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Abatraot
Raouralva rules, such as "Your parents’
ancestors are your ancestors", although vary uaaful
for theorem proving, natural languaga
understanding, question-answering and Information
retrieval systems, present problems for many such

systems, either causing infinite loopa or requiring
that arbitrarily many copies of them be made.
SNIP, the SNaPS Inference Package, oan use
reouralva rulas without either of these problems.

A raouralva rule oauaaa a cycle to ba built in an
Active connection graph* Each pass of data through
the cycle results in another answer. Cycling stops
as soon as either the desired answer is produoed,
no more answers oan be produoed or resource bounds
are exceeded.
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1. Introduction

aa "Your parents’
occur naturally in
theorem proving,

Raouralva rules, such
anoestors are your ancestors”,
infaranoe systems used for
question-answering, natural languaga undaratandling
and information retrieval. Transitive relations,
a.g. V(x,y,z) [ANCESTOR(x,y) a ANCBSTOR(y,z) ->
ANCESTOR(x,z)J, Inheritance rulaa, e.g.
V(x,y,p)[ISA(x,y) 4 HAS(y,p) -> HAS(x,p)], circular

definitions, e.g. "a limb la a lag or arm" and "a
leg la a limb", and equivalences, e.g. ¥(x,y,z)
[RECEIVE(x,y,z) <=> PTRANS(z,y,z,x)], are all
ocourranoaa of raouralva rules. Yet, raouralva
rulaa present problems for system implementors.
Inference systems which use a "naive chaining”
algorithm oan go into an infinite loop, like a
left-to-right top-down parser given a left
raouralva grammar [6, 11, 15, 23]. Soma systems
fall to uaa a raouralva rule more than onoe, i.e.

are incomplete [8, 20]. Other systems build tree
like data structures containing branches tha length
of which depend on the number of times the
recursive rule la to be applied [4, 21]. Since
some of theae build the struoture before using it,
the correct langth of these branohaa la
problematic. Some ayatama eliminate reouralva
rules by deriving and adding to tha data baaa all
implications of the reouralva rulaa In a apaclal
paaa before normal infaranoe la dona [16]. Another

New
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problem of circular
one system was to

measure taken to avoid the
definitions and equivalences in
use "a depth first expansion policy and to limit
the total depth of the expansion" [2]. This s
essentially the same solution proposed by Blaok [1]
and by Simmons and Chester [22].

recursive rules cause
many programming languages developed
intelligence (Al) research. Al
languages, such as MicroPLANNER [23], FUzZzy [11],
and PROLOG [15], have differing approaches to a
baalc problem: there exist well formed statements
in the language which cause infinite loopa in the
language interpreter when some theorem, procedure
or clause is used. Using the terminology from
MicroPLANNER, these languages are sensitive to the
order of assertion, or equivalently the order of
retrieval of theorems, and to the application of a

Not too
problems for
for artificial

surprisingly,

theorem aa a subgoal of itself. Both interaot to
make a collection of theorems incomplete, i.e.
statements which are logically implied by its data

baae of assertions and theorems are not derivable
beoauae the system gets into an infinite loop.

A typioal example would be the  ANCESTOR
example mentioned previously. In a MicroPLANNER
like ayntax, such a statement can be represented as
the consequent theorem:

(CONSEQUENT (ANCESTOR ?X ?Y) (Z)

(GOAL (ANCESTOR $X ?Z))(GOAL (ANCESTOR $zZ

$Y)))
The wuse of this theorem for solving some goal
introduces a problem. If there la no other way in
which to deduce instanoea of ANCESTOR, either by
finding assertions in the data baaa or through
application of some other rule, or If the order of
application of theorem a picks this theorem first

regardless of any other available theorema then the

above theorem reuses itself without making any
progress towards finding a solution, i.e. uae of
the theorem causes the interpreter to enter an
Infinite loop.

MicroPLANNER provides a primitive, THUNIQUE,
which oan be wuaad to check whether a theorem has
previously been entered with the current bindings

and doaa solve the infinite regress problem for
recursive theorems. However, the user must
explicitly inolude the appropriate statement, so
the possibility exists that tha uaer may not in
fact notice that a theorem will be wuaad
recursively. This could happen when olroular
definitions or equivalences are inadvertently



introduced into a collection of theorems. FUzZzY
suffers from a similar problem and compounds it by
not providing an operator equivalent to THUNIQUE.
Two points should be noted. First, apparently the

developers of FUZZY did not need to represent
recursive procedures (LeFalvre, personal
communication) and second, THUNIQUE can be
simulated in FUZZY. Pure PROLOG also does not
explicitly oontain a THUNIQUE primitive — using

recursive rules properly is a problem with the
procedural semantics of seme implementations of
PROLOG, but it Is not a problem of the declarative

semantics. Some implementations of PROLOG include
an equivalent primitive. Since a primary mode of
definition is recursive definition by listing
clauses, this is a potential source of problems for

users of PROLOG.

SNIP [12, 18, 193 was designed to use rules
stored in a fully Indexed data base. When a
question is asked, the system retrieves relevant

rules and builds an active connection graph which
attempts to derive the answer from the rules and
other information stored in the data base. Since a
semantic network is used to represent all
declarative information available in the system, we

differ from the basic assumption of several data
base question-answering systems [5, 14, 16] by not
making a distinction between "extensional" and
"intensional” data bases, (i.e. non-rules and
rules are stored in the same data base), nor do we
distinguish "base" from "defined" relations.
Specific instances of ANCESTOR may be stored as
well as rules defining ANCESTOR. In addition, the
inferenoe system described here does not restrict
the left hand side of rules to oontaln only one
literal which is s derived relation [5], does not
need to reoognlze cycles in a graph [5, 9, 14] and
does not require that there be at least one exit
from a cycle [14].

The active connection graph may be viewed as

an AND/OR problem reduction graph in which the root
code represents the original question and rules are
problem reduction operators. Partly influenced by
Kaplan's producer-oonsumer model [7], the system is
designed so that if a node representing some
problem is about to create a node for a subproblem
and there is another node already representing that

subproblem or some more general instance of it, the
parent node oan reuse the extant node and avoid
solving the same problem again. In addition, if
the extant node is a more specific instance of the
proposed subproblem then the results produced by
the extant node are immediately made available and

the extant node cancelled. The method employed
handles reourslve rules with no additional
mechanism and, as will be seen below, the size of

the resulting graph does number

of times a recursive rule will

not depend on the
be used.
This paper describes how SNIP handles
recursive rules. Aspects of the system not
relevant to this issue are abbreviated or cmitted.
In  particular, neither the details of the match
routine which retrieves formulas unifiable with a
given formula [17], the representation of logioal
connectives and formulas in SNePS [18] nor the
implementation of SNIP is fully described.
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2. Predicate Connection GRAPHS

Others have described predicate connection
graphs [4, 8, 10] or clause interconneotlvity
graphs [21] which have been used in resolution
theorem proving systems and question answering
systems.

Qur visew of predicate connection graphe

depends on & matoh algoritim which retrieves all
formulas unifiable with a given formula. The
details of the algoriths appear alsewhere [17].
Here, we relate it to the unificstion slgorithe
[3). A matoh funotion ia given as input a formula
3, oalled tha source, whioch it uses to find all
formulas unifiable with S. The result of the match
is a list of triples, <T,L,a>, wherea T is e
retrieved formula oslled the Largat, and L and g
are substitutions ocalied the and
aourca hindipg respectively. [Essentimlly &t and a
are faotored versions of the most gensral unifier
{mgu} of 5 and T, and might have been computed (but
are really not) in the following way. [Note: This
desoription fs acourate for first order predicate
osloulus without function symbols. Inolusion of
function symbels adds & oomplication which 1ie not
treated in this paper, but 4s in a fopthcoming
paper.] Let be the subatitution {t /v, ...,
t.nh } vhere Yyy rees ¥, Wre all the vb;ilfﬁ.n in
8, a it v, 'ocoura in T, t, 18 & variable used
does nat ooour in T, t

nowhers slae, but if '1 in
ia not pormally luwid in

v, (the pair v /v
a&bstttuum sinGe it is superfluoup, dbut it will
maks our algorithms easier to desoribs). Let be
the subatitution {v /v1. wesy W /v ], whare'v,,
ery ¥, are all d. variables !n *. Rotse thlt
=T chd that n'l' and bhave no variables in
o +« WNow let 0'be the of and such
that for each pair v./v, 1in @ ‘where v, ia a

variable, ¥, occurs ﬂl ?. Finally, a» 10 and
£sR,\0, wherd A\h denotes the application of°k to a
== “the substitution derived {rom g by replacing
each term t in 4 by th. For exmmple, if SxP(x,a,y)
and TeP{b,y,x), vhere a and b are conatants and x

and y are variablas, then B _={uw/x, v/¥i, {x/x,
y/y}, Ox{bru, 'y, x/v}, a=Vo/x, x/y} and faix/x,
a/y). Note that SasThsP(b,a,x), the variables in

the variable poaition of the substitution pairs of
A are sll snd oply the vwariables in S, the
variablea of £ are all and orly the variables in T,
all tarms ing omme from T, ard the non=variables
int ceme from 8. It is important to note that

factoring the =mgu in thia way looses no
informstion.

A predicate connection graph (pog) is a
collection of statements in predloate calculus with
unifiable literals linked together by edges.
labelled with the most general unifying
substitution (agu) of the literals. In systems
which use peg's, the inference algorithms may
impose constraints on which literals aay have an

edge between thea. Por example, systeas whloh use
resolution as the only rule of inference [4, 10,
21] require that the predloate oaloulus statements
be represented in clause fora and that only
complementary literals be joined by an edge, i.e.



a literal L is linked to a literal ~L. In a system
which does not represent statements in clause form,
e.g. [8], and which uses the standard connectives
of predicate calculus, the edges usually link an
instanoe of a literal in the antecedent of some
statement with a wunlflable instance of the same
literal in the consequent of some other statement.
In such a system which uses both backward chaining
and forward chaining, an edge between P(x) and P(y)
asserts that to show P(x) use the statement in
which P(y) appears and that if P(y) for some y s
ever deduoed then the result can be used to further
satisfy the statement in which P(x) appears.

The match operation specifies a pog of a
slightly different form. instead of labelling the
edge with the mgu, a directed edge linking a source

node (S) to a target node (T) labelled with the
target binding (t) and the source binding (A) IS
used. Figure 1 shows a pog consisting of five
rules, labelled R1 through R5. While the rules
considered in the remainder of this paper are of
the form Aq... A -> C where J2 1 and all
variables Are universally quantifed (i.e. Horn
clauses), SNIP is not so limited (see [19])* The
edges are labelled with the pair (£.,&) where 1 is
the target binding and s la the souroe binding.
The souroe node is the literal at the tall of the
edge and the target node is at the head of the
edge. For example, the edge labelled "a" in Figure
1 has P(a,y,x) as the source literal and P(x,y,z)

as the
store the
above to
remainder
this last

target literal. SNIP does not explicitly
pog but uses the match function described
compute the edges on demand. The
of this paper is ooncerned with peg's of
form.

3. Actiive Connection Graphs

An active Connection graph (aog) is a
connection graph in which edges link literals and
are labelled with a target binding and source
binding. These graphs are active because instances
of literals flow from one formula to another

formula via the edges. Using the producer-consumer
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analogy, a rule instance can be considered a
producer of instances of its consequents and a
consumer of instances of its antecedents.
Furthermore, the acg contains instances of the

rules in the peg, the edges in the acg point in the
opposite direction to the corresponding edges in
the peg and the bindings play an active role (see
below). The target binding filters the flow of
instances of literals. The source binding
translates between variable contexts.

Suppose a consequent reasoning system has been
asked to deduoe all instanoes of Q using the peg of
Figure 1. It can use R1 and R2 to deduoe instanoes
of Q if appropriate instances of P can be deduced.
Thus, rules R3-R5 oan be used. A full aog for this
scenario la presented in Figure 2. Rectangles
enclose formulas. The partitions contain literals
instances. Antecedents appear on the left of the
double line, consequents to the right. The
rectangle at the top of Figure 2 represents the
request to deduoe all instanoes of Q and as such
has an empty consequent part. In this example,
eaoh acg rule labelled A. is an instance of the peg
rule labelled R . These labels are arbitrary and
the reader should not infer anything about the
construction of the acg based on the labels alone.
The remainder of this section expands this simple
notion of active connection graphs using the acg of
Figure 2 as an example.

Target bindings and source bindings operate on
the bindings flowing through the aog. A target
binding is a filter which only lets through those
bindings which have the binding of the filter as a
subset. For example, in the active connection
graph Figure 2, if G2 produced the bindings
{a/x, bly, cl/z) and {al/x, d/y, cl/z}, only {alx,
b/y, c¢/z) would be allowed to paaa through the
filter <a/x, bly> to A2. The source binding Ila
uaed to switch variable contexts. A2 contains only
the variable u while G2 produoea bindings with the
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and z, so in order for G2 to send

the variable z must be mapped to
the variable u. Continuing with the example above,
since the binding {a/x, bly, c/z} passed through
the filter it next encounters the switch [z/u].
The switch uses the binding application operation
defined in Section 2 to generate a new binding. In
this case, {z/u} \ {a/x, bly, o/z} yields {c/u},
which is an appropriate binding in the oontext of
A2.

variables x, y
bindings to A2,

To deduoe all instances of Q requires back
chaining through the peg until only ground literals
are found or all possible rules are tried.
Initially, a request is created which contains a
literal. In Figure 2, Q(q1,92) is that request.
The next step is to create a goal node for the
literal. The goal node matches its literal with
the peg to find all literals which unify with it.
If there are ground instances then the source
bindings of those matches are answers and the goal
node produces them immediately. Other matches can
be literals which are antecedents or consequents of

rules in the peg. For every literal in the
consequent of some rule, a new rule instance s
added to the acg using the target bindings, and the
instance is connected through a switch containing
the source binding to the goal node. The same
process of creating goal nodes is applied to each
of the antecedents of the new rule instances
created in the previous step. This process is
repeated until either no more rules apply or only
ground instances are found. However, a new goal
node need not be oreated if an existing one will
suffice. The remainder of this section describes
how to find adequate extant goal nodes without
doing extra matching and how to wuse results

previously generated by a goal node.

Suppose a goal node is about to be created for
some literal in a rule instance of an acg. Which
other literals are likely to have goal nodes which
should be checked? Namely, those other literals in
the peg unifiable with the literal which are in the
antecedent of some rule of the peg and which have

already had goal nodes created for them. Thus,
when a new goal node performs its match as
described above, the matched antecedent literals

are marked with a pointer to the newly created goal

node. These pointers, which link antecedent peg
literals to goal nodes in the acg, are called goal
pointers. Just like peg edges, eaoh goal pointer

is marked with a target binding and source binding.
When a new goal node is about to be created, if its
literal has no goal pointer then no existing goal
node will be wuseful. |If it does, it is possible
that one of the goal nodes pointed to could be used
instead of the proposed goal node.

Let's consider as an example the process of
building the acg of Figure 2 using the pog of
Figure 1. Recall that the request was for all
instances of Q. A goal node is created for
Q(q1,92) and a match performed. The results of the
match of Q(q1,q2) are the tuples <Q(a,u), {u/u},
(alq1, u/q2}> and <Q(x,y), (x/x,yly), {x/q1,
y/q2}>. Both Q(a,u) and Q(x,y) are consequents of
rules, so rule instances are created for them in
the aog connected through the appropriate switones
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to 01. There are no goal pointers oreated beoause
Q(q1,92) does not matoh any literal in an
antecedent of a rule. Continuing to expand the aog
using the anteoedents of A1 and A2 requires picking

one of them to expand first. Whichever order is
picked, the same aog is constructed.

Suppose A1 is picked for expansion. First,
the literal P(x,y,z) is ohecked for a goal pointer.
There are none, so a new goal node is built for
P(x,y,z). The result of the match are the tuples
<P(a,b,u), {u/u}, {a/x, bly, ulz}>,
<P(x,u,v), {x/x, ulu, v/v}, {x/x, uly, viz}>,
<P(a,y,x), {yly, x/x}, {alx, yly, x/z}>,
<P(a,c,v), {v/v}, {al/x, oly, v/z}> and
<P(x,y,z), {x/x, yly, zlz}, {xIx, yly, zlz}>.
P(a,b,u) is an antecedent of R2, so P(a,b,u) gets a
goal pointer to the goal node for P(x,y,z). Also,
P(x,y,z) is given a goal pointer to its own goal
node. We draw a goal pointer as a dashed line

labelled with the target binding and souroe binding
of the match. Figure 3 shows the acg and part of
the pog with goal pointers after this step. The
remaining target literals are each consequents of
some rule and the rules are added to the acg as
before. Next, a goal node is to be oreated for
P(a,b,u) of A2. But the pog literal P(a,b,u) in R2

has a goal pointer. Thus, some instanoe of the old
goal literal, P(x,y,z), unifies with the literal
which nas the goal pointer but the binding of the
current aog rule instanoe is not necessarily
compatible with the binding of the old goal
literal.

In the current example, the old target binding
from the goal pointer s identical to the binding
associated with A2. However, G2 is not identical
to the proposed goal for P(a,b,u). Rule instanoe
A2 is interested in a subset of all instances of
P(x,y,z), namely those instances whioh have a/x and
b/y. It is important to note that Q2 will produce
all that the proposed goal node for P(a,b,u) would
produce and more. Also, above G2 all instances are
in terms of the variables of R1. Instead of
creating a new goal node for P(a,b,u) and the edges
associated with it, G2 is reused. The results from
G2 must be filtered by <a/x, bly> and variable
contexts switched by [z/u]. The filter is computed
from the application of the current binding to the
old source binding. This assures that the filter
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contains variables which the old goal node
produces. The swltoh is obtained by considering
the binding pairs of the old source binding for
which the term is a variable as a "variable Bap".

pairs for which the tens
the remaining pairs
switch. For
terms and
Ulu).
swltoh

Discarding those binding
is a constant and inverting
yields the appropriate binding for the
example, discarding pairs with constant
then inverting (a/x, bly, u/z} vyields
Figure 2 shows the acg after the filter and
have been built.

then a goal node
and goal pointers
of R1 and R2 to

If A2 were expanded before A1
would have been created for it
established from the antecedents
the goal node. To obtain the same acg requires
that the goal node created for P(a,b,u) in A2 be
superseded by the goal node eventually created for
P(x,y,z). When a goal node is superseded, it is
erased from the acg and all the consumers of the
superseded goal nodes become consumers of the new,
more general goal node with an appropriate filter
and switch between the superseding node and the old
consumers.

We stated above that rule instances in the acg

consume instances of antecedents and produce
instances of consequents but have totally ignored
what constitutes such an instance. There are
basically two alternatives. An instance of a
literal can be either a separate |literal or a
reference to a literal and a binding which when

would yield an Instanoe of
it. We prefer the second alternative because the
Inference algorithms need not produce extra
literals and because the match operation mentioned
above returns such Information. Furthermore,
information about literals is superfluous in
communication between rule instances in the acg
because the literals are known to unify (that's why
there is an edge in the peg) and therefore, only
bindings need be communicated along the edges of
the active connection graph.

applied to the literal

the acg
examples

we mentioned above that
contains rule instances but the previous
use the pog rules directly. In general, rule
instances in the aog are pairs — a rule from the
peg and an associated binding. The rule Instanxes
in the examples all have an identity binding, i.e.
a binding in which each variable of a binding pair
is bound to itself. The binding is wused to
restrict the rule instances to generating Just
those literal instances which are requested. In
other words, it is used as an internal filter in
the rule instances in order to keep the inference
more focussed.

Finally,

In summary, an acg contains Instanoes of rules
which are linked to each other through filters,
switches and goal nodes. The separation of the
target and source bindings allow rule instances to
work in their own variable environment, relying on
the source binding of the peg to enable switching
of variable oontexts and on the target bindings to
allow more general producers to be wused by less
general consumers. The goal nodes are the

production site of Instanoes of literals and so are
useful to more than one consumer. Finally, goal
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nodes are indexed on antecedent literals using goal

pointers.

4.Racuraive rule a cause cycles

of the form A,
-> C, with C
Aq
for

node

of recursive rules is
-> B
uniflable with at least one of the antecedents,
say. In an acg, this means that the goal node
C can be used instead of creating a new goal
for A = As an example, consider the pog of Figure
4 which contains the recursive ANCESTOR rule. The
two rules represent the predicate calculus
statements V(x,y,z)[ANCBSTOR(x,y) & ANCESTOR(y,z)
o> ANCESTOR(x,2)] and  V(x,y)[PARENT(x,y) ->
ANCESTOR(x,y)]. The remainder of the entries
represent the ground literals PARENT(Bill, John),
PARENT(John, Mary), ANCESTORBiill, Bob),
ANCESTOR(John, Mary) and ANCESTOR(Mary, Sarah).
Since the ground literals are never a source node
in a match, the edges from the ground literals to
literals in rules are omitted.

A set

for all
Inference

Consider a request, ANCESTOR(q1,92),
Instanoes of the ANCESTOR relation.
proceeds by creating a goal node for the request,
creating rule Instances for all rules in the peg
whloh have the literal as a consequent and creating

a goal pointer for each literal in the antecedent
of some rule. Figure 5 shows the acg at this
point. Here, Instanoes which are produoed are
shown in terms of the variables of the goal literal
ARCESTOR( B11%, Do)
ANCERTON( Jobn, Nery
m@ -» ATONLE, 5}
m:.rl =3 MICESTON(x, T}
.
PARINT(NAL1, Juia)
’
PARENT{ John, Mary}
tin/z,a/u), (win,a/pl) twill, (M)L/n,Deb/3])
:: uw::mrl: w::mn J: (), Lden/z,Mary/y))
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o n (lns, /7], (wru,9/3)) # o {1}y [Sena/y,Nary/u)
t o {{wapr), (wa,piyl) n» L], (1L g, Peb/s}
& v Hynaal, (9e, W) e w ({}, (3L, Jonay))
b o {wa.pr), (wypral) » o Li)y Idena/u Mary/y))

Figure ¥
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When
the

next to the goal nodes which collect then.
such an instance is produoed, it flows through
acg until either it encounters the top level
request or it is consumed by a goal node which has
previously produced it. Thus, the bindings
{Bill/qg1, Bob/q2}, (John/q1, Mary/q2} and {Mary/q1,
Sarah/q2}, representing the ground literals
ANCESTOR(BIll, Bob), ANCESTOR(John, Mary) and
ANCESTOR(Mary, Sarah) respectively, are stored by
G1 and consumed by the top level request. Picking
one rule Instance, A1 or A2, to expand first has no
significant Impact because if A2 were expanded
first then any results derived from A2 would be
stored in the goal node Just as these are. The
order of the «creation of the goal nodes in A1 is
insignificant for this example because both reuse
G1.

Consider ANCESTOR(xyy) as the first goal
literal. ANCESTOR(x,y) has the goal pointer ({x/x,
y/y}, (x/q1, y/q2}), and the binding associated
with it in A1 is {x/x, yly). Thus, the goal
pointer's old target binding is identical to the
rule instance binding and G1 can be used. This is
accomplished by giving G1 another consumer, the
ANCESTOR(x,y) antecedent, connected through the
switch [q1/x, q2/y]. The bindings from G1 are
produced for this new consumer  but further
processing by A1 is not possible because the other
antecedent of A1 has not yet consumed any instances
of ANCESTOR(y,z).

Goal nodes act as data collectors [13, 19]. A
data collector stores all literals it has consumed
and never produces a literal it has previously
produced. When an old goal node is given an
additional consumer, all literals previously
produced are immediately available to the new
consumer. Also, the new consumer receives any new
literals produced by the goal node. The fact that
data collectors never produce the same literal

twice protects SNIP from getting into an infinite
loop by prohibiting the passing of the same literal
around a cycle in the acg.

Next, consider trying to create a goal node
for ANCESTOR(y,z). Again, G1 is found wusing the
goal pointer and as before the old target binding
and the binding of the rule instanoe are identical.
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A new consumer is added to G1 through a switoh of

[y/g1, z/q2] and the three instances stored by G1
are produced for this new consumer. Since A1 has
now received the bindings {John/x, Mary/y} for one

antecedent and and (Mary/y, Sarah/z} for the other,
it oan produoe (John/x, Sarah/z} and pass it to G1.
Again, G1 produces (John/g1, Sarah/q2} to all
consumers because it has not produoed it before.
Now, A1 cannot produoe any further instances.

Finally, a goal node is created for
PARENT(x,y), call it G2. Since there are no goal
pointers for PARENT(x,y), a match is performed
resulting in the ground instanoes of (BIIl/x,
John/y} and (John/x, Mary/y}. Figure 6 shows the
acg after G2 has matched these instanoes. These
are stored by G2 and produoed to all consumers. A2
now has its antecedent satisfied in the bindings
above. Since these Instances are next passed to G1
and (Bill/g1, John/g2} has not been produoed
before, it is produced to the top level request and
the other consumers. After passing through the
switches, the appropriate binding arrives in A1
which produces ANCESTOR(BIill, Mary). Again, G1 has
not produced (BIlIl/qg1, Mary/q2) previously, so It

passes it on to all consumers. A1 in turn produoes
(Bill/x, Sarah/z} to G1. Since G1 has not
previously produoed (Bill/q1, Sarah/q2}, it
produces this binding to all consumers. Now, no
further results can be produced by A1 and slnoe
there are no other rules left to expand, inference

terminates.

This example demonstrates that recursive rules
can be productively used in an acg and not cause an

infinite loop. The reason no infinite loop is
encountered is that no further results oould be
produced and that the acg oontalns a cycle as

opposed to continually trying to use the recursive
ANCESTOR rule. This example also demonstrates the
accessing of data stored by a goal node previous to

adding a new consumer. This is a property of the
goal node acting as a data collector. Finally,
this example suggests how rule Instanoes produce
bindings, waiting until sufficient instances have
been consumed in the appropriate binding. SNIP
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allows other logical connectives so that other
schemes for rule Instanoes to produoe Instances of
their consequents are required (see [18]). Note,

this kind of structure is built for indirectly
recursive rules as well as the directly recursive
rule in the above example, the resulting active

connection graph is a directed graph and neither a
tree nor a directed aoyclic graph, and once It is
built its size is constant.

5.Summary

to be
The key

In SNIP, recursive rules cause cycles
built in an active connection graph.
features of active connection graphs which allow
recursive rules to be handled are: 1) goal nodes
are data oolleotors; 2) data collectors never
produce the same answer more than once; 3) the
data oollector may report to more than one
consumer; 4) a new consumer may be assigned to a
data colleotor at any time — it will iimmediately
be given all previously oollected data; 5)
variable contexts are localized, switches change
contexts dynamically as data flows around the
graph; 6) filters allow more general producers to
be used by less general consumers; 7) goal nodes
are indexed on antecedent literals which were
matched by the goal literal.
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