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Abstract 
The advantages of a multi-strategy, construction-specific 
approach to parsing in applied natural language processing are 
explained through an examination of two pilot parsers we have 
constructed. Our approach exploits domain semantics and prior 
knowledge of expected constructions, using multiple parsing 
strategies each optimized to recognize different construction 
types. It is shown that a multi strategy approach leads to robust, 
flexible, and efficient parsing of both grammatical and 
ungrammatical input in limited-domain, task oriented, natural 
language interfaces. We also describe plans to construct a single, 
practical, multi-strategy parsing system that combines the best 
aspects of the two simpler parsers already implemented into a 
more complex, embedded-constituent control structure. Finally, 
we discuss some issues in data base access and update, and 
show that a construction-specific approach, coupled with a case-
structured data base description, offers a promising approach to a 
unified, interactive data base query and update system.1 

1. Introduction 
Providing robust natural language interfaces to interactive 

computer systems is a rapidly growing concern in natural 
language processing. Much of the work in this area has focused 
on parsing problems that arise in applied natural language 
processing, and in particular, on mechanisms to exploit strong 
domain-dependent semantic constraints. Past work in this area 
includes LIFER [12], SOPHIE [3, 4], LUNAR [24], and PLANES 
[21]. Other investigators have concentrated on handling the 
performance errors that inevitably occur in spontaneously-used 
language (Hayes and Mouradian [10], Weischedel and Black [22], 
and Kwasny and Sondheimer [16]). Ungrammatical input was also 
a major concern of Colby in the PARRY system [18], and Wilks 
[23] in parsing input with non standard semantic relations. All of 
these efforts, .however, have followed the paradigm of applying a 
uniform parsing procedure to a uniformly represented grammar, 
failing to exploit domain specific constructions and not always 
using the powerful domain semantics to best effect. Although the 
parsing procedures were flexible enough to deal with certain 
forms of ungrammatical input, they were limited by having to use 
the same uniform techniques on all types of construction, and 
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hence could not take advantage of specific features of individual 
construction types. Moreover, a uniform-grammar approach 
requires that domain semantics be coerced and simplified to fit a 
predetermined mold, thus limiting the scope and utility of task-
specific knowledge in the parsing process. 

Our objective in this work is to produce task oriented, natural 
language interfaces that are robust, flexible, and efficient. 
Therefore, we plan to develop, refine, and test a number of 
different mechanisms, each designed to perform its own particular 
task reliably and efficiently. We intend to exploit all possible tools 
at our disposal in creating a system capable of selecting the tool 
best suited for the job at hand. Thus, we advocate a "tool-chest" 
of parsing and representational techniques for the parser to apply, 
rather than trying to design a single multi purpose tool. This 
objective differs from both cognitive modelling approaches 
(e.g. [2]) and elegant linguistic solutions (e.g. [17]) where 
integration (in the former) and uniformity (in the latter) are primary 
considerations. 

We have argued elsewhere [6,8] at some length in favor of 
parsing strategies, grammar representations, and domain 
semantics that are construction-specific rather than uniform. In 
other words, we argued that for each type of construction in a 
language, there should be a specific formalism for representing 
constructions of that type, plus a specific procedure for applying 
instances of each type of construction to the parsers input. The 
parser would switch among the various parsing strategies 
dynamically depending on the input. Examples of what we mean 
by construction type include case constructions (e.g. in imperative 
commands and the macro structure of noun phrases with post-
nominal modifiers), conjoined constructions. positional 
constructions such as simple noun phrases, and non standard 
constructions such as names, times, and addresses. 

Rather than reiterating our reasons for advocating a 
construction specific approach, we list below the main benefits 
claimed for such an approach, and refer the reader to [6, 8] for full 
justifications. 

• Different constituents of a given construction can serve quite 
different functions and exhibit radically different ease of 
recognition. In a case construction, for instance, the case 
markers carry information about relations, whereas the case 
fillers describe the objects being related; also the case 
markers are typically drawn from a limited set of possibilities 
and are consequently much easier to recognize than the case 
fillers, which typically exhibit much more variety. 
Construction specific parsing techniques are able to capitalize 
on these distinctions when ungrammatical input is present. For 
example, a failed parse of a case construction may be 
restarted by scanning the input for one of the easily 
recognized case markers, thus temporarily skipping the 
incomprehensible segment. 
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• Because complicated constructions, such as case 
constructions, can be represented and applied as a whole to 
the input, rather than being split up over a number of rules or 
network segments as in a uniform-'grammar approach to 
parsing, problems that arise with ungrammatical instances of 
case constructions can be dealt with by a strategy that can 
take into account any fragments of the construction that have 
already been parsed. Thus, if certain cases have been 
recognized and instantiated, the troublesome segment in the 
input need only be matched with the uninstantiated cases. 
This enables the parser to apply much stronger semantic 
constraints and structural expectations, thus easing the 
burden on the syntax and case-selection processes [5,6]. 

• A construction-specific approach allows highly efficient 
parsing of grammatical input by providing an excellent 
framework for the application of the strong typing constraints 
characteristic of limited domains. 

• Regardless of the structure being parsed into, structural 
ambiguities will sometimes arise from the input. A 
construction specific approach provides two powerful 
mechanisms to handle ambiguity: 1) Strong semantic 
constraints from the application domain rule out most common 
ambiguities. 2) When ambiguities arise (often due to ellipsed 
or ungrammatical utterances), the construction specific 
approach facilitates an explicit and localized representation of 
ambiguity, without duplication of unambiguous parts of the 
input. This is a tremendous aid to an interface in presenting 
the user with a request for clarification. The request can be 
focused on the precise nature of the problem that the system 
experienced with the input, and the system is in a better 
position to understand elliptical responses from the user [8]. 

• A construction-specific approach also helps in the definition 
and development of languages for limited domain interfaces. 
Because the constructions dealt with are those that are 
"natural0 for the task domain, a language definition expressed 
in terms tied closely to the structure of the task domain can be 
interpreted directly by construction-specific strategies without 
the need for an intermediate, time consuming, compilation 
phase into a uniform-grammar formalism. This greatly speeds 
the testing of the many small changes that inevitably have to 
be made in the course of developing a language, and so 
makes the language designer's job significantly easier. 

In this paper, we examine two small parsers we have 
constructed in order to illustrate some of these benefits, and to 
serve as stepping stones to the construction of a larger parsing 
system, which will integrate all the features we have mentioned. 
The first of these simple parsers shows the power of a 
construction specific approach in processing ungrammatical 
input; it is oriented around case constructions, and uses the 
distinctive characteristics of such constructions to deal with 
grammatical deviations in an extremely robust fashion. The 
second parser is a good illustration of the advantages of switching 
between parsing strategies dynamically; by combining only three 
very simple parsing strategies, it is able to deal with a surprisingly 
wide range of input. We go on to discuss combining the 
advantages of these two, essentially "toy", parsers into a single, 
useful multi-strategy parsing system. We also discuss further 
advantages of a construction-specific approach when it is used in 
an interface for accessing and updating data bases. 

2. The CASPAR Parser 
In this section we examine CASPAR, a small parser we 

constructed as an illustration of the power of a construction-
specific approach in dealing with ungrammatical input. It also 
turned out to provide a very efficient way of recognizing 

grammatical input in the class of domain specific languages for 
which it was designed. 

CASPAR was designed to provide a natural language command 
interface to an interactive computer system. Since an imperative 
is a natural way to issue system commands, CASPAR was 
designed to recognize simple imperative verb phrases, i.e. 
imperative verbs followed by a sequence of noun phrases possibly 
marked by prepositions. Examples for an interface to a data base 
keeping track of registration for college courses include: 

cancel math 247 
enroll Jim Campbell in English 324 
transfer student 5518 from Physics 101 to comp sci 111 

The imperative verbs identify the system commands and the noun 
phrases provide their arguments. Such constructions are classic 
examples of case constructions; the verb or command is the 
central concept, and the noun phrases or arguments are its cases. 
Considered as surface cases, the command arguments are either 
marked by preposition, or unmarked and identified by position 
such as the position of direct object in the examples above. 

In line with in the construction-specific approach we .are 
advocating, CASPAR was given two quite distinct parsing 
strategies: 

• A strategy to identify the appropriate case frame and activate 
its case markers and filler-patterns to deal with the rest of the 
input utterance. 

• A strategy to recognize individual constituent case filters and 
markers, including the verb, noun phrases in the role of case 
fillers, and prepositions in the role of case markers. 

The first of these strategies is dominant in the sense that it decides 
where in the input the second, more detailed, recognizer should 
be applied and what it should try to recognize when it is applied. 
The second strategy is a simple linear pattern matcher. This is just 
what is needed for verbs, prepositions, and simple object 
descriptions such as those in the examples above, but it is 
inadequate for more complicated kinds of object descriptions, and 
in particular, for object descriptions that are themselves case 
constructions as in: 

cancel the classes taught by Solway on Tuesday 

This deficiency is what relegates CASPAR to the realm of toy 
systems. However, see [6] for the design of a multi strategy parser 
that can deal with nested case constructions. 

While CASPAR is just an experimental system, the flexibility and 
robustness obtained by providing separate parsing strategies for 
the two different construction types it recognizes (case and fixed-
order linear patterns) is quite striking. The types of grammatical 
deviation that can be dealt with include: 

• Unexpected and unrecognizable (to the system) interjections 
as in: 

tStQtS2enroll student 2476 in I think CS 348. 

• missing case markers: 
enroll Jim Campbell Economics 247. 

• out of order cases: 
In Economics 247 Jim Campbell enroll. 

The reason for including these particular extraneous characters wilt be easily 
guessed by users of certain computer systems 

434 



• ambiguous cases: 
transfer Jim Campbell Economics 247 English 332. 

Combinations of these ungrammaticalities can also be dealt with. 

CASPAR achieves this degree of robustness by exploiting 
certain specialized characteristics of case constructions; most 
importantly, it takes advantage of the differences between case 
markers and case fillers. Case markers are typically drawn from a 
small set of words or phrases, and are thus much easier to 
recognize (or spelling correct) than case fillers, which have much 
more variety. This ease of recognition of case markers makes it 
practical for CASPAR to scan the entire input for them, and thus to 
locate and parse the corresponding case fillers; interjections and 
out of order cases are dealt with in this way. CASPAR also keeps 
track of which cases have been filled, and thus cuts down on the 
number of filler types that it has to try when a segment of input 
must be parsed without the guidance of case markers, for 
instance, if some case markers have been omitted. Neither of 
these heuristics are available to the more uniform parsing 
procedures of Weischedel and Black (22). or Kwasny and 
Sondheimer [16)), or of our own FlexP parser [10], simply because 
there is no convenient way for these parsers to represent or make 
use of the information that case markers are much easier to 
recognize than case fillers or that most cases can be filled only 
once. Exactly how these heuristics operate, along with other 
details of how CASPAR is tailored to case constructions, can be 
seen from the following description of CASPARS parsing 
algorithm. 

CASPAR has two parsing strategies: a case-oriented strategy 
and a linear pattern matching strategy. The case oriented 
strategy controls the operation of the pattern matching strategy, 
which in turn actually recognizes words from the input. The linear 
pattern matcher may be operated in anchored mode, where it tries 
to match one of a number of linear patterns starting at a fixed 
word in the input, or in scanning mode, where it tries to match the 
patterns it is given at successive points in the input string until one 
of the patterns matches, or it reaches the end of the string. The 
case-oriented parsing strategy operates in the following way. 

1. Starting from the left of the input string, apply the linear 
pattern matcher in scanning mode using all the patterns which 
correspond to commands. If this succeeds, the command 
corresponding to the pattern that matched becomes the 
current command, and the remainder of the input string is 
parsed relative to its domain specific case frame. If it fails, 
CASPAR cannot parse the input. 

2. If the current command has an unmarked direct object case, 
apply the linear matcher in anchored mode at the next3 word 
using the set of patterns appropriate to the type of object that 
should fill the case. If this succeeds, record the filler thus 
obtained as the filler for the case. 

3. Starting from the next word, apply the pattern matcher in 
scanning mode using the patterns corresponding to the 
surface markers of all the marked cases that have not yet been 
filled. If this fails, terminate. 

4. If the last step succeeds, CASPAR selects a marked case the 
one from which the successful pattern came. Apply the 
matcher in anchored mode at the next word using the set of 
patterns appropriate to the type of object that should fill the 

3The word after the last one the pattern matcher matched the leat time it was 
applied. 

case selected. If this succeeds record the filler thus obtained 
as the filler for the case. 

5. Go to step 3. 

Unless the input turns out to be completely unparsable, this 
algorithm will produce a command and a (possibly incomplete) set 
of arguments It is also insensitive to spurious input immediately 
preceding a case marker. However, it is not able to deal with any 
of the other ungrammaticalities mentioned above. Dealing with 
them involves going back over any parts of the input that have 
been skipped by using the pattern matcher in scanning mode. If, 
after the above algorithm has terminated, there are any such 
skipped substrings, and there are also arguments to the command 
that have not been filled, the pattern matcher is applied in 
scanning mode to each of the skipped substrings using the 
patterns corresponding to the filler types of the unfilled 
arguments. This will pick up any arguments which were 
misplaced, or had garbled or missing case markers. If one of the 
arguments matched in this way could fill more than one slot, a 
special representation is used for CASPAR'S output indicating the 
ambiguity without duplicating unambiguous parts of the parse 
This representation, which has advantages in formulating 
requests to the user to resolve the ambiguity, is described in more 
detail in [8]. 

The grammar description that CASPAR uses is tied very closely 
to the structure of the domain. For each possible command to the 
underlying system, the grammar definition contains a list of the 
linear patterns which can be used to refer to that command, plus a 
list of arguments to the command. For each argument the 
definition gives the type of domain object that should fill that 
argument, plus the linear patterns used as surface case markers 
to signal the argument (or an indication that the argument is an 
unmarked case such as the direct object). The grammar definition 
also gives the linear patterns needed to recognize each type of 
domain object. See Section 5 below for an example of a grammar 
definition in a similar style, and for a discussion of how a 
construction-specific approach to parsing fits well with a grammar 
definition that is tied closely to domain structure. This point is also 
discussed in [8]. This form of grammar definition fits naturally into 
a description of the underlying interactive system as a whole. 
Such a description can be used to control other aspects of a 
cooperative and graceful user interface • see [1] for more details 
of other work we have done in that area. 

While simplistic in many ways, CASPAR shows the power of a 
construction-specific approach to parsing, both in the range of 
grammatical deviations it can handle, and in the efficiency it 
displays in straightforward parsing of grammatical input. This 
efficiency is derived from the limited number of patterns that the 
pattern matcher has to deal with at any one time On its first 
application, the matcher only deals with command patterns; on 
subsequent applications, it alternates between the patterns for the 
markers of the unfilled cases of the current command, and the 
patterns for a specific object type. Also, except in post­
processing of skipped input, only case marker and command 
patterns are employed when the pattern matcher is in its less 
efficient scanning mode. The more difficult to recognize object 
descriptions are processed in the more efficient anchored mode. 
This efficiency is sound evidence that such a construction-
specific approach is a good way to bring the powerful semantic 
restrictions available in limited domains to bear on the parsing of 
both grammatical and ungrammatical input. 
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3. The DYPAR Parser 
As a related investigation of the practical feasibility of dynamic 

strategy selection by a domain oriented parser, we also developed 
the DYPAR4 system. DYPAR has a Kernel control module to 
select the appropriate parsing strategy as a function of the 
expected input structure, plus three parsing strategies to select 
among, each with its own grammatical and/or semantic 
knowledge encodings, and global data structures to share 
information. The control structure, strategies, and linguistic 
knowledge representations are augmented with domain specific 
semantic knowledge bases. Thus, the same kernel parser may be 
applied to different domains if a detailed, domain specific, 
semantic knowledge base is provided. 

Whereas the central focus of CASPAR was to exploit domain 
semantics and construction specific case frames for processing 
some types of malformed input, DYPAR was built to explore issues 
of user interaction and multi strategy synthesis in the context of a 
working parser. More explicitly, our objectives for developing 
DYPAR were threefold: 

• Test the feasibility of a multi-strategy approach. 
• Investigate a simple data base task requiring interaction and 

feedback between the system and the user. 
• Eventually integrate the best features of CASPAR and DYPAR 

into a robust, construction specific, multi strategy parser. 

In encoding domain semantics, we found that some information 
can be expressed more naturally and parsimoniously in one form 
(e.g., linear patterns), while other information is best expressed in 
other forms ( e g , equivalence transformations or semantic 
grammar productions). To illustrate this point, we attempted to 
encode all the knowledge in DYPAR as a pure semantic grammar. 
This task has more than tripled the size of the task-specific 
knowledge base, and we have not yet finished (nor do we intend to 
finish) the conversion. The primary reason for the increase in size 
is that much of the information must be stated with a high degree 
of redundancy and often in an awkward, roundabout manner 
when it is coerced into a uniform, context-free representation. 
Therefore, the primary lesson one can draw from the DYPAR effort 
is that multi-strategy parsing is tractable in practice and moreover 
can perform the work of single strategy approaches with much 
greater economy of programmer effort.5 

3.1 . Parsing Strategies in DYPAR 
DYPAR combines three parsing strategies: 

• A context-free semantic grammar component, grouping 
domain information into hierarchical semantic categories 
useful in classifying individual words and phrases in the input 
language, similar to the LIFER semantic grammar 
mechanism [12]. 

• A partial pattern match component, represented as 
pattern action rules. The patterns may contain individual 
words, semantic categories (from the semantic grammar), wild 

DYnamic PARsing is still in Its infant stages, requiring frequent changes in its 
software 

5 l t was not our intention in building DYPAR that it outperform existing parsers in 
terms of theoiotic.il coverage. but rather that it replicate known peiformance in a 
moio natural, parsimonious, easier to extend manner However, our next step -
integrating DYPAR and CASPAR strives for both impioved coverage and much 
more robust reliable performance in well defined domains 

cards, optional constituents, register assignment and register 
reference. This method enables the semantic grammar non­
terminal categories to be applied in a much more effective 
context-sensitive manner than in a pure context-free grammar 
recognizer. 

• Equivalence transformations map domain dependent and 
domain-independent constructs into canonical form, requiring 
a fraction of the patterns and semantic categories that would 
otherwise be needed. If a phrase-structure can be expressed 
in several different ways, while retaining the same meaning, it 
is clearly beneficial to first map it into canonical form, rather 
than being forced to include all possible variants in every 
context where that constituent could occur. 

Below we give an example of each type of linguistic information 
used in DYPAR. In order to understand these examples, a few 
notational conventions must be introduced: <BRACKETS> 
denote a non-terminal semantic grammar symbol. A word starting 
with an exclamation mark (e.g.. {REGISTER) denotes the name of 
register. A vertical bar (|) denotes disjunction in a pattern. A # in 
a pattern matches a single word. An asterisk (•) matches an 
arbitrary sequence of words. The construction (JREGISTER 
pattern) assigns whatever matches the pattern to the register 
specified. A question mark (?) before a constituent in a pattern 
indicates that constituent is optional. 

DYPAR, as we see in the dialogue below, is the front end of a 
semantic network data base update and query system. Therefore, 
its domain knowledge consists of language constructs relevant to 
this task.'First, consider a fragment of its semantic grammar: 

<INFO-REQ> -> (<WHAT-Q> | <INF0-REQ1>) 
<INF0-REQ1> -> (?<POLITE> <INF0-REQ2> 

7<WHAT-Q>) 
<INF0-REQ2> -> (TELL <me-US> ?ABOUT | 

GIVE <me-US> | PRINT | TYPE) 
This fragment, together with the rewrite rules for the other non­
terminals above (e.g., <BEPRES>, whose rewrite is alt the present-
tense conjugations of the verb "to be") recognizes the initial 
segment of information request queries such as: "What is ...", 
"Tell me what is ...", "Tell me about...", "Would you give me ..", 
etc. 

Now, consider a pattern-match rule: 
(?<det> ( I v a l #) <be-pre$> ?<DET> (IPROP •#) 

OF ?<DET> (INAM #) ?<dpunct>) 
■> 
(LTM-STORE INAM IVAL IPROP) 

This rule recognizes sentences such as: "Felix is a friend of Fido", 
or "Reagan is president of the USA", and passes the information 
to the data base manager for consistency checking and storage. 
In order to pass the information gathered in the pattern match 
process, the registers are assigned appropriate values. For 
instance, in the second example, INAM is assigned "USA", IPROP 
is assigned "president" and iVAL is assigned "Reagan". 

The equivalence transformations also use the pattern matcher. 
For instance, consider the following simple (but useful) 
transformation: 

( ( i S l •) (IW1 <NOMINAL>) <POSS> 
(!W2 <NOMINAL>) (!S2 •) ?( IP <PUNCT>)) 

: : > 
(NCONC IS l 1W2 (LIST 'OF) IW1 IS2 tP) 

This transformation maps possessive constructions into attribute-
value constructions, which we chose as canonical. For instance 
"Tell me about the VAX-785's performance." is mapped into "Tell 
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strategies. However, these parsers are only first steps in exploiting 
the multi-strategy approach to develop real-world, robust, natural 
language interfaces. In terms of sophistication. DYPAR straddles 
the boundary between an advanced toy and a rudimentary real-
applications system. One direction of continued development 
would be to enhance its pattern matcher, build additional general 
transformations, and augment its language interface to serve as a 
medium in which to express extensions to the grammar by a 
domain expert (not necessarily a natural language expert). A first 
step in the direction of automating and simplifying user 
extensibility has been taken in the Nano KLAUS system [13]. 

Our research is focused in a direction different from, but 
complementary to, the one taken in Nano KLAUS. Since the 
performance obtained by integrating several parsing strategies 
has, for both CASPAR and DYPAR, proven more effective than the 
application of any single strategy, we intend to extrapolate by 
including additional parsing strategies in future parsers. As a step 
along this road, we have designed a flexible control structure [6] 
that integrates case instantiation with other parsing strategies 
discussed in this paper, together with additional construction-
specific strategies. As in CASPAR, the case oriented strategy is 
the dominant one. We expect this new design to provide a 
quantum jump in the range of applicability of our task-oriented 
parsers. Moreover, techniques such as expectation-driven 
disambiguation [2.19). developed in non-applied natural language 
work, can now be brought to bear in real-world applications. The 
reason why case frame parsers have not been developed in task-
oriented domains is that, while they capture general principles 
admirably and can bring detailed semantic knowledge to bear, 
they are not well suited to recognizing specific idioms, compound 
nouns and the like. However, the addition of partial pattern 
matching (ideally suited to detecting idiomatic expressions) 
integrated with case frame instantiation and other parsing 
methods should provide a high degree of generality without 
sacrificing robustness. 

Graceful interaction with the user is an important goal for any 
natural language front end whose users may be unfamiliar with 
computers (more details on our broader efforts towards this goal 
are given in [11,9]). People invariably produce ungrammatical 
utterances, leave out words, add interjections, and use terms 
outside the vocabulary of any system. It is essential that a real-
world system "fail soft" in such circumstances, and interact with 
the user to enable graceful recovery. We saw a simple examples of 
this in DYPAR, and more mechanisms are discussed in [10J. The 
expectation setting provided by a case system incorporating 
domain knowledge may prove a more powerful tool to minimize 
failure than mechanisms based on relaxing grammatical rules or 
pattern matching requirements. 

Consider, for instance, a file management system where a user 
may type 

Transfer the flies in my directory to the accounts directory. 

It is fairly clear to us humans that the user meant to type "files", 
even if we know perfectly well that "flies" is a legitimate word in 
our vocabulary.6 A case frame system knows that the object case 
of the transfer command (as applied to the file-management 
domain) requires a logical data entity, which "flies" is not. 
Observing this violated semantic requirement, it can proceed to 
see whether by spelling correction, morphological decomposition, 
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or detecting potential omissions it can map "flies" into a known 
filler of that case. Here, spelling correction works (given a very 
restricted pool of candidate words satisfying the semantic 
requirements), and the system can proceed to inform the user of 
its correction (allowing the user to override if need be). 

A striking advantage of our mixed-strategy approach is that the 
top-level case structure, in essence, partitions the semantic world 
into categories that can legitimately fill specific cases. The power 
of the approach derives from these top-down case-frame 
expectations significantly constraining bottom-up pattern 
matching. Thus, when a pattern matcher is invoked to parse the 
recipient case of a file transfer frame, it need only consider 
patterns (and semantic grammar constructs) that correspond to 
logical locations inside a computer. This form of expectation-
driven parsing in restricted domains has two important 
advantages from the point of view of robustness: 

• Many spurious parses are never generated (because patterns 
yielding potentially spurious matches are never tried in 
inappropriate contexts.) 

• Additional knowledge, additional patterns, grammar rules, 
etc. can be added without a corresponding linear increase in 
parse time (since the case-frames focus only upon the relevant 
subset of patterns and rules). Thus, the efficiency of the 
system may actually increase with the addition of more domain 
knowledge (in effect enabling the case frames to restrict 
context even further). This behavior makes it possible to build 
the parser incrementally without the ever-present fear that a 
new extension may make the entire parser fail due to 
unexpected application of that extension in the wrong context. 

We conclude this section by reiterating the central theme of our 
investigations: Integration of multiple construction specific 
parsing strategies is a powerful organizing principle for robust, 
task-oriented natural language interfaces. 

5. Advantages for Data Base Interfaces 
A further advantage of multiple construction-specific parsing 

techniques and grammar representations arises in the case of 
interfaces for accessing and updating data bases. Most current 
data base interfaces that use natural language are concerned 
purely with data base access rather than update, though see 
Kaplan [15] for some discussion of the problems involved in the 
latter activity. The typical approach of such interfaces has been to 
translate a users natural language questions about the contents 
of a data base into a formal query language which is then 
interpreted by a program specific to the particular data base to 
produce the required answer. The answer is then expressed to 
the user in some more or less natural format. The translation into 
the formal query language can be done directly from the input, as 
is the case in LADDER (20), or indirectly via a syntax tree of the 
input as in LUNAR [24]. 

While this arrangement is fine for pure data base access, it is 
less than optimal if a mixture of access and update is desired. The 
problem is that the structure of the query languages employed 
does not mirror the structure of the data base being queried. This 
means that an access request and an update request of 
essentially similar form will result in radically different parses. In 
turn, this means that constituents which are identical at the 
language level must be parsed in radically different ways 
depending on whether they are in an access or an update request. 

To make this point concrete, consider the following two 
requests that might be presented to an interface to a data base 
concerning college courses: 

Who is the instructor of Physics 247? 
Change the instructor of Physics 247 to be Solway. 

Translating the first input into a typical7 formal query language 
might look something like: 

(FOR (X in COURSES) 
(and (= (DEPT X) Economics) 

(= (NUMBER X) 247)) 
(LIST (INSTRUC X)) ) 

A corresponding translation for the update request8 on the other 
hand might be: 

(FOR (X in COURSES) 
(and (« (OEPT X) Economics) 

(= (NUMBER X) 247)) 
(CHANGE-INSTRUC X Solway)) 

While the representation of "Economics 247" is the same in both 
cases, the treatment of "instructor" is quite different. In the 
access example, it is encoded into the access function, INSTRUC, 
and in the update example, it turns into the update function, 
CHANGE-INSTRUC. The reason for such radically different 
treatment is a desire to make the ouery language independent of 
the structure of the data. For example the relations between 
courses and their departments, numbers, and instructors could be 
contained in one file, or in three separate files. By making no 
assumption about the structure of the data, and just using neutral 
functions like INSTRUC and CHANG INSTRUC which assume that 
there is a relation between course and instructor, but nothing 
about the way it is represented, the query language avoids 
dependencies of this sort. 

However, adopting a query language of this type has 
unfortunate consequences for a parser that must recognize both 
access and update requests. Clearly, it would be desirable for 
such a parser to use the same grammar rules to recognize "the 
instructor of Economics 247" in both examples above, but the 
target representation makes this quite inconvenient. Because 
"instructor" has to be translated in two quite different ways, it is 
most natural to control the parsing of the phrase from a higher 
level, so there would probably be rules9 that recognized complete 
phrases like: 

<te l l -me> < ins t r uc to r> of <course> 
<change> < ins t r uc to r> of <course> to <person> 

These examples are actually patterned after, though not identical to, the 
language employed by Woods in the LUNAR system (24). which is one of the more 
easily human readable of the query languages that have been used Most DB query 
languages adopt a similar, if mote cryptic, formalism For instance. COOASYL [7] 
queries are stated in a Imeaiized form whose content resembles that of our 
example above Kaplan (14). however, first translates queries into a intermediate 
formalism, satisfying some but not all the features of the representation we 
propose in the following pages, before generating the cryptic COOASYL query 
form 

8 
We do not consider here "non obvious" interpretations for update requests 

like those discussed by Kaplan [15] 

g 
The exact form of the grammar representation, network or pattern, is 

unimpoitant here, just the idea that phrases of this type would be recognized as a 
whole 
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and turned them into internal representations like the ones above. 
In order to be able to recognize patterns like "<instructor> of 
<course>" or better still "<slot> of <structure>" without regard to 
whether they were part of an access or update request, one would 
have to represent output from the parser something like: 

[RequestType: Access 
SlotSpec: 

[ S l o t : I n s t r u c t o r 
S t r u c t u r e : 

[Type: COURSE Oept: Physics Number; 2471 

[RequsstType: Update 
SlotSpec: 

[ S l o t : I n s t r u c t o r 
S t r u c t u r e : 

[Type: COURSE Oept: Physics Number: 247] 

UpdateValue: Solway 

Here the representation of "the instructor of Economics 247" is 
the same for both the access and update requests. 

This form of representation has the advantages we have 
described for parsing. A potential objection, however, is that the 
representation presumes too much about the structure of the data 
base. We do not believe that this objection is valid because the 
assumptions made are only about the logical structure of the data 
base from the user's point of view, rather than its detailed 
organization into files, e t c Any relational data base would 
certainly fit into the slot and filler, property list, style of 
representation we have used, and other forms of logical 
organization could also be accommodated. In addition, the work 
in LADDER [20] shows how an abstract intermediate 
representation is very useful when several data bases of different 
detailed structure are involved, and the above style of 
representation should serve splendidly for that purpose. 

So far, nothing we have said in this section makes the 
construction-specific approach to parsing preferable to the 
uniform approach, with respect to data base interactions. There 
would be nothing to stop a uniform parser producing the kind of 
representation we are advocating for update and access requests 
just as well as a construction-specific one could. The primary 
advantage of construction-specific parsing here involves 
describing the relation between the logical structure of the data 
base and the input language. As we noted in the introduction, 
since the specific constructions dealt with can be those "natural" 
for the task domain, when using a construction-specific approach, 
the input language can be defined in a way that is tied closely to 
the slot and filler structure of the objects of the data base. To be 
more precise, the input syntax for the description of a given kind 
of data base object can be expressed in terms of the fillers for 
slots of that object type embedded in whatever kind of 
construction is natural for describing such an object. As an 
example of the kind of language definition we have in mind, 
consider the following three complementary syntax definitions for 
descriptions of a course. 

[SyntaxType: NounWithCases 
Head: (course sec t ion c lass ) 
PostCases: [ I n s t r u c t o r : 

(by ( taught by) (g iven by) ) 
Department: ( ( h e l d I n ) ) 
Number: (numbered) 

[SyntaxType: PossessiveCases 
NamedCases: 

[ I n s t r u c t o r : 
( i n s t r u c t o r teacher ( f a c u l t y member)) 

Department: (department) 

[SyntaxType: S lo tPa t te rn 
P a t t e r n : (Department Number) 

Without going into great detail, the first syntax definition above 
says that a construction type of NOUNWITHCASES may be used to 
describe a COURSE. This means that it may be described by a head 
noun (a list of alternatives is given), optionally preceded by a 
determiner (part of the construction definition), followed by a 
sequence of descriptive cases. These cases are defined as a 
property list indicated by POSTCASES. The indicators 
(INSTRUCTOR, DEPARTMENT, etc) are slot names of the object type, 
and the values are a list of possible case markers for that case 
(both single words and linear patterns of words). For instance, 
"taught by" can signal the presence of an instructor description. 
The fact that INSTRUCTOR is a slot of COURSE, and the syntax for 
fillers of that slot are recorded elsewhere. The second syntax 
definition gives a listing of the slots of COURSE, and the words used 
to describe them. From this information, a phrase like "the 
instructor of <course>" can be parsed. Finally, an alternative 
syntax for COURSE of (<department> <number>) is given. We have 
already developed a similar kind of language definition formalism 
for command interface applications [1] We intend to extend this 
work to interfaces that access and update data bases. For 
instance, the noun-phrase head and the case markers can be 
represented by more complex patterns that may include non­
terminals from a semantic grammar •• similar to the mechanism 
used (in a less discriminating fashion) in the DYPAR system. 

6. Conclusion 
The goal of this paper has been to explain the advantages of a 

multi strategy, construction-specific approach to parsing in 
applied natural language processing, largely through an 
examination of two "toy" parsers that we have constructed. The 
construction-specific multi strategy approach exploits prior 
knowledge of expected constructions, domain semantics, and 
strategies optimized to recognize each construction type. The two 
parsers demonstrated clear advantages for the construction-
specific approach in parsing both grammatical and ungrammatical 
input. We intend to construct a single, practical, multi strategy 
parsing system that combines the best aspects of both simpler 
systems in a more complex, embedded constituent control 
structure. Finally, we discussed some issues in data base access 
and update, and showed that a construction-specific approach, 
coupled with a case-structured data base description, offers a 
promising approach to a unified, interactive data base query and 
update system. 
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