Reasoning About Deduction With Unknown Constants

Andrew Haas

Department of Computer Science,

fbs1;ract. An intelligent agent must plan
future deductions and anticipate what
other agents will deduce from their
beliefs- Creary (1979) proposed to do
this by simulation. Often the agent's
future beliefs, or the beliefs of other
agents, involve terms unknown to the agent

This paper shows how
technique to handle

simulation time.

at
Creary'e

to extend
this case.

Suppose Mary knows Jane's phone
number, and knows also that Jane's number
is the same as John's. How does one show
that Mary can infer what John's number is?
Consider another problem: a robot has a
piece of paper with John's number written
on it, and wants to know John's number.
By looking at the paper it <can learn
what's written there. How will it infer
that this number is John's phone number?
Both of these problems involve reasoning
about a deduction whose premisses contain
an unknown constant. In the first problem
the unknown constant is Jane's phone
number. Mary knows it, but the agent who
is reasoning about Mary doesn't. This
agent would know the number only if he
believed a sentence of the form "Mary
knows that Jane's number is n", where n is
the constant that Mary uses to name Jane's
number. In the second problem the unknown
constant is the number written on the
paper. The robot expects to know it after
looking at the paper, but doesn't know it
at planning, time.

Moore (1980) has devised a method of
reasoning about deduction that handles
unknown constants. But his method is too
strong. It allows one to show that an
agent knows any sentence that can be
proved from his knowledge, no matter how
difficult the proof is. Creary (1979)
proposes a method of reasoning about
deduction that avoids this problem. But
his method can't handle unknown constants.
This paper describe the difficulties that

arise in applying Moore's theory to the
problem of the robot finding John's phone
number. It presents a version of Creary*s
method. Finally it shows how to extend
Creary's method to handle premisses with

382

University of Rochester

unknown constants. The result is a scheme
that achieves the power of Moore's method
and avoids its problems.

Consider the problem of finding out
what John'8 phone number is. The robot
knows that whatever is written on the
paper is John's number. By looking at the
paper it finds out that some number n s
written there. These two facts imply that
John's number is n. Since the robot
always knows all logical consequences of
its knowledge, it knows that John's number
is n as soon as it learns that n is
written on the paper. So in Moore's
system the robot's plan for learning
John's number consists of the single step
of looking at the paper.

robot trying to
execute this plan. It sends a command to
its TV camera to point at the paper. In
the input buffer appears a data structure
that says that n is written on the paper.
And here the plan stops. The robot still
has to perform a short computation,
inferring "John's number is n" from "n is
written on the paper" and "Whatever is
written on the paper is John's number".
But Moore's plan omits this step, because
the agents in his theory make all possible
inferences from their knowledge
automatically. If a robot can't do this,
it should not use Moore's theory to plan
its own inferences.

Imagine a real

theory of
syntactic

An alternative to Moore's
knowledge and belief is the
theory. It says that a belief or piece of
knowledge is a sentence (Moore and
Hendrix, 1979)- Suppose these sentences
are in first-order logic (motivation for
this appears later). If a robot plans to
acquire certain beliefs, it is thinking
about its own beliefs. So the language in
which those beliefs are expressed must be
capable of talking about itself. In
particular, it must contain names for its
own expressions.

of the language
formed by appending a
that constant. Thus if

constant and denotes a man,

To each constant
assign a name,
subscript 1 to

"John" is a

"John{" is a constant and denotes "John".
Now consider the symbols that are used to

build new expressions - the predicate
letters, function letters, connectives and
quantifiers. Call these symbols
constructors. Thus the sentence "or(p,
g)" contains the constructor "or", and its
arguments are "p" and "q". To each n-adic
constructor assign an n-adic function
letter, again formed by appending a
subscript 1. Suppose "z" is an n-adic
constructor. Then the function letter
"z," denotes a function that maps n
expressions el...en to the expression
whose constructor s "z" and whose
arguments are el1...en. Thus if "and" is a
connective, "and;" denotes a function that
maps the sentences "p" and "q" to the
sentence "and(p, q)'.

So the representation of "The robot
believes that John's number is 444-1212"

is

(1) believe(robot,
equal, (phone-j (Johny),

444-1212,))

The second argument of the function letter

"believe" denotes the sentence

(2) equaKphone(John),444-1212)

this
to
of
like
of

Creary suggests essentially
method of quotation. He goes on
suggest simulation as a method
reasoning about deduction. It works
this. Begin with a set of sentences
the form
believe(A, x)
where x is quoted. By stripping off the
subscripts you can reconstruct the
sentences that A believes. Then collect
these in a separate data base. Try to
prove the desired theorem in this data
base. If you succeed, infer that A can
prove this theorem if he wants. Use some
measure of the effort expended to predict
how long A will take to get this result.
This method of reasoning about deduction
does not allow us to prove that agents

know all consequences of their knowledge.

This won't work if A's beliefs
contain constants unknown to the
simulator. Without knowing these

constants the simulator can't build a data
base containing A's beliefs. One can
solve this problem by taking advantage of
the following property of first-order
logic (proved in (Tennant 1978)):

383

terms without
is applied to the

If any substitution of
variables for constants
conclusion and premisses of a first-order
proof, the result is again a valid
first-order proof. (There are exceptions,
such as the rule of all introduction in
natural deduction. My technique can be
extended to handle these cases too.)

This implies that one can use dummy
constants to represent unknown terms in
another agent's beliefs without disturbing
the process of simulation. Whatever proof
you find when you simulate will work just
as well when the dummies are replaced by
the real terms.

problem of finding
John's phone number. The robot expects
that after looking at the paper it will
believe that n is written on the paper,
where n is the arabic numeral for John's
phone number. To represent this
expectation one must be able to describe
this n without knowing which numeral it
is. Define the predicate "arabic" so that
"arabic(x, y)" is true if x is an integer
and y is the arabic numeral for x. Arabic
numerals are constants of the language.
The following sentence says that the robot

Consider the

believes that n is written on the paper,
where n is the arabic numeral for John's
phone number:
(3) exists(n,

and(believe(robot,writtens(n)),
arabic(phone(John), n)))

The robot believes that whatever is
written on the paper is John's number,
that is

(4) believe(robot, all.Cv*,

implie8¢ (writte? (v),

equal.(phone.(John-), v.)))

Use the dummy constant N to represent the
unknown arabic numeral. Then the data
base for simulation contains the following
sentences:

(5) written(N)

(6) all(v, implie8(written(v),
equal(phone(John), v)))

Applying the rules of all elimination and

detachment gives

(7) equal(phone(John), N)

Substitute the arabic numeral for John's

phone number for the dummy constant N in
the premisses and conclusion of this
proof. The result is a valid proof. The
premisses of this new proof are the
beliefs described in (3) and (4). Its

conclusion is described by

(8) exists(n,
and(believe(robot,
equal,(phone?(John?), n)),

arabic(phone(John), n)))

This is the belief the robot wants. This
argument shows that the robot can obtain
this belief by applying all elimination
and detachment to the beliefs described in
(3) and (4). When the robot sees the
number written on the paper it will use
this proof to infer that that is John's
phone number- The example of Mary
deducing what John's phone number is can
be done the same way. In this case the
inference rule is substitution of equals
rather than detachment.

In conclusion, it is possible to use
simulation for reasoning about a deduction
whose premisses contain constants unknown
to the simulator. This technique combines
the advantages of Creary's technique (one
can judge how difficult an inference is)
and of Moore's technique (unknown
constants cause no problem). A program
can use the technique either to plan its

own future deductions or to anticipate

what other agents will deduce from their
beliefs.

References.

Creary, Lewis. "Propositional Attitudes:

Pregean Representation and Simulative
Reasoning." Proc. [IJCAIl 79, p. 176.

Moore, Robert. "Reasoning About Knowledge
and Action." Ph.D. thesis, M.I.T. 1980.
Moore, Robert and Hendrix, Gary.
"Computational Models of Belief and
Seamntics of Belief-Sentences." SRI
Technical Note 187, 1979.

Tennant, Neil. Natural Logic. Edinburgh,
1978.

384

