l i t y e x i s t s t h a t tha uaer may not in 
f a c t no t i ce t ha t a theorem w i l l be uaad 
r e c u r s i v e l y . This could happen when o l r o u l a r 
d e f i n i t i o n s or equivalences are inadver ten t ly 
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introduced i n t o a c o l l e c t i o n of theorems. FUZZY 
su f f e r s from a s i m i l a r problem and compounds it by 
not p rov id ing an operator equ iva lent to THUNIQUE. 
Two po in ts should be noted. F i r s t , apparent ly the 
developers of FUZZY d i d not need to represent 
recurs ive procedures (LeFalvre, personal 
communication) and second, THUNIQUE can be 
simulated in FUZZY. Pure PROLOG a lso does not 
e x p l i c i t l y oonta in a THUNIQUE p r i m i t i v e — using 
recurs ive r u l es p roper ly is a problem w i t h the 
procedural semantics of seme implementat ions of 
PROLOG, but i t Is not a problem of the dec l a ra t i ve 
semantics. Some implementations of PROLOG inc lude 
an equ iva lent p r i m i t i v e . Since a pr imary mode of 
d e f i n i t i o n i s recurs ive d e f i n i t i o n b y l i s t i n g 
c lauses, t h i s is a p o t e n t i a l source o f problems f o r 
users of PROLOG. 

SNIP [ 1 2 , 18, 193 was designed to use r u l es 
stored in a f u l l y Indexed data base. When a 
quest ion is asked, the system r e t r i e v e s re levan t 
r u l es and bu i l ds an active connect ion graph which 
attempts to der ive the answer from the r u l es and 
other i n fo rma t ion s tored in the data base. Since a 
semantic network is used to represent a l l 
dec la ra t i ve i n fo rma t ion ava i l ab l e in the system, we 
d i f f e r from the basic assumption of several data 
base quest ion-answering systems [ 5 , 14, 16] by not 
making a d i s t i n c t i o n between "ex tens iona l " and 
" i n t e n s i o n a l " data bases, ( i . e . non-ru les and 
ru l es are s tored in the same data base), nor do we 
d i s t i n g u i s h "base" from "de f i ned " r e l a t i o n s . 
Spec i f i c instances of ANCESTOR may be stored as 
w e l l as r u l e s d e f i n i n g ANCESTOR. In a d d i t i o n , the 
inferenoe system descr ibed here does not r e s t r i c t 
the l e f t hand s ide of ru les to oonta ln on ly one 
l i t e r a l which i s s der ived r e l a t i o n [ 5 ] , does not 
need to reoognlze cyc les in a graph [ 5 , 9, 14] and 
does not requ i re t h a t there be at l eas t one e x i t 
from a cyc le [ 1 4 ] . 

The a c t i v e connect ion graph may be viewed as 
an AND/OR problem reduc t ion graph in which the roo t 
code represents the o r i g i n a l quest ion and ru l es are 
problem reduct ion opera to rs . Pa r t l y in f luenced by 
Kaplan's producer-oonsumer model [ 7 ] , the system is 
designed so t h a t if a node represent ing some 
problem is about to c rea te a node f o r a subproblem 
and there is another node al ready represent ing t ha t 
subproblem or some more general instance of i t , the 
parent node oan reuse the extant node and avoid 
so l v i ng the same problem aga in . In a d d i t i o n , i f 
the extant node is a more s p e c i f i c instance of the 
proposed subproblem then the r e s u l t s produced by 
the extant node are immediately made a v a i l a b l e and 
the extant node cance l l ed . The method employed 
handles reours lve r u l e s w i t h no a d d i t i o n a l 
mechanism and, as w i l l be seen below, the s ize of 
the r e s u l t i n g graph does not depend on the number 
of t imes a recurs ive r u l e w i l l be used. 

This paper descr ibes how SNIP handles 
recurs ive r u l e s . Aspects of the system not 
re levan t to t h i s issue are abbreviated o r c m i t t e d . 
In p a r t i c u l a r , ne i the r the d e t a i l s o f the match 
rou t i ne which r e t r i e v e s formulas u n i f i a b l e w i t h a 
g iven formula [ 1 7 ] , the represen ta t ion o f l o g i o a l 
connect ives and formulas in SNePS [18 ] nor the 
implementation o f SNIP i s f u l l y descr ibed. 

2 . P r e d i c a t e C o n n e c t i o n G R A P H S 

Others have described pred icate connection 
graphs [4, 8, 10] or clause i n t e r c o n n e o t l v i t y 
graphs [21 ] which have been used in r e s o l u t i o n 
theorem prov ing systems and quest ion answering 
systems. 

A predicate connection graph (pog) is a 
c o l l e c t i o n of statements in pred loate ca lcu lus w i t h 
u n i f i a b l e l i t e r a l s l i nked together by edges. 
l abe l l ed w i t h the most general u n i f y i n g 
s u b s t i t u t i o n (agu) o f the l i t e r a l s . In systems 
which use peg 's , the inference a lgor i thms may 
impose cons t ra in t s on which l i t e r a l s aay have an 
edge between thea. Por example, systeas whloh use 
r e s o l u t i o n as the only r u l e o f in ference [ 4 , 10, 
21] requ i re tha t the predloate oaloulus statements 
be represented in clause f o ra and t ha t only 
complementary l i t e r a l s be jo ined by an edge, i . e . 
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a l i t e r a l L is l i n k e d to a l i t e r a l ~L. In a system 
which does not represent statements in clause form, 
e . g . [ 8 ] , and which uses the standard connect ives 
of p red ica te ca l cu l us , the edges usua l l y l i n k an 
instanoe of a l i t e r a l in the antecedent of some 
statement w i t h a u n l f l a b l e instance of the same 
l i t e r a l in the consequent of some other statement. 
In such a system which uses both backward cha in ing 
and forward cha in ing , an edge between P(x) and P(y) 
asser ts t ha t to show P(x) use the statement in 
which P(y) appears and t h a t i f P(y) f o r some y is 
ever deduoed then the r e s u l t can be used to f u r t h e r 
s a t i s f y the statement in which P(x) appears. 

The match opera t ion s p e c i f i e s a pog of a 
s l i g h t l y d i f f e r e n t fo rm. instead o f l a b e l l i n g the 
edge w i t h the mgu, a d i r ec ted edge l i n k i n g a source 
node (S) to a t a rge t node (T) l a b e l l e d w i t h the 
ta rge t b ind ing ( t ) and the source b ind ing ( A ) IS 
used. Figure 1 shows a pog cons i s t i ng of f i v e 
r u l e s , l a b e l l e d R1 through R5. While the r u l es 
considered in the remainder o f t h i s paper are o f 
the form A 1 . . . A -> C where J 2 1 and a l l 
va r i ab les Are u n i v e r s a l l y quan t l fed ( i . e . Horn 
c lauses ) , SNIP is not so l i m i t e d (see [ 1 9 ] ) * The 
edges are l a b e l l e d w i t h the p a i r (£.,&) where 1 is 
the t a rge t b ind ing and s la the souroe b i nd i ng . 
The souroe node is the l i t e r a l a t the t a l l o f the 
edge and the t a rge t node is at the head of the 
edge. For example, the edge l a b e l l e d " a " in F igure 
1 has P (a ,y , x ) as the source l i t e r a l and P (x , y , z ) 
as the t a rge t l i t e r a l . SNIP does not e x p l i c i t l y 
s to re the pog but uses the match f u n c t i o n descr ibed 
above to compute the edges on demand. The 
remainder o f t h i s paper i s ooncerned w i t h peg's o f 
t h i s l a s t fo rm. 

3 . A c t i i v e C o n n e c t i o n G r a p h s 

An active Connection graph (aog) is a 
connect ion graph in which edges l i n k l i t e r a l s and 
are l a b e l l e d w i t h a t a rge t b ind ing and source 
b i nd i ng . These graphs are a c t i v e because instances 
of l i t e r a l s f l ow from one formula to another 
formula v i a the edges. Using the producer-consumer 

analogy, a r u l e instance can be considered a 
producer of instances of its consequents and a 
consumer of instances of i t s antecedents. 
Furthermore, the acg conta ins instances of the 
r u l e s in the peg, the edges in the acg po in t in the 
opposi te d i r e c t i o n to the corresponding edges in 
the peg and the b indings p lay an a c t i v e r o l e (see 
below). The ta rge t b ind ing f i l t e r s the f low of 
instances of l i t e r a l s . The source b ind ing 
t r ans la tes between va r i ab le con tex ts . 

Suppose a consequent reasoning system has been 
asked to deduoe a l l instanoes of Q using the peg of 
F igure 1. It can use R1 and R2 to deduoe instanoes 
of Q if appropr ia te instances of P can be deduced. 
Thus, r u l e s R3-R5 oan be used. A f u l l aog f o r t h i s 
scenar io la presented in Figure 2 . Rectangles 
enclose formulas. The p a r t i t i o n s con ta in l i t e r a l s 
instances. Antecedents appear on the l e f t of the 
double l i n e , consequents to the r i g h t . The 
rec tang le at the top of F igure 2 represents the 
request to deduoe a l l instanoes of Q and as such 
has an empty consequent p a r t . In t h i s example, 
eaoh acg r u l e l a b e l l e d A. is an instance of the peg 
r u l e l a b e l l e d R . These l abe l s are a r b i t r a r y and 
the reader should not i n f e r anyth ing about the 
cons t ruc t i on of the acg based on the l abe ls a lone. 
The remainder of t h i s sec t i on expands t h i s simple 
no t ion of ac t i ve connect ion graphs using the acg of 
F igure 2 as an example. 

Target b indings and source b ind ings operate on 
the b indings f l ow ing through the aog. A ta rge t 
b ind ing is a f i l t e r which only l e t s through those 
bindings which have the b ind ing of the f i l t e r as a 
subset. For example, in the ac t i ve connect ion 
graph of F igure 2, i f G2 produced the b indings 
{ a / x , b /y , c /z ) and { a / x , d /y , c / z } , only { a / x , 
b /y , c /z ) would be al lowed to paaa through the 
f i l t e r <a/x , b/y> to A2. The source b ind ing la 
uaed to switch va r i ab le con tex ts . A2 contains on ly 
the va r i ab le u wh i le G2 produoea b indings w i t h the 
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var iab les x, y and z, so in order f o r G2 to send 
bindings to A2, the v a r i a b l e z must be mapped to 
the va r i ab l e u. Cont inuing w i t h the example above, 
s ince the b ind ing { a / x , b /y , c /z } passed through 
the f i l t e r i t next encounters the swi tch [ z / u ] . 
The swi tch uses the b ind ing a p p l i c a t i o n opera t ion 
def ined in Sect ion 2 to generate a new b ind ing . In 
t h i s case, { z /u } \ { a / x , b /y , o/z} y i e l ds { c / u } , 
which is an appropr ia te b ind ing in the oontext o f 
A2. 

To deduoe a l l instances of Q requ i res back 
cha in ing through the peg u n t i l on ly ground l i t e r a l s 
are found o r a l l poss ib le ru l es are t r i e d . 
I n i t i a l l y , a request is created which conta ins a 
l i t e r a l . I n Figure 2 , Q(q1,q2) i s t h a t request . 
The next step is to create a goal node f o r the 
l i t e r a l . The goal node matches i t s l i t e r a l w i t h 
the peg t o f i n d a l l l i t e r a l s which un i f y w i t h i t . 
I f there are ground instances then the source 
b indings of those matches are answers and the goal 
node produces them immediately. Other matches can 
be l i t e r a l s which are antecedents or consequents of 
ru les in the peg. For every l i t e r a l in the 
consequent of some r u l e , a new r u l e instance is 
added to the acg us ing the ta rge t b ind ings , and the 
instance is connected through a swi tch con ta in ing 
the source b ind ing to the goal node. The same 
process of c r e a t i n g goal nodes is app l ied to each 
of the antecedents of the new r u l e instances 
created in the previous s tep . This process i s 
repeated u n t i l e i t h e r no more r u l es apply or on ly 
ground instances are found. However, a new goal 
node need not be oreated if an e x i s t i n g one w i l l 
s u f f i c e . The remainder of t h i s sec t ion descr ibes 
how to f i n d adequate extant goal nodes w i thout 
doing ex t ra matching and how to use r e s u l t s 
p rev ious ly generated by a goal node. 

Suppose a goal node is about to be created f o r 
some l i t e r a l in a r u l e instance of an acg. Which 
other l i t e r a l s are l i k e l y to have goal nodes which 
should be checked? Namely, those other l i t e r a l s in 
the peg u n i f i a b l e w i t h the l i t e r a l which are in the 
antecedent of some r u l e of the peg and which have 
already had goal nodes created f o r them. Thus, 
when a new goal node performs i t s match as 
described above, the matched antecedent l i t e r a l s 
are marked w i t h a po in te r to the newly created goal 
node. These p o i n t e r s , which l i n k antecedent peg 
l i t e r a l s to goal nodes in the acg, are ca l l ed g o a l 
pointers. Just l i k e peg edges, eaoh goal po in te r 
is marked w i t h a ta rge t b ind ing and source b ind ing . 
When a new goal node is about to be c rea ted , if its 
l i t e r a l has no goal po in te r then no e x i s t i n g goal 
node w i l l be u s e f u l . If it does, it is poss ib le 
tha t one of the goal nodes pointed to could be used 
instead of the proposed goal node. 

L e t ' s consider as an example the process of 
b u i l d i n g the acg of Figure 2 using the pog of 
Figure 1 . Recal l t ha t the request was f o r a l l 
instances o f Q . A goal node i s created f o r 
Q(q1,q2) and a match performed. The r e s u l t s of the 
match of Q(q1,q2) are the tup les <Q(a,u) , { u / u } , 
( a / q 1 , u/q2}> and <Q(x ,y ) , ( x / x , y / y ) , { x / q 1 , 
y /q2 }> . Both Q(a,u) and Q(x,y) are consequents of 
r u l e s , so r u l e instances are created f o r them in 
the aog connected through the appropr ia te switones 

to 0 1 . There are no goal po in te rs oreated beoause 
Q(q1,q2) does not matoh any l i t e r a l in an 
antecedent of a r u l e . Cont inuing to expand the aog 
using the anteoedents of A1 and A2 requi res p i ck i ng 
one of them to expand f i r s t . Whichever order is 
p icked, the same aog is cons t ruc ted . 

Suppose A1 is picked f o r expansion. F i r s t , 
the l i t e r a l P (x ,y , z ) i s ohecked f o r a goal p o i n t e r . 
There are none, so a new goal node is b u i l t f o r 
P ( x , y , z ) . The r e s u l t of the match are the tup les 
<P(a ,b ,u ) , { u / u } , { a / x , b/y, u / z }> , 
<P (x ,u , v ) , { x / x , u / u , v / v } , { x / x , u/y, v / z } > , 
<P (a , y , x ) , { y / y , x / x } , { a / x , y / y , x / z } > , 
<P (a , c , v ) , { v / v } , { a / x , o / y , v / z }> and 
< P ( x , y , z ) , { x / x , y / y , z / z } , { x / x , y / y , z / z } > . 
P(a,b,u) is an antecedent of R2, so P(a,b,u) gets a 
goal po in te r to the goal node f o r P ( x , y , z ) . A lso, 
P (x ,y ,z ) is g iven a goal po in te r to i t s own goal 
node. We draw a goal po in te r as a dashed l i n e 
l abe l l ed w i t h the ta rge t b ind ing and souroe b ind ing 
of the match. F igure 3 shows the acg and pa r t of 
the pog w i t h goal po in te rs a f t e r t h i s s tep . The 
remaining ta rge t l i t e r a l s are each consequents of 
some r u l e and the ru les are added to the acg as 
before . Next, a goal node is to be oreated f o r 
P(a,b,u) of A2. But the pog l i t e r a l P(a,b,u) in R2 
has a goal po in te r . Thus, some instanoe of the o ld 
goal l i t e r a l , P ( x , y , z ) , u n i f i e s w i t h the l i t e r a l 
which nas the goal po in te r but the b ind ing of the 
cur rent aog r u l e instanoe is not necessar i ly 
compatible w i t h the b ind ing of the o ld goal 
l i t e r a l . 

In the cur ren t example, the o ld ta rge t b ind ing 
from the goal po in te r i s i d e n t i c a l to the b ind ing 
associated w i t h A2. However, G2 is not i d e n t i c a l 
to the proposed goal f o r P ( a , b , u ) . Rule instanoe 
A2 is in terested in a subset of a l l instances of 
P ( x , y , z ) , namely those instances whioh have a/x and 
b/y. I t is important to note tha t Q2 w i l l produce 
a l l tha t the proposed goal node f o r P(a,b,u) would 
produce and more. A lso, above G2 a l l instances are 
in terms of the va r iab les of R1. Instead of 
c rea t i ng a new goal node f o r P(a,b,u) and the edges 
associated w i t h i t , G2 is reused. The r e s u l t s from 
G2 must be f i l t e r e d by <a/x , b/y> and va r i ab le 
contexts switched by [ z / u ] . The f i l t e r is computed 
from the a p p l i c a t i o n of the cur rent b ind ing to the 
o ld source b ind ing . This assures tha t the f i l t e r 
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conta ins va r i ab les which the o ld goal node 
produces. The swl toh is obtained by cons ider ing 
the b ind ing p a i r s o f the o l d source b ind ing f o r 
which the term is a v a r i a b l e as a " v a r i a b l e Bap". 
Discard ing those b ind ing p a i r s f o r which the tens 
is a constant and i n v e r t i n g the remaining p a i r s 
y i e l d s the appropr ia te b ind ing f o r the sw i t ch . For 
example, d i sca rd ing pa i r s w i t h constant terms and 
then i n v e r t i n g ( a / x , b /y , u/z} y i e l d s U / u ) . 
Figure 2 shows the acg a f t e r the f i l t e r and swl toh 
have been b u i l t . 

If A2 were expanded before A1 then a goal node 
would have been created f o r i t and goal po in te rs 
es tab l ished from the antecedents of R1 and R2 to 
the goal node. To ob ta in the same acg requ i res 
tha t the goal node created f o r P(a ,b ,u) in A2 be 
superseded by the goal node even tua l l y created f o r 
P ( x , y , z ) . When a goal node is superseded, i t is 
erased from the acg and a l l the consumers of the 
superseded goal nodes become consumers of the new, 
more general goal node w i t h an appropr ia te f i l t e r 
and swi tch between the superseding node and the o ld 
consumers. 

We s ta ted above t h a t r u l e instances in the acg 
consume instances of antecedents and produce 
instances of consequents but have t o t a l l y ignored 
what c o n s t i t u t e s such an instance. There are 
b a s i c a l l y two a l t e r n a t i v e s . An instance of a 
l i t e r a l can be e i t h e r a separate l i t e r a l or a 
reference to a l i t e r a l and a b ind ing which when 
appl ied to the l i t e r a l would y i e l d an lnstanoe o f 
i t . We p re fe r the second a l t e r n a t i v e because the 
In ference a lgor i thms need not produce ex t ra 
l i t e r a l s and because the match opera t ion mentioned 
above re tu rns such I n fo rma t i on . Furthermore, 
i n fo rmat ion about l i t e r a l s i s superf luous i n 
communication between r u l e instances in the acg 
because the l i t e r a l s are known to u n i f y ( t h a t ' s why 
there is an edge in the peg) and t h e r e f o r e , on ly 
b indings need be communicated along the edges of 
the a c t i v e connect ion graph. 

F i n a l l y , we mentioned above t ha t the acg 
conta ins r u l e instances but the previous examples 
use the pog r u l e s d i r e c t l y . In genera l , r u l e 
instances in the aog are pa i r s — a r u l e from the 
peg and an associated b i n d i n g . The r u l e lnstanxes 
in the examples a l l have an i d e n t i t y b i nd ing , i . e . 
a b ind ing in which each v a r i a b l e of a b ind ing p a i r 
is bound to i t s e l f . The b ind ing is used to 
r e s t r i c t the r u l e instances to generat ing Just 
those l i t e r a l instances which are requested. In 
other words, i t is used as an i n t e r n a l f i l t e r in 
the r u l e instances in order to keep the inference 
more focussed. 

In summary, an acg conta ins lnstanoes of r u l es 
which are l i n k e d to each o ther through f i l t e r s , 
switches and goal nodes. The separat ion of the 
ta rge t and source b indings a l low r u l e instances to 
work in t h e i r own v a r i a b l e environment, r e l y i n g on 
the source b ind ing of the peg to enable sw i tch ing 
of va r i ab l e oontexts and on the ta rge t b ind ings to 
a l low more general producers to be used by less 
general consumers. The goal nodes are the 
product ion s i t e o f lnstanoes of l i t e r a l s and so are 
use fu l to more than one consumer. F i n a l l y , goal 

nodes are indexed on antecedent l i t e r a l s us ing goal 
p o i n t e r s . 

4.Racuraive rule a cause cycles 

A set of recurs ive r u l es is of the form A1 
&......& A -> B , B &.......& B k - > . . . -> C, w i t h C 
u n l f l a b l e w i t h at l eas t one of the antecedents, A1 
say. In an acg, t h i s means t ha t the goal node f o r 
C can be used instead of c r e a t i n g a new goal node 
f o r A • As an example, consider the pog of F igure 
4 which conta ins the recurs ive ANCESTOR r u l e . The 
two r u l e s represent the pred icate ca lcu lus 
statements V(x,y,z)[ANCBSTOR(x,y) & ANCESTOR(y,z) 
•> ANCESTOR(x,z)] and V(x,y)[PARENT(x,y) -> 
ANCESTOR(x,y)]. The remainder of the e n t r i e s 
represent the ground l i t e r a l s PARENT(Bill, John) , 
PARENT(John, Mary), ANCESTOR B i l l , Bob), 
ANCESTOR(John, Mary) and ANCESTOR(Mary, Sarah). 
Since the ground l i t e r a l s are never a source node 
in a match, the edges from the ground l i t e r a l s to 
l i t e r a l s i n ru les are om i t t ed . 

Consider a request , ANCEST0R(q1,q2), f o r a l l 
lnstanoes of the ANCESTOR r e l a t i o n . Inference 
proceeds by c rea t i ng a goal node f o r the request , 
c rea t i ng r u l e Instances f o r a l l r u les in the peg 
whloh have the l i t e r a l as a consequent and c r e a t i n g 
a goal po in te r f o r each l i t e r a l in the antecedent 
of some r u l e . F igure 5 shows the acg at t h i s 
p o i n t . Here, lnstanoes which are produoed are 
shown in terms of the va r i ab les o f the goal l i t e r a l 
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next to the goal nodes which c o l l e c t then. When 
such an instance is produoed, i t f lows through the 
acg u n t i l e i t h e r i t encounters the top l e v e l 
request or it is consumed by a goal node which has 
prev ious ly produced i t . Thus, the b indings 
{ B i l l / q 1 , Bob/q2}, (John/q1, Mary/q2} and {Mary/q1, 
Sarah/q2}, represent ing the ground l i t e r a l s 
ANCESTOR(Bill, Bob), ANCESTOR(John, Mary) and 
ANCESTOR(Mary, Sarah) r e s p e c t i v e l y , are stored by 
G1 and consumed by the top l e v e l request . P ick ing 
one r u l e Ins tance, A1 or A2, to expand f i r s t has no 
s i g n i f i c a n t Impact because if A2 were expanded 
f i r s t then any r e s u l t s der ived from A2 would be 
stored in the goal node Just as these a re . The 
order of the c rea t i on of the goal nodes in A1 is 
i n s i g n i f i c a n t f o r t h i s example because both reuse 
G1. 

Consider ANCESTOR(x,y) as the f i r s t goal 
l i t e r a l . ANCESTOR(x,y) has the goal po in te r ( { x / x , 
y / y } , ( x / q 1 , y / q 2 } ) , and the b ind ing associated 
w i t h i t i n A1 i s { x / x , y / y ) . Thus, the goal 
p o i n t e r ' s o ld ta rge t b ind ing i s i d e n t i c a l t o the 
r u l e instance b ind ing and G1 can be used. This is 
accomplished by g i v i n g G1 another consumer, the 
ANCESTOR(x,y) antecedent, connected through the 
swi tch [ q 1 / x , q 2 / y ] . The b indings from G1 are 
produced f o r t h i s new consumer but f u r t h e r 
processing by A1 is not poss ib le because the other 
antecedent of A1 has not yet consumed any instances 
of ANCESTOR(y,z). 

Goal nodes act as data c o l l e c t o r s [13 , 1 9 ] . A 
data c o l l e c t o r s tores a l l l i t e r a l s i t has consumed 
and never produces a l i t e r a l i t has prev ious ly 
produced. When an o ld goal node is g iven an 
a d d i t i o n a l consumer, a l l l i t e r a l s p rev ious ly 
produced are immediately ava i l ab le to the new 
consumer. A lso , the new consumer receives any new 
l i t e r a l s produced by the goal node. The f a c t t ha t 
data c o l l e c t o r s never produce the same l i t e r a l 
twice p ro tec ts SNIP from g e t t i n g i n t o an i n f i n i t e 
loop by p r o h i b i t i n g the passing of the same l i t e r a l 
around a cyc le in the acg. 

Next, consider t r y i n g to create a goal node 
f o r ANCESTOR(y,z). Again, G1 is found using the 
goal po in te r and as before the o ld ta rge t b ind ing 
and the b ind ing of the r u l e instanoe are i d e n t i c a l . 

A new consumer is added to G1 through a switoh of 
[ y / q 1 , z /q2] and the three instances stored by G1 
are produced f o r t h i s new consumer. Since A1 has 
now received the bindings {John/x, Mary/y} f o r one 
antecedent and and (Mary/y, Sarah/z} f o r the o the r , 
i t oan produoe (John/x, Sarah/z} and pass i t to G1. 
Again, G1 produces (John/q1 , Sarah/q2} to a l l 
consumers because i t has not produoed i t be fo re . 
Now, A1 cannot produoe any f u r t h e r ins tances. 

F i n a l l y , a goal node is created f o r 
PARENT(x,y), c a l l i t G2. Since there are no goal 
po in te rs f o r PARENT(x,y), a match is performed 
r e s u l t i n g i n the ground instanoes o f ( B l l l / x , 
John/y} and (John/x, Mary /y } . F igure 6 shows the 
acg a f t e r G2 has matched these instanoes. These 
are stored by G2 and produoed to a l l consumers. A2 
now has i t s antecedent s a t i s f i e d in the bindings 
above. Since these Instances are next passed to G1 
and ( B i l l / q 1 , John/q2} has not been produoed 
be fore , i t i s produced to the top l e v e l request and 
the other consumers. A f te r passing through the 
swi tches, the appropr ia te b ind ing a r r i v e s in A1 
which produces ANCESTOR(Bill, Mary). Again, G1 has 
not produced ( B l l l / q 1 , Mary/q2) p rev ious l y , so I t 
passes i t on to a l l consumers. A1 in t u r n produoes 
( B i l l / x , Sarah/z} to G1. Since G1 has not 
p rev ious ly produoed ( B i l l / q 1 , Sarah/q2}, i t 
produces t h i s b ind ing to a l l consumers. Now, no 
f u r t h e r r e s u l t s can be produced by A1 and slnoe 
there are no other ru les l e f t to expand, in ference 
terminates. 

This example demonstrates t h a t recurs ive ru les 
can be p roduc t i ve ly used in an acg and not cause an 
i n f i n i t e loop . The reason no i n f i n i t e loop is 
encountered is t ha t no f u r t h e r r e s u l t s oould be 
produced and tha t the acg oontalns a cyc le as 
opposed to c o n t i n u a l l y t r y i n g to use the recurs ive 
ANCESTOR r u l e . This example a lso demonstrates the 
accessing of data stored by a goal node previous to 
adding a new consumer. This is a property of the 
goal node ac t i ng as a data c o l l e c t o r . F i n a l l y , 
t h i s example suggests how r u l e Instanoes produce 
b ind ings , w a i t i n g u n t i l s u f f i c i e n t instances have 
been consumed in the appropr ia te b ind ing . SNIP 
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al lows o ther l o g i c a l connect ives so tha t o ther 
schemes f o r r u l e Instanoes to produoe Instances of 
t h e i r consequents are requ i red (see [ 1 8 ] ) . Note, 
t h i s k ind o f s t r u c t u r e i s b u i l t f o r i n d i r e c t l y 
recurs ive r u l e s as w e l l as the d i r e c t l y recurs ive 
r u l e in the above example, the r e s u l t i n g a c t i v e 
connect ion graph is a directed graph and ne i the r a 
t ree nor a d i r ec ted aoyc l i c graph, and once I t is 
b u i l t i t s s i ze i s constant . 

5.Summary 

In SNIP, recurs ive r u l es cause cyc les to be 
b u i l t in an ac t i ve connect ion graph. The key 
fea tu res of a c t i v e connect ion graphs which a l low 
recurs ive r u l es to be handled a re : 1) goal nodes 
are data o o l l e o t o r s ; 2) data c o l l e c t o r s never 
produce the same answer more than once; 3) the 
data o o l l e c t o r may repor t to more than one 
consumer; 4) a new consumer may be assigned to a 
data c o l l e o t o r a t any t ime — i t w i l l i immediately 
be g iven a l l p rev ious ly oo l l ec ted da ta ; 5) 
v a r i a b l e contexts are l o c a l i z e d , switches change 
contexts dynamical ly as data f lows around the 
graph; 6) f i l t e r s a l low more general producers to 
be used by less general consumers; 7) goal nodes 
are indexed on antecedent l i t e r a l s which were 
matched by the goal l i t e r a l . 
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