
Multi-Strategy Construct ion-Specif ic Parsing
for Flexible Data Base Query and Update

Philip J. Hayes and Jaime G. Carbonell

Carnegie-Mellon University
Pittsburgh, PA 15213, U. S. A.

Abstract
The advantages of a multi-strategy, construction-specific
approach to parsing in applied natural language processing are
explained through an examination of two pilot parsers we have
constructed. Our approach exploits domain semantics and prior
knowledge of expected constructions, using multiple parsing
strategies each optimized to recognize different construction
types. It is shown that a multi strategy approach leads to robust,
flexible, and efficient parsing of both grammatical and
ungrammatical input in limited-domain, task oriented, natural
language interfaces. We also describe plans to construct a single,
practical, multi-strategy parsing system that combines the best
aspects of the two simpler parsers already implemented into a
more complex, embedded-constituent control structure. Finally,
we discuss some issues in data base access and update, and
show that a construction-specific approach, coupled with a case-
structured data base description, offers a promising approach to a
unified, interactive data base query and update system.1

1. Introduction
Providing robust natural language interfaces to interactive

computer systems is a rapidly growing concern in natural
language processing. Much of the work in this area has focused
on parsing problems that arise in applied natural language
processing, and in particular, on mechanisms to exploit strong
domain-dependent semantic constraints. Past work in this area
includes LIFER [12], SOPHIE [3, 4], LUNAR [24], and PLANES
[21]. Other investigators have concentrated on handling the
performance errors that inevitably occur in spontaneously-used
language (Hayes and Mouradian [10], Weischedel and Black [22],
and Kwasny and Sondheimer [16]). Ungrammatical input was also
a major concern of Colby in the PARRY system [18], and Wilks
[23] in parsing input with non standard semantic relations. All of
these efforts, .however, have followed the paradigm of applying a
uniform parsing procedure to a uniformly represented grammar,
failing to exploit domain specific constructions and not always
using the powerful domain semantics to best effect. Although the
parsing procedures were flexible enough to deal with certain
forms of ungrammatical input, they were limited by having to use
the same uniform techniques on all types of construction, and

This research was sponsored jointly by the Defense .Advanced Research
Projects Agency (DOD). ARPA Order No 3597. monitored by the Air Force
Avionics Laboratory Under Contract F33615 78-C 1551. and by the Air Force
Office of Scientific Research under Contract. F49620 79 C0143 The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency, the Air Force Office of Scientific
Research, or the US Government

hence could not take advantage of specific features of individual
construction types. Moreover, a uniform-grammar approach
requires that domain semantics be coerced and simplified to fit a
predetermined mold, thus limiting the scope and utility of task-
specific knowledge in the parsing process.

Our objective in this work is to produce task oriented, natural
language interfaces that are robust, flexible, and efficient.
Therefore, we plan to develop, refine, and test a number of
different mechanisms, each designed to perform its own particular
task reliably and efficiently. We intend to exploit all possible tools
at our disposal in creating a system capable of selecting the tool
best suited for the job at hand. Thus, we advocate a "tool-chest"
of parsing and representational techniques for the parser to apply,
rather than trying to design a single multi purpose tool. This
objective differs from both cognitive modelling approaches
(e.g. [2]) and elegant linguistic solutions (e.g. [17]) where
integration (in the former) and uniformity (in the latter) are primary
considerations.

We have argued elsewhere [6,8] at some length in favor of
parsing strategies, grammar representations, and domain
semantics that are construction-specific rather than uniform. In
other words, we argued that for each type of construction in a
language, there should be a specific formalism for representing
constructions of that type, plus a specific procedure for applying
instances of each type of construction to the parsers input. The
parser would switch among the various parsing strategies
dynamically depending on the input. Examples of what we mean
by construction type include case constructions (e.g. in imperative
commands and the macro structure of noun phrases with post-
nominal modifiers), conjoined constructions. positional
constructions such as simple noun phrases, and non standard
constructions such as names, times, and addresses.

Rather than reiterating our reasons for advocating a
construction specific approach, we list below the main benefits
claimed for such an approach, and refer the reader to [6, 8] for full
justifications.

• Different constituents of a given construction can serve quite
different functions and exhibit radically different ease of
recognition. In a case construction, for instance, the case
markers carry information about relations, whereas the case
fillers describe the objects being related; also the case
markers are typically drawn from a limited set of possibilities
and are consequently much easier to recognize than the case
fillers, which typically exhibit much more variety.
Construction specific parsing techniques are able to capitalize
on these distinctions when ungrammatical input is present. For
example, a failed parse of a case construction may be
restarted by scanning the input for one of the easily
recognized case markers, thus temporarily skipping the
incomprehensible segment.

432

• Because complicated constructions, such as case
constructions, can be represented and applied as a whole to
the input, rather than being split up over a number of rules or
network segments as in a uniform-'grammar approach to
parsing, problems that arise with ungrammatical instances of
case constructions can be dealt with by a strategy that can
take into account any fragments of the construction that have
already been parsed. Thus, if certain cases have been
recognized and instantiated, the troublesome segment in the
input need only be matched with the uninstantiated cases.
This enables the parser to apply much stronger semantic
constraints and structural expectations, thus easing the
burden on the syntax and case-selection processes [5,6].

• A construction-specific approach allows highly efficient
parsing of grammatical input by providing an excellent
framework for the application of the strong typing constraints
characteristic of limited domains.

• Regardless of the structure being parsed into, structural
ambiguities will sometimes arise from the input. A
construction specific approach provides two powerful
mechanisms to handle ambiguity: 1) Strong semantic
constraints from the application domain rule out most common
ambiguities. 2) When ambiguities arise (often due to ellipsed
or ungrammatical utterances), the construction specific
approach facilitates an explicit and localized representation of
ambiguity, without duplication of unambiguous parts of the
input. This is a tremendous aid to an interface in presenting
the user with a request for clarification. The request can be
focused on the precise nature of the problem that the system
experienced with the input, and the system is in a better
position to understand elliptical responses from the user [8].

• A construction-specific approach also helps in the definition
and development of languages for limited domain interfaces.
Because the constructions dealt with are those that are
"natural0 for the task domain, a language definition expressed
in terms tied closely to the structure of the task domain can be
interpreted directly by construction-specific strategies without
the need for an intermediate, time consuming, compilation
phase into a uniform-grammar formalism. This greatly speeds
the testing of the many small changes that inevitably have to
be made in the course of developing a language, and so
makes the language designer's job significantly easier.

In this paper, we examine two small parsers we have
constructed in order to illustrate some of these benefits, and to
serve as stepping stones to the construction of a larger parsing
system, which will integrate all the features we have mentioned.
The first of these simple parsers shows the power of a
construction specific approach in processing ungrammatical
input; it is oriented around case constructions, and uses the
distinctive characteristics of such constructions to deal with
grammatical deviations in an extremely robust fashion. The
second parser is a good illustration of the advantages of switching
between parsing strategies dynamically; by combining only three
very simple parsing strategies, it is able to deal with a surprisingly
wide range of input. We go on to discuss combining the
advantages of these two, essentially "toy", parsers into a single,
useful multi-strategy parsing system. We also discuss further
advantages of a construction-specific approach when it is used in
an interface for accessing and updating data bases.

2. The CASPAR Parser
In this section we examine CASPAR, a small parser we

constructed as an illustration of the power of a construction-
specific approach in dealing with ungrammatical input. It also
turned out to provide a very efficient way of recognizing

grammatical input in the class of domain specific languages for
which it was designed.

CASPAR was designed to provide a natural language command
interface to an interactive computer system. Since an imperative
is a natural way to issue system commands, CASPAR was
designed to recognize simple imperative verb phrases, i.e.
imperative verbs followed by a sequence of noun phrases possibly
marked by prepositions. Examples for an interface to a data base
keeping track of registration for college courses include:

cancel math 247
enroll Jim Campbell in English 324
transfer student 5518 from Physics 101 to comp sci 111

The imperative verbs identify the system commands and the noun
phrases provide their arguments. Such constructions are classic
examples of case constructions; the verb or command is the
central concept, and the noun phrases or arguments are its cases.
Considered as surface cases, the command arguments are either
marked by preposition, or unmarked and identified by position
such as the position of direct object in the examples above.

In line with in the construction-specific approach we .are
advocating, CASPAR was given two quite distinct parsing
strategies:

• A strategy to identify the appropriate case frame and activate
its case markers and filler-patterns to deal with the rest of the
input utterance.

• A strategy to recognize individual constituent case filters and
markers, including the verb, noun phrases in the role of case
fillers, and prepositions in the role of case markers.

The first of these strategies is dominant in the sense that it decides
where in the input the second, more detailed, recognizer should
be applied and what it should try to recognize when it is applied.
The second strategy is a simple linear pattern matcher. This is just
what is needed for verbs, prepositions, and simple object
descriptions such as those in the examples above, but it is
inadequate for more complicated kinds of object descriptions, and
in particular, for object descriptions that are themselves case
constructions as in:

cancel the classes taught by Solway on Tuesday

This deficiency is what relegates CASPAR to the realm of toy
systems. However, see [6] for the design of a multi strategy parser
that can deal with nested case constructions.

While CASPAR is just an experimental system, the flexibility and
robustness obtained by providing separate parsing strategies for
the two different construction types it recognizes (case and fixed-
order linear patterns) is quite striking. The types of grammatical
deviation that can be dealt with include:

• Unexpected and unrecognizable (to the system) interjections
as in:

tStQtS2enroll student 2476 in I think CS 348.

• missing case markers:
enroll Jim Campbell Economics 247.

• out of order cases:
In Economics 247 Jim Campbell enroll.

The reason for including these particular extraneous characters wilt be easily
guessed by users of certain computer systems

434

• ambiguous cases:
transfer Jim Campbell Economics 247 English 332.

Combinations of these ungrammaticalities can also be dealt with.

CASPAR achieves this degree of robustness by exploiting
certain specialized characteristics of case constructions; most
importantly, it takes advantage of the differences between case
markers and case fillers. Case markers are typically drawn from a
small set of words or phrases, and are thus much easier to
recognize (or spelling correct) than case fillers, which have much
more variety. This ease of recognition of case markers makes it
practical for CASPAR to scan the entire input for them, and thus to
locate and parse the corresponding case fillers; interjections and
out of order cases are dealt with in this way. CASPAR also keeps
track of which cases have been filled, and thus cuts down on the
number of filler types that it has to try when a segment of input
must be parsed without the guidance of case markers, for
instance, if some case markers have been omitted. Neither of
these heuristics are available to the more uniform parsing
procedures of Weischedel and Black (22). or Kwasny and
Sondheimer [16)), or of our own FlexP parser [10], simply because
there is no convenient way for these parsers to represent or make
use of the information that case markers are much easier to
recognize than case fillers or that most cases can be filled only
once. Exactly how these heuristics operate, along with other
details of how CASPAR is tailored to case constructions, can be
seen from the following description of CASPARS parsing
algorithm.

CASPAR has two parsing strategies: a case-oriented strategy
and a linear pattern matching strategy. The case oriented
strategy controls the operation of the pattern matching strategy,
which in turn actually recognizes words from the input. The linear
pattern matcher may be operated in anchored mode, where it tries
to match one of a number of linear patterns starting at a fixed
word in the input, or in scanning mode, where it tries to match the
patterns it is given at successive points in the input string until one
of the patterns matches, or it reaches the end of the string. The
case-oriented parsing strategy operates in the following way.

1. Starting from the left of the input string, apply the linear
pattern matcher in scanning mode using all the patterns which
correspond to commands. If this succeeds, the command
corresponding to the pattern that matched becomes the
current command, and the remainder of the input string is
parsed relative to its domain specific case frame. If it fails,
CASPAR cannot parse the input.

2. If the current command has an unmarked direct object case,
apply the linear matcher in anchored mode at the next3 word
using the set of patterns appropriate to the type of object that
should fill the case. If this succeeds, record the filler thus
obtained as the filler for the case.

3. Starting from the next word, apply the pattern matcher in
scanning mode using the patterns corresponding to the
surface markers of all the marked cases that have not yet been
filled. If this fails, terminate.

4. If the last step succeeds, CASPAR selects a marked case the
one from which the successful pattern came. Apply the
matcher in anchored mode at the next word using the set of
patterns appropriate to the type of object that should fill the

3The word after the last one the pattern matcher matched the leat time it was
applied.

case selected. If this succeeds record the filler thus obtained
as the filler for the case.

5. Go to step 3.

Unless the input turns out to be completely unparsable, this
algorithm will produce a command and a (possibly incomplete) set
of arguments It is also insensitive to spurious input immediately
preceding a case marker. However, it is not able to deal with any
of the other ungrammaticalities mentioned above. Dealing with
them involves going back over any parts of the input that have
been skipped by using the pattern matcher in scanning mode. If,
after the above algorithm has terminated, there are any such
skipped substrings, and there are also arguments to the command
that have not been filled, the pattern matcher is applied in
scanning mode to each of the skipped substrings using the
patterns corresponding to the filler types of the unfilled
arguments. This will pick up any arguments which were
misplaced, or had garbled or missing case markers. If one of the
arguments matched in this way could fill more than one slot, a
special representation is used for CASPAR'S output indicating the
ambiguity without duplicating unambiguous parts of the parse
This representation, which has advantages in formulating
requests to the user to resolve the ambiguity, is described in more
detail in [8].

The grammar description that CASPAR uses is tied very closely
to the structure of the domain. For each possible command to the
underlying system, the grammar definition contains a list of the
linear patterns which can be used to refer to that command, plus a
list of arguments to the command. For each argument the
definition gives the type of domain object that should fill that
argument, plus the linear patterns used as surface case markers
to signal the argument (or an indication that the argument is an
unmarked case such as the direct object). The grammar definition
also gives the linear patterns needed to recognize each type of
domain object. See Section 5 below for an example of a grammar
definition in a similar style, and for a discussion of how a
construction-specific approach to parsing fits well with a grammar
definition that is tied closely to domain structure. This point is also
discussed in [8]. This form of grammar definition fits naturally into
a description of the underlying interactive system as a whole.
Such a description can be used to control other aspects of a
cooperative and graceful user interface • see [1] for more details
of other work we have done in that area.

While simplistic in many ways, CASPAR shows the power of a
construction-specific approach to parsing, both in the range of
grammatical deviations it can handle, and in the efficiency it
displays in straightforward parsing of grammatical input. This
efficiency is derived from the limited number of patterns that the
pattern matcher has to deal with at any one time On its first
application, the matcher only deals with command patterns; on
subsequent applications, it alternates between the patterns for the
markers of the unfilled cases of the current command, and the
patterns for a specific object type. Also, except in post­
processing of skipped input, only case marker and command
patterns are employed when the pattern matcher is in its less
efficient scanning mode. The more difficult to recognize object
descriptions are processed in the more efficient anchored mode.
This efficiency is sound evidence that such a construction-
specific approach is a good way to bring the powerful semantic
restrictions available in limited domains to bear on the parsing of
both grammatical and ungrammatical input.

434

3. The DYPAR Parser
As a related investigation of the practical feasibility of dynamic

strategy selection by a domain oriented parser, we also developed
the DYPAR4 system. DYPAR has a Kernel control module to
select the appropriate parsing strategy as a function of the
expected input structure, plus three parsing strategies to select
among, each with its own grammatical and/or semantic
knowledge encodings, and global data structures to share
information. The control structure, strategies, and linguistic
knowledge representations are augmented with domain specific
semantic knowledge bases. Thus, the same kernel parser may be
applied to different domains if a detailed, domain specific,
semantic knowledge base is provided.

Whereas the central focus of CASPAR was to exploit domain
semantics and construction specific case frames for processing
some types of malformed input, DYPAR was built to explore issues
of user interaction and multi strategy synthesis in the context of a
working parser. More explicitly, our objectives for developing
DYPAR were threefold:

• Test the feasibility of a multi-strategy approach.
• Investigate a simple data base task requiring interaction and

feedback between the system and the user.
• Eventually integrate the best features of CASPAR and DYPAR

into a robust, construction specific, multi strategy parser.

In encoding domain semantics, we found that some information
can be expressed more naturally and parsimoniously in one form
(e.g., linear patterns), while other information is best expressed in
other forms (e g , equivalence transformations or semantic
grammar productions). To illustrate this point, we attempted to
encode all the knowledge in DYPAR as a pure semantic grammar.
This task has more than tripled the size of the task-specific
knowledge base, and we have not yet finished (nor do we intend to
finish) the conversion. The primary reason for the increase in size
is that much of the information must be stated with a high degree
of redundancy and often in an awkward, roundabout manner
when it is coerced into a uniform, context-free representation.
Therefore, the primary lesson one can draw from the DYPAR effort
is that multi-strategy parsing is tractable in practice and moreover
can perform the work of single strategy approaches with much
greater economy of programmer effort.5

3.1 . Parsing Strategies in DYPAR
DYPAR combines three parsing strategies:

• A context-free semantic grammar component, grouping
domain information into hierarchical semantic categories
useful in classifying individual words and phrases in the input
language, similar to the LIFER semantic grammar
mechanism [12].

• A partial pattern match component, represented as
pattern action rules. The patterns may contain individual
words, semantic categories (from the semantic grammar), wild

DYnamic PARsing is still in Its infant stages, requiring frequent changes in its
software

5 l t was not our intention in building DYPAR that it outperform existing parsers in
terms of theoiotic.il coverage. but rather that it replicate known peiformance in a
moio natural, parsimonious, easier to extend manner However, our next step -
integrating DYPAR and CASPAR strives for both impioved coverage and much
more robust reliable performance in well defined domains

cards, optional constituents, register assignment and register
reference. This method enables the semantic grammar non­
terminal categories to be applied in a much more effective
context-sensitive manner than in a pure context-free grammar
recognizer.

• Equivalence transformations map domain dependent and
domain-independent constructs into canonical form, requiring
a fraction of the patterns and semantic categories that would
otherwise be needed. If a phrase-structure can be expressed
in several different ways, while retaining the same meaning, it
is clearly beneficial to first map it into canonical form, rather
than being forced to include all possible variants in every
context where that constituent could occur.

Below we give an example of each type of linguistic information
used in DYPAR. In order to understand these examples, a few
notational conventions must be introduced: <BRACKETS>
denote a non-terminal semantic grammar symbol. A word starting
with an exclamation mark (e.g.. {REGISTER) denotes the name of
register. A vertical bar (|) denotes disjunction in a pattern. A # in
a pattern matches a single word. An asterisk (•) matches an
arbitrary sequence of words. The construction (JREGISTER
pattern) assigns whatever matches the pattern to the register
specified. A question mark (?) before a constituent in a pattern
indicates that constituent is optional.

DYPAR, as we see in the dialogue below, is the front end of a
semantic network data base update and query system. Therefore,
its domain knowledge consists of language constructs relevant to
this task.'First, consider a fragment of its semantic grammar:

<INFO-REQ> -> (<WHAT-Q> | <INF0-REQ1>)
<INF0-REQ1> -> (?<POLITE> <INF0-REQ2>

7<WHAT-Q>)
<INF0-REQ2> -> (TELL <me-US> ?ABOUT |

GIVE <me-US> | PRINT | TYPE)
This fragment, together with the rewrite rules for the other non­
terminals above (e.g., <BEPRES>, whose rewrite is alt the present-
tense conjugations of the verb "to be") recognizes the initial
segment of information request queries such as: "What is ...",
"Tell me what is ...", "Tell me about...", "Would you give me ..",
etc.

Now, consider a pattern-match rule:
(?<det> (I v a l #) <be-pre$> ?<DET> (IPROP •#)

OF ?<DET> (INAM #) ?<dpunct>)
■>
(LTM-STORE INAM IVAL IPROP)

This rule recognizes sentences such as: "Felix is a friend of Fido",
or "Reagan is president of the USA", and passes the information
to the data base manager for consistency checking and storage.
In order to pass the information gathered in the pattern match
process, the registers are assigned appropriate values. For
instance, in the second example, INAM is assigned "USA", IPROP
is assigned "president" and iVAL is assigned "Reagan".

The equivalence transformations also use the pattern matcher.
For instance, consider the following simple (but useful)
transformation:

((i S l •) (IW1 <NOMINAL>) <POSS>
(!W2 <NOMINAL>) (!S2 •) ?(IP <PUNCT>))

: : >
(NCONC IS l 1W2 (LIST 'OF) IW1 IS2 tP)

This transformation maps possessive constructions into attribute-
value constructions, which we chose as canonical. For instance
"Tell me about the VAX-785's performance." is mapped into "Tell

435

strategies. However, these parsers are only first steps in exploiting
the multi-strategy approach to develop real-world, robust, natural
language interfaces. In terms of sophistication. DYPAR straddles
the boundary between an advanced toy and a rudimentary real-
applications system. One direction of continued development
would be to enhance its pattern matcher, build additional general
transformations, and augment its language interface to serve as a
medium in which to express extensions to the grammar by a
domain expert (not necessarily a natural language expert). A first
step in the direction of automating and simplifying user
extensibility has been taken in the Nano KLAUS system [13].

Our research is focused in a direction different from, but
complementary to, the one taken in Nano KLAUS. Since the
performance obtained by integrating several parsing strategies
has, for both CASPAR and DYPAR, proven more effective than the
application of any single strategy, we intend to extrapolate by
including additional parsing strategies in future parsers. As a step
along this road, we have designed a flexible control structure [6]
that integrates case instantiation with other parsing strategies
discussed in this paper, together with additional construction-
specific strategies. As in CASPAR, the case oriented strategy is
the dominant one. We expect this new design to provide a
quantum jump in the range of applicability of our task-oriented
parsers. Moreover, techniques such as expectation-driven
disambiguation [2.19). developed in non-applied natural language
work, can now be brought to bear in real-world applications. The
reason why case frame parsers have not been developed in task-
oriented domains is that, while they capture general principles
admirably and can bring detailed semantic knowledge to bear,
they are not well suited to recognizing specific idioms, compound
nouns and the like. However, the addition of partial pattern
matching (ideally suited to detecting idiomatic expressions)
integrated with case frame instantiation and other parsing
methods should provide a high degree of generality without
sacrificing robustness.

Graceful interaction with the user is an important goal for any
natural language front end whose users may be unfamiliar with
computers (more details on our broader efforts towards this goal
are given in [11,9]). People invariably produce ungrammatical
utterances, leave out words, add interjections, and use terms
outside the vocabulary of any system. It is essential that a real-
world system "fail soft" in such circumstances, and interact with
the user to enable graceful recovery. We saw a simple examples of
this in DYPAR, and more mechanisms are discussed in [10J. The
expectation setting provided by a case system incorporating
domain knowledge may prove a more powerful tool to minimize
failure than mechanisms based on relaxing grammatical rules or
pattern matching requirements.

Consider, for instance, a file management system where a user
may type

Transfer the flies in my directory to the accounts directory.

It is fairly clear to us humans that the user meant to type "files",
even if we know perfectly well that "flies" is a legitimate word in
our vocabulary.6 A case frame system knows that the object case
of the transfer command (as applied to the file-management
domain) requires a logical data entity, which "flies" is not.
Observing this violated semantic requirement, it can proceed to
see whether by spelling correction, morphological decomposition,

436

or detecting potential omissions it can map "flies" into a known
filler of that case. Here, spelling correction works (given a very
restricted pool of candidate words satisfying the semantic
requirements), and the system can proceed to inform the user of
its correction (allowing the user to override if need be).

A striking advantage of our mixed-strategy approach is that the
top-level case structure, in essence, partitions the semantic world
into categories that can legitimately fill specific cases. The power
of the approach derives from these top-down case-frame
expectations significantly constraining bottom-up pattern
matching. Thus, when a pattern matcher is invoked to parse the
recipient case of a file transfer frame, it need only consider
patterns (and semantic grammar constructs) that correspond to
logical locations inside a computer. This form of expectation-
driven parsing in restricted domains has two important
advantages from the point of view of robustness:

• Many spurious parses are never generated (because patterns
yielding potentially spurious matches are never tried in
inappropriate contexts.)

• Additional knowledge, additional patterns, grammar rules,
etc. can be added without a corresponding linear increase in
parse time (since the case-frames focus only upon the relevant
subset of patterns and rules). Thus, the efficiency of the
system may actually increase with the addition of more domain
knowledge (in effect enabling the case frames to restrict
context even further). This behavior makes it possible to build
the parser incrementally without the ever-present fear that a
new extension may make the entire parser fail due to
unexpected application of that extension in the wrong context.

We conclude this section by reiterating the central theme of our
investigations: Integration of multiple construction specific
parsing strategies is a powerful organizing principle for robust,
task-oriented natural language interfaces.

5. Advantages for Data Base Interfaces
A further advantage of multiple construction-specific parsing

techniques and grammar representations arises in the case of
interfaces for accessing and updating data bases. Most current
data base interfaces that use natural language are concerned
purely with data base access rather than update, though see
Kaplan [15] for some discussion of the problems involved in the
latter activity. The typical approach of such interfaces has been to
translate a users natural language questions about the contents
of a data base into a formal query language which is then
interpreted by a program specific to the particular data base to
produce the required answer. The answer is then expressed to
the user in some more or less natural format. The translation into
the formal query language can be done directly from the input, as
is the case in LADDER (20), or indirectly via a syntax tree of the
input as in LUNAR [24].

While this arrangement is fine for pure data base access, it is
less than optimal if a mixture of access and update is desired. The
problem is that the structure of the query languages employed
does not mirror the structure of the data base being queried. This
means that an access request and an update request of
essentially similar form will result in radically different parses. In
turn, this means that constituents which are identical at the
language level must be parsed in radically different ways
depending on whether they are in an access or an update request.

To make this point concrete, consider the following two
requests that might be presented to an interface to a data base
concerning college courses:

Who is the instructor of Physics 247?
Change the instructor of Physics 247 to be Solway.

Translating the first input into a typical7 formal query language
might look something like:

(FOR (X in COURSES)
(and (= (DEPT X) Economics)

(= (NUMBER X) 247))
(LIST (INSTRUC X)))

A corresponding translation for the update request8 on the other
hand might be:

(FOR (X in COURSES)
(and (« (OEPT X) Economics)

(= (NUMBER X) 247))
(CHANGE-INSTRUC X Solway))

While the representation of "Economics 247" is the same in both
cases, the treatment of "instructor" is quite different. In the
access example, it is encoded into the access function, INSTRUC,
and in the update example, it turns into the update function,
CHANGE-INSTRUC. The reason for such radically different
treatment is a desire to make the ouery language independent of
the structure of the data. For example the relations between
courses and their departments, numbers, and instructors could be
contained in one file, or in three separate files. By making no
assumption about the structure of the data, and just using neutral
functions like INSTRUC and CHANG INSTRUC which assume that
there is a relation between course and instructor, but nothing
about the way it is represented, the query language avoids
dependencies of this sort.

However, adopting a query language of this type has
unfortunate consequences for a parser that must recognize both
access and update requests. Clearly, it would be desirable for
such a parser to use the same grammar rules to recognize "the
instructor of Economics 247" in both examples above, but the
target representation makes this quite inconvenient. Because
"instructor" has to be translated in two quite different ways, it is
most natural to control the parsing of the phrase from a higher
level, so there would probably be rules9 that recognized complete
phrases like:

<te l l -me> < ins t r uc to r> of <course>
<change> < ins t r uc to r> of <course> to <person>

These examples are actually patterned after, though not identical to, the
language employed by Woods in the LUNAR system (24). which is one of the more
easily human readable of the query languages that have been used Most DB query
languages adopt a similar, if mote cryptic, formalism For instance. COOASYL [7]
queries are stated in a Imeaiized form whose content resembles that of our
example above Kaplan (14). however, first translates queries into a intermediate
formalism, satisfying some but not all the features of the representation we
propose in the following pages, before generating the cryptic COOASYL query
form

8
We do not consider here "non obvious" interpretations for update requests

like those discussed by Kaplan [15]

g
The exact form of the grammar representation, network or pattern, is

unimpoitant here, just the idea that phrases of this type would be recognized as a
whole

437

and turned them into internal representations like the ones above.
In order to be able to recognize patterns like "<instructor> of
<course>" or better still "<slot> of <structure>" without regard to
whether they were part of an access or update request, one would
have to represent output from the parser something like:

[RequestType: Access
SlotSpec:

[S l o t : I n s t r u c t o r
S t r u c t u r e :

[Type: COURSE Oept: Physics Number; 2471

[RequsstType: Update
SlotSpec:

[S l o t : I n s t r u c t o r
S t r u c t u r e :

[Type: COURSE Oept: Physics Number: 247]

UpdateValue: Solway

Here the representation of "the instructor of Economics 247" is
the same for both the access and update requests.

This form of representation has the advantages we have
described for parsing. A potential objection, however, is that the
representation presumes too much about the structure of the data
base. We do not believe that this objection is valid because the
assumptions made are only about the logical structure of the data
base from the user's point of view, rather than its detailed
organization into files, e t c Any relational data base would
certainly fit into the slot and filler, property list, style of
representation we have used, and other forms of logical
organization could also be accommodated. In addition, the work
in LADDER [20] shows how an abstract intermediate
representation is very useful when several data bases of different
detailed structure are involved, and the above style of
representation should serve splendidly for that purpose.

So far, nothing we have said in this section makes the
construction-specific approach to parsing preferable to the
uniform approach, with respect to data base interactions. There
would be nothing to stop a uniform parser producing the kind of
representation we are advocating for update and access requests
just as well as a construction-specific one could. The primary
advantage of construction-specific parsing here involves
describing the relation between the logical structure of the data
base and the input language. As we noted in the introduction,
since the specific constructions dealt with can be those "natural"
for the task domain, when using a construction-specific approach,
the input language can be defined in a way that is tied closely to
the slot and filler structure of the objects of the data base. To be
more precise, the input syntax for the description of a given kind
of data base object can be expressed in terms of the fillers for
slots of that object type embedded in whatever kind of
construction is natural for describing such an object. As an
example of the kind of language definition we have in mind,
consider the following three complementary syntax definitions for
descriptions of a course.

[SyntaxType: NounWithCases
Head: (course sec t ion c lass)
PostCases: [I n s t r u c t o r :

(by (taught by) (g iven by))
Department: ((h e l d I n))
Number: (numbered)

[SyntaxType: PossessiveCases
NamedCases:

[I n s t r u c t o r :
(i n s t r u c t o r teacher (f a c u l t y member))

Department: (department)

[SyntaxType: S lo tPa t te rn
P a t t e r n : (Department Number)

Without going into great detail, the first syntax definition above
says that a construction type of NOUNWITHCASES may be used to
describe a COURSE. This means that it may be described by a head
noun (a list of alternatives is given), optionally preceded by a
determiner (part of the construction definition), followed by a
sequence of descriptive cases. These cases are defined as a
property list indicated by POSTCASES. The indicators
(INSTRUCTOR, DEPARTMENT, etc) are slot names of the object type,
and the values are a list of possible case markers for that case
(both single words and linear patterns of words). For instance,
"taught by" can signal the presence of an instructor description.
The fact that INSTRUCTOR is a slot of COURSE, and the syntax for
fillers of that slot are recorded elsewhere. The second syntax
definition gives a listing of the slots of COURSE, and the words used
to describe them. From this information, a phrase like "the
instructor of <course>" can be parsed. Finally, an alternative
syntax for COURSE of (<department> <number>) is given. We have
already developed a similar kind of language definition formalism
for command interface applications [1] We intend to extend this
work to interfaces that access and update data bases. For
instance, the noun-phrase head and the case markers can be
represented by more complex patterns that may include non­
terminals from a semantic grammar •• similar to the mechanism
used (in a less discriminating fashion) in the DYPAR system.

6. Conclusion
The goal of this paper has been to explain the advantages of a

multi strategy, construction-specific approach to parsing in
applied natural language processing, largely through an
examination of two "toy" parsers that we have constructed. The
construction-specific multi strategy approach exploits prior
knowledge of expected constructions, domain semantics, and
strategies optimized to recognize each construction type. The two
parsers demonstrated clear advantages for the construction-
specific approach in parsing both grammatical and ungrammatical
input. We intend to construct a single, practical, multi strategy
parsing system that combines the best aspects of both simpler
systems in a more complex, embedded constituent control
structure. Finally, we discussed some issues in data base access
and update, and showed that a construction-specific approach,
coupled with a case-structured data base description, offers a
promising approach to a unified, interactive data base query and
update system.

438

References

Ball, J. E. and Hayes, P. J., "Representation of Task-
Independent Knowledge in a Gracefully Interacting User
Interface," Proc. 1st Annual Meeting of the American
Association for Artificial Intelligence, Stanford University,
August 1980, pp. 116 120.

Birnbaum, L. and Selfridge. M., "Conceptual Analysis in
Natural Language," in Inside Computer Understanding, R.
Schank and C Riesbeck, eds., New Jersey: Erlbaum
Assoc, 1980, pp. 318-353.

Brown, J. S. and Burton. R.R., "Multiple Representations
of Knowledge for Tutorial Reasoning," in Representation
and Understanding. Bobrow, D. G. and Collins, A., ed.,
Academic Press. New York, 1975, pp. 311-349.

Burton, R. R., "Semantic Grammar: An Engineering
Technique for Constructing Natural Language
Understanding Systems." Tech. report 3453, Bolt Beranek
and Newman, 1975.

Carbonell, J. G , "Towards a Self Extending Parser,"
Proceedings of the 17th Meeting of the Association for
Computational Linguistics. 1979 , pp. 3-7.

Carbonell, J. G. and Hayes. P. J., "Dynamic Strategy
Selection in Flexible Parsing," Proc. of J9th Annual
Meeting of the Assoc, for Comput. Ling., Stanford
University, June 1981 .

ACM Publications, Data Base Task Group of CODASYL
Programming Language Committee Report. NY, 1971.

Hayes P. J., "Focused Interaction in Flexible Parsing,"
Proc. of 19th Annual Meeting of the Assoc, for Comput.
Ling., Stanford University, June 1981 .

Hayes, P. J., Ball, J. E., and Reddy, R., "Breaking the Man-
Machine Communication Barrier,"Computer, March 1981 .

Hayes, P. J. and Mouradian, G. V., "Flexible Parsing,"
Proc. of 18th Annual Meeting of the Assoc, for Comput.
Ling., Philadelphia, June 1980 , pp. 97-103.

Hayes, P. J., and Reddy, R., "An Anatomy of Graceful
Interaction in Man-Machine Communication," Tech.
report, Computer Science Department, Carnegie Mellon
University, 1979,.

Hendrix, G. G., "Human Engineering for Applied Natural
Language Processing," Proc. Fifth Int. Jt. Conf. on Artificial
Intelligence, 1977 , pp. 183-191.

Hendrix, G. G. and Haas, N., "Acquiring Knowledge for
Information Management," in Machine Learning, R.
S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., Palo
Alto, CA: Tioga Pub. Co., 1981.

Kaplan, S. J., Cooperative Responses from a Portable
Natural Language Data Base Query System, PhD
dissertation, Dept. of Computer and Information Science,
University of Pennsylvania, Philadelphia, 1979.

15. Kaplan, S. J., "Interpreting Natural Language Data Base
Updates," Submitted to the 19th Annual Meeting of the
Assoc, for Comput. Ling., Stanford University, June 1981 .

16. Kwasny, S. C. and Sondheimer, N. K., "Ungrammatically
and Extra-Grammatically in Natural Language
Understanding Systems," Proc. of 17th Annual Meeting of
the Assoc, for Comput. Ling., La Jolla, Ca., August 1979 ,
pp. 19 23.

17. Marcus, M. A., A Theory of Syntactic Recognition for
Natural Language, MIT Press, Cambridge, Mass., 1980.

18. Parkison, R.C., Colby, K. M., and Faught, W. S.,
"Conversational Language Comprehension Using
Integrated Pattern-Matching and Parsing ," Artificial
Intelligence, Vol. 9, 1977 , pp. 111-134.

19. Riesbeck, C. and Schank, R. C, "Comprehension by
Computer: Expectation Based Analysis of Sentences in
Context," Tech. report 78, Computer Science Department,
Yale University, 1976.

20. Sacerdoti, ED. , "Language Access to Distributed Data
with Error Recovery," Proc. Fifth Int. Jt. Conf. on Artificial
Intelligence, 1977 , pp. 196-202.

21. Waltz, D.L., "An English Language Question Answering
System for a Large Relational Data Base," CACM, Vol. 21,
No. 7, 1978, pp. 526539.

22. Weischedel, R. M. and Black, J., "Responding to
Potentially Unparseable Sentences," Tech. report 79/3,
Dept. of Computer and Information Sciences, University of
Delaware, 1979.

23. Wilks, Y. A., "Preference Semantics," in Formal Semantics
of Natural Language, Keenan, ed., Cambridge University
Press, 1975.

24. Woods, W. A , Kaplan, R. M , and Nash Webber, B., "The
Lunar Sciences Language System: Final Report," Tech.
report 2378, Bolt, Beranek, and Newman, Inc., Cambridge,
Mass., 1972.

439

