
USING ACTIVE CONNECTION GRAPHS
FOR

REASONING WITH RECURSIVE RULES

Donald P. MoKay and Stuar t C. Shapiro

Department of Computer Science
State Un i ve rs i t y of New York at Bu f fa lo

Amherst, New York 14226

Abatraot

Raouralva r u l e s , such as "Your paren ts '
ancestors are your ances tors" , a l though vary uaafu l
f o r theorem p rov ing , na tu ra l languaga
understanding, quest ion-answering and In fo rmat ion
r e t r i e v a l systems, present problems f o r many such
systems, e i t h e r causing i n f i n i t e loopa o r r e q u i r i n g
tha t a r b i t r a r i l y many copies of them be made.
SNIP, the SNaPS Inference Package, oan use
reoura lva r u l a s w i thout e i t h e r o f these problems.
A raoura lva r u l e oauaaa a cycle to ba b u i l t in an
Active connection graph* Each pass of data through
the cyc le r e s u l t s in another answer. Cyc l ing stops
as soon as e i t h e r the desi red answer is produoed,
no more answers oan be produoed or resource bounds
are exceeded.

This work was aupportad in pa r t by tha Nat iona l
Science Foundation under grants MCS78-02274 and
MCS80-06314.

1. Introduction

Raouralva r u l e s , such aa "Your paren ts '
anoestors are your ances to rs " , occur n a t u r a l l y in
in faranoe systems used f o r theorem p rov ing ,
quest ion-answer ing, na tu ra l languaga undaratandlng
and in fo rmat ion r e t r i e v a l . T r a n s i t i v e r e l a t i o n s ,
a . g . V (x , y , z) [ANCESTOR(x,y) a ANCBSTOR(y,z) ->
ANCESTOR(x,z)J, Inher i tance r u l a a , e . g .
V (x , y , p) [I S A (x , y) 4 HAS(y,p) -> HAS(x ,p)] , c i r c u l a r
d e f i n i t i o n s , e . g . "a l imb la a l ag or arm" and "a
l e g la a l i m b " , and equivalences, e . g . ¥ (x , y , z)
[RECEIVE(x,y,z) <=> PTRANS(z,y,z,x)] , are a l l
ocourranoaa o f raoura lva r u l e s . Yet , raoura lva
ru laa present problems f o r system implementors.
In ference systems which use a "na ive cha in ing "
a lgor i thm oan go in to an i n f i n i t e l oop , l i k e a
l e f t - t o - r i g h t top-down parser g iven a l e f t
raoura lva grammar [6 , 1 1 , 15, 2 3] . Soma systems
f a l l to uaa a raoura lva r u l e more than onoe, i . e .
are incomplete [8 , 2 0] . Other sys tems b u i l d t ree
l i k e data s t ruc tu res con ta in ing branches tha leng th
of which depend on the number of t imes the
recurs ive r u l e la to be app l ied [4 , 2 1] . Since
some of theae b u i l d the s t ruo tu re before us ing i t ,
the co r rec t l ang th of these branohaa la
prob lemat ic . Some ayatama e l im ina te reoura lva
r u l es by d e r i v i n g and adding to tha data baaa a l l
imp l i ca t i ons o f the reoura lva ru laa In a apac la l
paaa before normal infaranoe la dona [1 6] . Another

measure taken to avoid the problem of circular
d e f i n i t i o n s and equivalences in one system was to
use "a depth f i r s t expansion po l i c y and to l i m i t
the t o t a l depth o f the expansion" [2] . This i s
e s s e n t i a l l y the same s o l u t i o n proposed by Blaok [1]
and by Simmons and Chester [2 2] .

Not too s u r p r i s i n g l y , recurs ive ru les cause
problems f o r many programming languages developed
f o r a r t i f i c i a l i n t e l l i g e n c e (AI) research. A I
languages, such as MlcroPLANNER [2 3] , FUZZY [1 1] ,
and PROLOG [1 5] , have d i f f e r i n g approaches to a
baalc problem: there e x i s t w e l l formed statements
in the language which cause i n f i n i t e loopa in the
language i n t e r p r e t e r when some theorem, procedure
or clause is used. Using the terminology from
MlcroPLANNER, these languages are sens i t i ve to the
order o f a s s e r t i o n , or equ i va len t l y the order o f
r e t r i e v a l of theorems, and to the a p p l i c a t i o n of a
theorem aa a subgoal of i t s e l f . Both i n t e r a o t to
make a c o l l e c t i o n of theorems incomplete, i . e .
statements which are l o g i c a l l y imp l ied by i t s data
baae of asser t ions and theorems are not der i vab le
beoauae the system gets i n t o an i n f i n i t e loop .

A t y p i o a l example would be the ANCESTOR
example mentioned p rev ious l y . In a MlcroPLANNER
l i k e ayntax, such a statement can be represented as
the consequent theorem:
(CONSEQUENT (ANCESTOR ?X ?Y) (Z)

(GOAL (ANCESTOR $X ?Z))(G0AL (ANCESTOR $Z
$Y)))

The use of t h i s theorem f o r so l v i ng some goal
in t roduces a problem. If there la no other way in
which to deduce instanoea of ANCESTOR, e i t h e r by
f i n d i n g asser t ions in the data baaa or through
a p p l i c a t i o n o f some other r u l e , or I f the order o f
a p p l i c a t i o n of theorem a p icks this theorem first
regardless of any other ava i l ab le theorem a then the
above theorem reuses i t s e l f w i thou t making any
progress towards f i n d i n g a s o l u t i o n , i . e . uae of
the theorem causes the i n t e r p r e t e r to enter an
I n f i n i t e l oop .

MlcroPLANNER provides a p r i m i t i v e , THUNIQUE,
which oan be uaad to check whether a theorem has
prev ious ly been entered w i t h the cur ren t b indings
and doaa solve the i n f i n i t e regress problem f o r
recurs ive theorems. However, the user must
e x p l i c i t l y ino lude the appropr ia te statement, so
the p o s s i b i l i t y e x i s t s t h a t tha uaer may not in
f a c t no t i ce t ha t a theorem w i l l be uaad
r e c u r s i v e l y . This could happen when o l r o u l a r
d e f i n i t i o n s or equivalences are inadver ten t ly

368

introduced i n t o a c o l l e c t i o n of theorems. FUZZY
su f f e r s from a s i m i l a r problem and compounds it by
not p rov id ing an operator equ iva lent to THUNIQUE.
Two po in ts should be noted. F i r s t , apparent ly the
developers of FUZZY d i d not need to represent
recurs ive procedures (LeFalvre, personal
communication) and second, THUNIQUE can be
simulated in FUZZY. Pure PROLOG a lso does not
e x p l i c i t l y oonta in a THUNIQUE p r i m i t i v e — using
recurs ive r u l es p roper ly is a problem w i t h the
procedural semantics of seme implementat ions of
PROLOG, but i t Is not a problem of the dec l a ra t i ve
semantics. Some implementations of PROLOG inc lude
an equ iva lent p r i m i t i v e . Since a pr imary mode of
d e f i n i t i o n i s recurs ive d e f i n i t i o n b y l i s t i n g
c lauses, t h i s is a p o t e n t i a l source o f problems f o r
users of PROLOG.

SNIP [1 2 , 18, 193 was designed to use r u l es
stored in a f u l l y Indexed data base. When a
quest ion is asked, the system r e t r i e v e s re levan t
r u l es and bu i l ds an active connect ion graph which
attempts to der ive the answer from the r u l es and
other i n fo rma t ion s tored in the data base. Since a
semantic network is used to represent a l l
dec la ra t i ve i n fo rma t ion ava i l ab l e in the system, we
d i f f e r from the basic assumption of several data
base quest ion-answering systems [5 , 14, 16] by not
making a d i s t i n c t i o n between "ex tens iona l " and
" i n t e n s i o n a l " data bases, (i . e . non-ru les and
ru l es are s tored in the same data base), nor do we
d i s t i n g u i s h "base" from "de f i ned " r e l a t i o n s .
Spec i f i c instances of ANCESTOR may be stored as
w e l l as r u l e s d e f i n i n g ANCESTOR. In a d d i t i o n , the
inferenoe system descr ibed here does not r e s t r i c t
the l e f t hand s ide of ru les to oonta ln on ly one
l i t e r a l which i s s der ived r e l a t i o n [5] , does not
need to reoognlze cyc les in a graph [5 , 9, 14] and
does not requ i re t h a t there be at l eas t one e x i t
from a cyc le [1 4] .

The a c t i v e connect ion graph may be viewed as
an AND/OR problem reduc t ion graph in which the roo t
code represents the o r i g i n a l quest ion and ru l es are
problem reduct ion opera to rs . Pa r t l y in f luenced by
Kaplan's producer-oonsumer model [7] , the system is
designed so t h a t if a node represent ing some
problem is about to c rea te a node f o r a subproblem
and there is another node al ready represent ing t ha t
subproblem or some more general instance of i t , the
parent node oan reuse the extant node and avoid
so l v i ng the same problem aga in . In a d d i t i o n , i f
the extant node is a more s p e c i f i c instance of the
proposed subproblem then the r e s u l t s produced by
the extant node are immediately made a v a i l a b l e and
the extant node cance l l ed . The method employed
handles reours lve r u l e s w i t h no a d d i t i o n a l
mechanism and, as w i l l be seen below, the s ize of
the r e s u l t i n g graph does not depend on the number
of t imes a recurs ive r u l e w i l l be used.

This paper descr ibes how SNIP handles
recurs ive r u l e s . Aspects of the system not
re levan t to t h i s issue are abbreviated o r c m i t t e d .
In p a r t i c u l a r , ne i the r the d e t a i l s o f the match
rou t i ne which r e t r i e v e s formulas u n i f i a b l e w i t h a
g iven formula [1 7] , the represen ta t ion o f l o g i o a l
connect ives and formulas in SNePS [18] nor the
implementation o f SNIP i s f u l l y descr ibed.

2 . P r e d i c a t e C o n n e c t i o n G R A P H S

Others have described pred icate connection
graphs [4, 8, 10] or clause i n t e r c o n n e o t l v i t y
graphs [21] which have been used in r e s o l u t i o n
theorem prov ing systems and quest ion answering
systems.

A predicate connection graph (pog) is a
c o l l e c t i o n of statements in pred loate ca lcu lus w i t h
u n i f i a b l e l i t e r a l s l i nked together by edges.
l abe l l ed w i t h the most general u n i f y i n g
s u b s t i t u t i o n (agu) o f the l i t e r a l s . In systems
which use peg 's , the inference a lgor i thms may
impose cons t ra in t s on which l i t e r a l s aay have an
edge between thea. Por example, systeas whloh use
r e s o l u t i o n as the only r u l e o f in ference [4 , 10,
21] requ i re tha t the predloate oaloulus statements
be represented in clause f o ra and t ha t only
complementary l i t e r a l s be jo ined by an edge, i . e .

369

a l i t e r a l L is l i n k e d to a l i t e r a l ~L. In a system
which does not represent statements in clause form,
e . g . [8] , and which uses the standard connect ives
of p red ica te ca l cu l us , the edges usua l l y l i n k an
instanoe of a l i t e r a l in the antecedent of some
statement w i t h a u n l f l a b l e instance of the same
l i t e r a l in the consequent of some other statement.
In such a system which uses both backward cha in ing
and forward cha in ing , an edge between P(x) and P(y)
asser ts t ha t to show P(x) use the statement in
which P(y) appears and t h a t i f P(y) f o r some y is
ever deduoed then the r e s u l t can be used to f u r t h e r
s a t i s f y the statement in which P(x) appears.

The match opera t ion s p e c i f i e s a pog of a
s l i g h t l y d i f f e r e n t fo rm. instead o f l a b e l l i n g the
edge w i t h the mgu, a d i r ec ted edge l i n k i n g a source
node (S) to a t a rge t node (T) l a b e l l e d w i t h the
ta rge t b ind ing (t) and the source b ind ing (A) IS
used. Figure 1 shows a pog cons i s t i ng of f i v e
r u l e s , l a b e l l e d R1 through R5. While the r u l es
considered in the remainder o f t h i s paper are o f
the form A 1 . . . A -> C where J 2 1 and a l l
va r i ab les Are u n i v e r s a l l y quan t l fed (i . e . Horn
c lauses) , SNIP is not so l i m i t e d (see [1 9]) * The
edges are l a b e l l e d w i t h the p a i r (£.,&) where 1 is
the t a rge t b ind ing and s la the souroe b i nd i ng .
The souroe node is the l i t e r a l a t the t a l l o f the
edge and the t a rge t node is at the head of the
edge. For example, the edge l a b e l l e d " a " in F igure
1 has P (a ,y , x) as the source l i t e r a l and P (x , y , z)
as the t a rge t l i t e r a l . SNIP does not e x p l i c i t l y
s to re the pog but uses the match f u n c t i o n descr ibed
above to compute the edges on demand. The
remainder o f t h i s paper i s ooncerned w i t h peg's o f
t h i s l a s t fo rm.

3 . A c t i i v e C o n n e c t i o n G r a p h s

An active Connection graph (aog) is a
connect ion graph in which edges l i n k l i t e r a l s and
are l a b e l l e d w i t h a t a rge t b ind ing and source
b i nd i ng . These graphs are a c t i v e because instances
of l i t e r a l s f l ow from one formula to another
formula v i a the edges. Using the producer-consumer

analogy, a r u l e instance can be considered a
producer of instances of its consequents and a
consumer of instances of i t s antecedents.
Furthermore, the acg conta ins instances of the
r u l e s in the peg, the edges in the acg po in t in the
opposi te d i r e c t i o n to the corresponding edges in
the peg and the b indings p lay an a c t i v e r o l e (see
below). The ta rge t b ind ing f i l t e r s the f low of
instances of l i t e r a l s . The source b ind ing
t r ans la tes between va r i ab le con tex ts .

Suppose a consequent reasoning system has been
asked to deduoe a l l instanoes of Q using the peg of
F igure 1. It can use R1 and R2 to deduoe instanoes
of Q if appropr ia te instances of P can be deduced.
Thus, r u l e s R3-R5 oan be used. A f u l l aog f o r t h i s
scenar io la presented in Figure 2 . Rectangles
enclose formulas. The p a r t i t i o n s con ta in l i t e r a l s
instances. Antecedents appear on the l e f t of the
double l i n e , consequents to the r i g h t . The
rec tang le at the top of F igure 2 represents the
request to deduoe a l l instanoes of Q and as such
has an empty consequent p a r t . In t h i s example,
eaoh acg r u l e l a b e l l e d A. is an instance of the peg
r u l e l a b e l l e d R . These l abe l s are a r b i t r a r y and
the reader should not i n f e r anyth ing about the
cons t ruc t i on of the acg based on the l abe ls a lone.
The remainder of t h i s sec t i on expands t h i s simple
no t ion of ac t i ve connect ion graphs using the acg of
F igure 2 as an example.

Target b indings and source b ind ings operate on
the b indings f l ow ing through the aog. A ta rge t
b ind ing is a f i l t e r which only l e t s through those
bindings which have the b ind ing of the f i l t e r as a
subset. For example, in the ac t i ve connect ion
graph of F igure 2, i f G2 produced the b indings
{ a / x , b /y , c /z) and { a / x , d /y , c / z } , only { a / x ,
b /y , c /z) would be al lowed to paaa through the
f i l t e r <a/x , b/y> to A2. The source b ind ing la
uaed to switch va r i ab le con tex ts . A2 contains on ly
the va r i ab le u wh i le G2 produoea b indings w i t h the

370

var iab les x, y and z, so in order f o r G2 to send
bindings to A2, the v a r i a b l e z must be mapped to
the va r i ab l e u. Cont inuing w i t h the example above,
s ince the b ind ing { a / x , b /y , c /z } passed through
the f i l t e r i t next encounters the swi tch [z / u] .
The swi tch uses the b ind ing a p p l i c a t i o n opera t ion
def ined in Sect ion 2 to generate a new b ind ing . In
t h i s case, { z /u } \ { a / x , b /y , o/z} y i e l ds { c / u } ,
which is an appropr ia te b ind ing in the oontext o f
A2.

To deduoe a l l instances of Q requ i res back
cha in ing through the peg u n t i l on ly ground l i t e r a l s
are found o r a l l poss ib le ru l es are t r i e d .
I n i t i a l l y , a request is created which conta ins a
l i t e r a l . I n Figure 2 , Q(q1,q2) i s t h a t request .
The next step is to create a goal node f o r the
l i t e r a l . The goal node matches i t s l i t e r a l w i t h
the peg t o f i n d a l l l i t e r a l s which un i f y w i t h i t .
I f there are ground instances then the source
b indings of those matches are answers and the goal
node produces them immediately. Other matches can
be l i t e r a l s which are antecedents or consequents of
ru les in the peg. For every l i t e r a l in the
consequent of some r u l e , a new r u l e instance is
added to the acg us ing the ta rge t b ind ings , and the
instance is connected through a swi tch con ta in ing
the source b ind ing to the goal node. The same
process of c r e a t i n g goal nodes is app l ied to each
of the antecedents of the new r u l e instances
created in the previous s tep . This process i s
repeated u n t i l e i t h e r no more r u l es apply or on ly
ground instances are found. However, a new goal
node need not be oreated if an e x i s t i n g one w i l l
s u f f i c e . The remainder of t h i s sec t ion descr ibes
how to f i n d adequate extant goal nodes w i thout
doing ex t ra matching and how to use r e s u l t s
p rev ious ly generated by a goal node.

Suppose a goal node is about to be created f o r
some l i t e r a l in a r u l e instance of an acg. Which
other l i t e r a l s are l i k e l y to have goal nodes which
should be checked? Namely, those other l i t e r a l s in
the peg u n i f i a b l e w i t h the l i t e r a l which are in the
antecedent of some r u l e of the peg and which have
already had goal nodes created f o r them. Thus,
when a new goal node performs i t s match as
described above, the matched antecedent l i t e r a l s
are marked w i t h a po in te r to the newly created goal
node. These p o i n t e r s , which l i n k antecedent peg
l i t e r a l s to goal nodes in the acg, are ca l l ed g o a l
pointers. Just l i k e peg edges, eaoh goal po in te r
is marked w i t h a ta rge t b ind ing and source b ind ing .
When a new goal node is about to be c rea ted , if its
l i t e r a l has no goal po in te r then no e x i s t i n g goal
node w i l l be u s e f u l . If it does, it is poss ib le
tha t one of the goal nodes pointed to could be used
instead of the proposed goal node.

L e t ' s consider as an example the process of
b u i l d i n g the acg of Figure 2 using the pog of
Figure 1 . Recal l t ha t the request was f o r a l l
instances o f Q . A goal node i s created f o r
Q(q1,q2) and a match performed. The r e s u l t s of the
match of Q(q1,q2) are the tup les <Q(a,u) , { u / u } ,
(a / q 1 , u/q2}> and <Q(x ,y) , (x / x , y / y) , { x / q 1 ,
y /q2 }> . Both Q(a,u) and Q(x,y) are consequents of
r u l e s , so r u l e instances are created f o r them in
the aog connected through the appropr ia te switones

to 0 1 . There are no goal po in te rs oreated beoause
Q(q1,q2) does not matoh any l i t e r a l in an
antecedent of a r u l e . Cont inuing to expand the aog
using the anteoedents of A1 and A2 requi res p i ck i ng
one of them to expand f i r s t . Whichever order is
p icked, the same aog is cons t ruc ted .

Suppose A1 is picked f o r expansion. F i r s t ,
the l i t e r a l P (x ,y , z) i s ohecked f o r a goal p o i n t e r .
There are none, so a new goal node is b u i l t f o r
P (x , y , z) . The r e s u l t of the match are the tup les
<P(a ,b ,u) , { u / u } , { a / x , b/y, u / z }> ,
<P (x ,u , v) , { x / x , u / u , v / v } , { x / x , u/y, v / z } > ,
<P (a , y , x) , { y / y , x / x } , { a / x , y / y , x / z } > ,
<P (a , c , v) , { v / v } , { a / x , o / y , v / z }> and
< P (x , y , z) , { x / x , y / y , z / z } , { x / x , y / y , z / z } > .
P(a,b,u) is an antecedent of R2, so P(a,b,u) gets a
goal po in te r to the goal node f o r P (x , y , z) . A lso,
P (x ,y ,z) is g iven a goal po in te r to i t s own goal
node. We draw a goal po in te r as a dashed l i n e
l abe l l ed w i t h the ta rge t b ind ing and souroe b ind ing
of the match. F igure 3 shows the acg and pa r t of
the pog w i t h goal po in te rs a f t e r t h i s s tep . The
remaining ta rge t l i t e r a l s are each consequents of
some r u l e and the ru les are added to the acg as
before . Next, a goal node is to be oreated f o r
P(a,b,u) of A2. But the pog l i t e r a l P(a,b,u) in R2
has a goal po in te r . Thus, some instanoe of the o ld
goal l i t e r a l , P (x , y , z) , u n i f i e s w i t h the l i t e r a l
which nas the goal po in te r but the b ind ing of the
cur rent aog r u l e instanoe is not necessar i ly
compatible w i t h the b ind ing of the o ld goal
l i t e r a l .

In the cur ren t example, the o ld ta rge t b ind ing
from the goal po in te r i s i d e n t i c a l to the b ind ing
associated w i t h A2. However, G2 is not i d e n t i c a l
to the proposed goal f o r P (a , b , u) . Rule instanoe
A2 is in terested in a subset of a l l instances of
P (x , y , z) , namely those instances whioh have a/x and
b/y. I t is important to note tha t Q2 w i l l produce
a l l tha t the proposed goal node f o r P(a,b,u) would
produce and more. A lso, above G2 a l l instances are
in terms of the va r iab les of R1. Instead of
c rea t i ng a new goal node f o r P(a,b,u) and the edges
associated w i t h i t , G2 is reused. The r e s u l t s from
G2 must be f i l t e r e d by <a/x , b/y> and va r i ab le
contexts switched by [z / u] . The f i l t e r is computed
from the a p p l i c a t i o n of the cur rent b ind ing to the
o ld source b ind ing . This assures tha t the f i l t e r

371

conta ins va r i ab les which the o ld goal node
produces. The swl toh is obtained by cons ider ing
the b ind ing p a i r s o f the o l d source b ind ing f o r
which the term is a v a r i a b l e as a " v a r i a b l e Bap".
Discard ing those b ind ing p a i r s f o r which the tens
is a constant and i n v e r t i n g the remaining p a i r s
y i e l d s the appropr ia te b ind ing f o r the sw i t ch . For
example, d i sca rd ing pa i r s w i t h constant terms and
then i n v e r t i n g (a / x , b /y , u/z} y i e l d s U / u) .
Figure 2 shows the acg a f t e r the f i l t e r and swl toh
have been b u i l t .

If A2 were expanded before A1 then a goal node
would have been created f o r i t and goal po in te rs
es tab l ished from the antecedents of R1 and R2 to
the goal node. To ob ta in the same acg requ i res
tha t the goal node created f o r P(a ,b ,u) in A2 be
superseded by the goal node even tua l l y created f o r
P (x , y , z) . When a goal node is superseded, i t is
erased from the acg and a l l the consumers of the
superseded goal nodes become consumers of the new,
more general goal node w i t h an appropr ia te f i l t e r
and swi tch between the superseding node and the o ld
consumers.

We s ta ted above t h a t r u l e instances in the acg
consume instances of antecedents and produce
instances of consequents but have t o t a l l y ignored
what c o n s t i t u t e s such an instance. There are
b a s i c a l l y two a l t e r n a t i v e s . An instance of a
l i t e r a l can be e i t h e r a separate l i t e r a l or a
reference to a l i t e r a l and a b ind ing which when
appl ied to the l i t e r a l would y i e l d an lnstanoe o f
i t . We p re fe r the second a l t e r n a t i v e because the
In ference a lgor i thms need not produce ex t ra
l i t e r a l s and because the match opera t ion mentioned
above re tu rns such I n fo rma t i on . Furthermore,
i n fo rmat ion about l i t e r a l s i s superf luous i n
communication between r u l e instances in the acg
because the l i t e r a l s are known to u n i f y (t h a t ' s why
there is an edge in the peg) and t h e r e f o r e , on ly
b indings need be communicated along the edges of
the a c t i v e connect ion graph.

F i n a l l y , we mentioned above t ha t the acg
conta ins r u l e instances but the previous examples
use the pog r u l e s d i r e c t l y . In genera l , r u l e
instances in the aog are pa i r s — a r u l e from the
peg and an associated b i n d i n g . The r u l e lnstanxes
in the examples a l l have an i d e n t i t y b i nd ing , i . e .
a b ind ing in which each v a r i a b l e of a b ind ing p a i r
is bound to i t s e l f . The b ind ing is used to
r e s t r i c t the r u l e instances to generat ing Just
those l i t e r a l instances which are requested. In
other words, i t is used as an i n t e r n a l f i l t e r in
the r u l e instances in order to keep the inference
more focussed.

In summary, an acg conta ins lnstanoes of r u l es
which are l i n k e d to each o ther through f i l t e r s ,
switches and goal nodes. The separat ion of the
ta rge t and source b indings a l low r u l e instances to
work in t h e i r own v a r i a b l e environment, r e l y i n g on
the source b ind ing of the peg to enable sw i tch ing
of va r i ab l e oontexts and on the ta rge t b ind ings to
a l low more general producers to be used by less
general consumers. The goal nodes are the
product ion s i t e o f lnstanoes of l i t e r a l s and so are
use fu l to more than one consumer. F i n a l l y , goal

nodes are indexed on antecedent l i t e r a l s us ing goal
p o i n t e r s .

4.Racuraive rule a cause cycles

A set of recurs ive r u l es is of the form A1
&......& A -> B , B &.......& B k - > . . . -> C, w i t h C
u n l f l a b l e w i t h at l eas t one of the antecedents, A1
say. In an acg, t h i s means t ha t the goal node f o r
C can be used instead of c r e a t i n g a new goal node
f o r A • As an example, consider the pog of F igure
4 which conta ins the recurs ive ANCESTOR r u l e . The
two r u l e s represent the pred icate ca lcu lus
statements V(x,y,z)[ANCBSTOR(x,y) & ANCESTOR(y,z)
•> ANCESTOR(x,z)] and V(x,y)[PARENT(x,y) ->
ANCESTOR(x,y)]. The remainder of the e n t r i e s
represent the ground l i t e r a l s PARENT(Bill, John) ,
PARENT(John, Mary), ANCESTOR B i l l , Bob),
ANCESTOR(John, Mary) and ANCESTOR(Mary, Sarah).
Since the ground l i t e r a l s are never a source node
in a match, the edges from the ground l i t e r a l s to
l i t e r a l s i n ru les are om i t t ed .

Consider a request , ANCEST0R(q1,q2), f o r a l l
lnstanoes of the ANCESTOR r e l a t i o n . Inference
proceeds by c rea t i ng a goal node f o r the request ,
c rea t i ng r u l e Instances f o r a l l r u les in the peg
whloh have the l i t e r a l as a consequent and c r e a t i n g
a goal po in te r f o r each l i t e r a l in the antecedent
of some r u l e . F igure 5 shows the acg at t h i s
p o i n t . Here, lnstanoes which are produoed are
shown in terms of the va r i ab les o f the goal l i t e r a l

372

next to the goal nodes which c o l l e c t then. When
such an instance is produoed, i t f lows through the
acg u n t i l e i t h e r i t encounters the top l e v e l
request or it is consumed by a goal node which has
prev ious ly produced i t . Thus, the b indings
{ B i l l / q 1 , Bob/q2}, (John/q1, Mary/q2} and {Mary/q1,
Sarah/q2}, represent ing the ground l i t e r a l s
ANCESTOR(Bill, Bob), ANCESTOR(John, Mary) and
ANCESTOR(Mary, Sarah) r e s p e c t i v e l y , are stored by
G1 and consumed by the top l e v e l request . P ick ing
one r u l e Ins tance, A1 or A2, to expand f i r s t has no
s i g n i f i c a n t Impact because if A2 were expanded
f i r s t then any r e s u l t s der ived from A2 would be
stored in the goal node Just as these a re . The
order of the c rea t i on of the goal nodes in A1 is
i n s i g n i f i c a n t f o r t h i s example because both reuse
G1.

Consider ANCESTOR(x,y) as the f i r s t goal
l i t e r a l . ANCESTOR(x,y) has the goal po in te r ({ x / x ,
y / y } , (x / q 1 , y / q 2 }) , and the b ind ing associated
w i t h i t i n A1 i s { x / x , y / y) . Thus, the goal
p o i n t e r ' s o ld ta rge t b ind ing i s i d e n t i c a l t o the
r u l e instance b ind ing and G1 can be used. This is
accomplished by g i v i n g G1 another consumer, the
ANCESTOR(x,y) antecedent, connected through the
swi tch [q 1 / x , q 2 / y] . The b indings from G1 are
produced f o r t h i s new consumer but f u r t h e r
processing by A1 is not poss ib le because the other
antecedent of A1 has not yet consumed any instances
of ANCESTOR(y,z).

Goal nodes act as data c o l l e c t o r s [13 , 1 9] . A
data c o l l e c t o r s tores a l l l i t e r a l s i t has consumed
and never produces a l i t e r a l i t has prev ious ly
produced. When an o ld goal node is g iven an
a d d i t i o n a l consumer, a l l l i t e r a l s p rev ious ly
produced are immediately ava i l ab le to the new
consumer. A lso , the new consumer receives any new
l i t e r a l s produced by the goal node. The f a c t t ha t
data c o l l e c t o r s never produce the same l i t e r a l
twice p ro tec ts SNIP from g e t t i n g i n t o an i n f i n i t e
loop by p r o h i b i t i n g the passing of the same l i t e r a l
around a cyc le in the acg.

Next, consider t r y i n g to create a goal node
f o r ANCESTOR(y,z). Again, G1 is found using the
goal po in te r and as before the o ld ta rge t b ind ing
and the b ind ing of the r u l e instanoe are i d e n t i c a l .

A new consumer is added to G1 through a switoh of
[y / q 1 , z /q2] and the three instances stored by G1
are produced f o r t h i s new consumer. Since A1 has
now received the bindings {John/x, Mary/y} f o r one
antecedent and and (Mary/y, Sarah/z} f o r the o the r ,
i t oan produoe (John/x, Sarah/z} and pass i t to G1.
Again, G1 produces (John/q1 , Sarah/q2} to a l l
consumers because i t has not produoed i t be fo re .
Now, A1 cannot produoe any f u r t h e r ins tances.

F i n a l l y , a goal node is created f o r
PARENT(x,y), c a l l i t G2. Since there are no goal
po in te rs f o r PARENT(x,y), a match is performed
r e s u l t i n g i n the ground instanoes o f (B l l l / x ,
John/y} and (John/x, Mary /y } . F igure 6 shows the
acg a f t e r G2 has matched these instanoes. These
are stored by G2 and produoed to a l l consumers. A2
now has i t s antecedent s a t i s f i e d in the bindings
above. Since these Instances are next passed to G1
and (B i l l / q 1 , John/q2} has not been produoed
be fore , i t i s produced to the top l e v e l request and
the other consumers. A f te r passing through the
swi tches, the appropr ia te b ind ing a r r i v e s in A1
which produces ANCESTOR(Bill, Mary). Again, G1 has
not produced (B l l l / q 1 , Mary/q2) p rev ious l y , so I t
passes i t on to a l l consumers. A1 in t u r n produoes
(B i l l / x , Sarah/z} to G1. Since G1 has not
p rev ious ly produoed (B i l l / q 1 , Sarah/q2}, i t
produces t h i s b ind ing to a l l consumers. Now, no
f u r t h e r r e s u l t s can be produced by A1 and slnoe
there are no other ru les l e f t to expand, in ference
terminates.

This example demonstrates t h a t recurs ive ru les
can be p roduc t i ve ly used in an acg and not cause an
i n f i n i t e loop . The reason no i n f i n i t e loop is
encountered is t ha t no f u r t h e r r e s u l t s oould be
produced and tha t the acg oontalns a cyc le as
opposed to c o n t i n u a l l y t r y i n g to use the recurs ive
ANCESTOR r u l e . This example a lso demonstrates the
accessing of data stored by a goal node previous to
adding a new consumer. This is a property of the
goal node ac t i ng as a data c o l l e c t o r . F i n a l l y ,
t h i s example suggests how r u l e Instanoes produce
b ind ings , w a i t i n g u n t i l s u f f i c i e n t instances have
been consumed in the appropr ia te b ind ing . SNIP

373

al lows o ther l o g i c a l connect ives so tha t o ther
schemes f o r r u l e Instanoes to produoe Instances of
t h e i r consequents are requ i red (see [1 8]) . Note,
t h i s k ind o f s t r u c t u r e i s b u i l t f o r i n d i r e c t l y
recurs ive r u l e s as w e l l as the d i r e c t l y recurs ive
r u l e in the above example, the r e s u l t i n g a c t i v e
connect ion graph is a directed graph and ne i the r a
t ree nor a d i r ec ted aoyc l i c graph, and once I t is
b u i l t i t s s i ze i s constant .

5.Summary

In SNIP, recurs ive r u l es cause cyc les to be
b u i l t in an ac t i ve connect ion graph. The key
fea tu res of a c t i v e connect ion graphs which a l low
recurs ive r u l es to be handled a re : 1) goal nodes
are data o o l l e o t o r s ; 2) data c o l l e c t o r s never
produce the same answer more than once; 3) the
data o o l l e c t o r may repor t to more than one
consumer; 4) a new consumer may be assigned to a
data c o l l e o t o r a t any t ime — i t w i l l i immediately
be g iven a l l p rev ious ly oo l l ec ted da ta ; 5)
v a r i a b l e contexts are l o c a l i z e d , switches change
contexts dynamical ly as data f lows around the
graph; 6) f i l t e r s a l low more general producers to
be used by less general consumers; 7) goal nodes
are indexed on antecedent l i t e r a l s which were
matched by the goal l i t e r a l .

References

1. Black, F. A deduct ive quest ion-answering
system, in Semantic Information Prooeaalng»
Minsky, H. (e d .) , MIT Press, Cambridge, 1968.

2. Bobrow, D.G., Winograd, T. et a l . Experience
w i t h KRL-0 one cyc le of a knowledge
rep resen ta t i on language. Proc. I J C A I - 7 7 . 1977,
213-222.

3. Chang, C. -L . and Lee, R.C.-T. Symbolic Logic
and Machanical Theorem Proving, Academic
Press, New York, 1973.

4. Chang, C. -L , and S lag le , J .R. Using r e w r i t i n g
r u l e s f o r connect ion graphs to prove theorems.
A r t i f i c i a l Intel l igence, vo l . 12(2), August,
1979, 159-180.

5. Chang, C.-L. On eva lua t i on of quer ies
con ta in ing der ived r e l a t i o n s in a r e l a t i o n a l
data base. In Formal Bases f o r Data Bases,
O a l l a l r e , H. , Minker, J . and N ico las , J .
(e d s .) , Plenum, New York, 1980.

6. F l kes , R.E. and Hendrix G.G. The deduct ion
component. In Understanding Spoken Language,
Walker, D. (e d .) , E lsev ie r Nor th-Hol land,
1978, 355-374.

7. Kaplan, R.M. A mu l t i - p rocess ing approach to
na tu ra l language understanding. Proo. NCCr
AFIPS Press, Montvale, NJ, 1973, 435-440.

8. K iahr , P. Planning techniques f o r r u l e
s e l e c t i o n i n deduot lve quest ion-answer ing. I n
Pattern Directed Inference Systems, Waterman,
D.A. and Hayes-Roth, R. (e d s .) , Academic
PreBB, 1978, 223-239*

9. Ke l l ogg , C. and T r a v i s , L. Reasoning w i t h data
In a deduot ive ly augmented data management
system. To appear in Irtvanffltfl In Data Baae
Theory - Volume 1, G a l l a i r e and Minker (e d s .) .

10. Kowalsk l , R. A proof prooedure using

connect ion graphs. JLACH, Vol 22 (4) , October,
1975, 572-595.

1 1 . LeFalvre, R. FUZZY Reference Manual. Computer
Science Department, Rutgers U n i v e r s i t y , 1977.

12. Mar t i ns , J . P . , McKay, D.P. and Shapiro, S.C.
B i - d i r e c t i o n a l i n fe rence . Department o f
Computer Sclenoe, Technical Report 174,
SUNY/Buffalo, March, 1981.

13. MoKay, D.P. and Shapiro, S.C. MULTI- A LISP
based mu l t ip rocess ing system. Proo. lofto L I S P
Conference, Stanford U n i v e r s i t y , 1980.

14. Naqvl , S.A. and Henschen, L . J . Performing
in ferences over recurs ive data bases. Proc.
MCAT, Stanford U n i v e r s i t y , 1980.

15. Pe re i ra , L.M., Coelho, H. and Pere i ra , F.
User 's guide to DECsystem 10 PROLOG
(Prov i s iona l Vers ion) . D iv isao de I n f o rma t i c s ,
Lab. Nac. de Engenharia C i v i l , L isbon,
Por tuga l , 1978.

16. Re l t e r , R. On s t r u c t u r i n g a f i r s t order data
base. ProC. Second National Conference,
Canadian Society f o r Computational Studies of
I n t e l l i g e n c e , 1978, 90-99.

17. Shapiro, S.C. Representing and l o c a t i n g
deduct ion r u l es in a semantic network. SIGART
Newslet ter , No 63, June, 1977, 14-18.

18. Shapiro, S.C. The SNePS semantic network
processing system, In Associative Networks,
F i n d l e r , N.V. (e d .) , Academic Press, 1979,
179-203.

19. Shapiro, S.C. and McKay, D.P. Inferenoe w i t h
recurs ive r u l e s . Proc. NCAI, Stanford
U n i v e r s i t y , 1980.

20. Shor t l i f f e , E .H. Computer Baaed Medical
Consultations: MYCIML American E l sev ie r , New
York, 1976.

2 1 . S i c k e l , S. A search technique f o r clause
i n t e r c o n n e c t i v i t y graphs. IEEE Transact ions on
Computers V o l . C-25. 8, August, 1976, 823-835.

22. Simmons, R.F. and Chester, D. In ference in
q u a n t i f i e d semantic networks. Proc- LICAI-77,
1977, 267-273.

23. Suasman, G . J . , Winograd, T. and Charniak, E.
Micro-Planner Reference Manual. AI Memo No.
203A, MIT AI Laboratory , December, 1971.

374

