
An Algorithm that Infers Theories from Facts

Ehud Y. Shapiro1

Department of Computer Science
Yale University

New Haven, CT 06520

Abstract
A framework for inductive inference in logic is

presented: a Model Inference Problem is defined, and it
is shown that problems of machine learning and
program synthesis from examples can be formulated
naturally as model inference problems. A general,
incremental inductive inference algorithm for solving
model inference problems is developed. This algorithm
is based on Popper's methodology of conjectures and
refutations [I I] . The algorithm can be shown to
identify in the limit [3] any model in a family of
complexity classes of models, is most powerful of its
kind, and is flexible enough to have been successfully
implemented for several concrete domains.

The Model Inference System is a Prolog
implementation of this algorithm, specialized to infer
theories in Horn form. It can infer axiomatizations of
concrete models from a small number of facts in a
practical amount of time.

/. Introduction.
A model inference problem is an abstraction of the problem

faced by a scientist, working in some domain under a fixed
conceptual framework, performing experiments and trying to
find a theory capable of explaining their results.

In a model inference problem we assume some unknown
model M for a given first order language L. We distinguish two
types of sentences in L. observational sentences, which
correspond to descriptions of experimental results, and
hypotheses, which can serve as explanations for these results.
The model inference problem is.

Given the ability to test observational sentences for
their truth in some unknown model M, find a finite set
of hypotheses, true in M, that imply all true
observational sentences.

J J. Some Model Inference Problems,
An example of a model inference problem is illustrated in

Figure 1. In this example the domain of inquiry is the Integers,
and the given first order language contains one constant 0, the
successor function X', and three predicates:

X<Y for X is less than or equal to Y, plus(X,Y,Z) for X plus

Y is 2 and times(X,Y,Z) for X times Y is Z Assume that w<
test whether these relations hold between concrete numbers,
is, we can test ground (variable-free) atoms such as 0
plus(0',0',0") and tim*s(0",0",0"") for their truth in M It
setting, the model inference problem is to find a finite s
sentences that are true of arithmetic and imply all true gr<
atoms. Figure I shows such a set of sentences. We use the
arrow — to stand for "is implied by". The sentence P- QA
read "f is implied by the conjunction of Q and R".

Note that we do not need to discover all the properties o
functions and predicates involved to solve this model infer
problem. In particular, the above set of axioms does not cor
axioms for associativity of addition, transitivity of the orde
relation, etc.. If T is a set of sentences true in M that implic
ground atoms of L true in M then T" is called an atomic-comi
axiomatization of M. The set of sentences in Figure 1 ii
atomic complete axiomatization of arithmetic. It has I
inferred by the Model Inference System from 36 facts ii
seconds of CPU time.

Another type of inductive inference problem that natui
fits in this framework is program synthesis from exam
[1,4,14]. The task is to infer a program inductively, g
examples of its input-output behavior. This task can be rest
as a model inference problem, and in this case the programs t

'This work was supported in part by the National Science
Foundation, grim No. MCS8002447.

This paper is an informal summary of the results described in [12].

446

inferred are logic programs [7,8,10].

A logic program is a collection of Horn clauses, which are
universally quantified sentences of the form
/ * - Qv A Q% a\ ... & Qn for n>0, where /»and the Q%% are atoms.
Such a sentence is read "P is implied by the conjunction of the
QY\ and is interpreted procedurally "to satisfy goal P, satiify
goals QuQt fin" If the (?*s are missing, the sentence reads "P
is true** or "goal P is satisfied**. If P is missing, the sentence reads
"the g's are false**, or "satisfy the QY\ A collection of Horn
clauses can be executed as a program, using this procedural
interpretation.

Figure 2 shows two logic programs. In this example of a
model inference problem, the language L contains the two place
function symbol [X)Y] (the Prolog list constructor, the equivalent
of the LISP function cona). the constant [] (Prolog's nil) and the
two predicates append(X,Y,Z) and reverae(X.Y). The model M
for this language is defined as follows: the elements of M are all
lists constructed from [X|Y] and [] ; the atom append(X,Y,Z) is
true in M just in case the list Z is the result of appending the list X
to the list Y, e.g. append(|a,b,c),[d,e),[a fb,c,d,e]); the atom
reverae(X.Y) is true in M just in case that the list Y is the reverse
of the list X, e.g. reverae(Ia,b,c),[c,b,a]). The Horn clauses in
Figure 2 are an atomic-complete axiomatization of the model
thus defined, and are also Prolog programs for computing
append and reverae. The Model Inference System synthesized
the logic program for append in 11 CPU seconds from 34 facts*
and a similar program for reverae from 13 facts in 6 CPU
seconds.

In this paper we restrict ourselves to model inference
problems in which the hypothesis language is the Horn clauses
and the observational language is the ground atoms of L. In [12]
we discuss a more general setting, and show that problems of
grammatical inference and concept learning can also be
formulated as model inference problems. Our restricted model
inference problem is the following:

Given the ability to test ground atoms for their
truth in some unknown model At, find an
atomic-complete Horn axiomatization ofM.

1.2. Solutions to Model Inference Problems.
An algorithm that solves model inference problems it called

a model Inference algorithm. Such an algorithm tests the truth of
ground atoms in the model, and once in a while produces a
conjecture, a collection of Horn clauses. Since a finite number of
facts about a model can not in general determine it uniquely
among all possible models, and since a model inference algorithm
always bases its conjectures on a finite number of facts, it is
bound to make mistakes. The most one can expect of a model
inference algorithm is that after examining a finite number of
facts about the model, and making a finite number of wrong
conjectures, the algorithm will correctly conjecture an atomic-
complete axiomatization of a model and never change its
conjecture afterwards. Following Gold [3], we say that in such a
case the algorithm identifies the model in the limit. Note that a
model inference algorithm cannot, in general, determine whether
it actually has identified a model.

One inductive inference technique that can be used to solve
model inference problems is enumeration. Algorithm I
exemplifies this technique.

We say that a conjecture T is too strong with respect to some
model M if it implies an observational sentence false in M. We
say that it is too weak if it does not imply an observational
sentence true in M. Note that a conjecture can be
simultaneously too strong and too weak. The test of whether a
conjecture is too strong or too weak is, in general, undecidable.
To implement Algorithm 1 we choose some fixed complexity
bound and use is to bound the resources allocated to this test.
The complexity bound we choose determines the class of models
the algorithm can identify in the limit, as explained below.

Let h be some total computable function from ground atoms
to non-negative integers. A finite set of Horn clauses T is called
h-easy if its atomic consequences are easy to derive modulo h,
that is, if T derives a in at most h(a) derivation steps for almost
every (that is, for all except a finite number of) ground atom o
such that T implies a. A model hi is h-easy if it has a finite
atomic-complete h-easy axiomatization. Using this concept, we
can characterize the power of Algorithm I: if we choose such an
h to bound the resources allocated to the test in the while loop,
then the algorithm can identify in the limit exactly h-easy models.

Although the enumerative approach is very powerful, its
inherent inefficiency limits its practical applications. Making
better use of the syntactic and semantic properties of logic, we

447

develop an incremental algorithm that overcomes some of this
inefficiency without loss of power. In developing the incremental
algorithm we focus on two questions:

/. How to weaken a conjecture if it is discovered to be
too strong?

2. How to strengthen a conjecture if it is discovered to be
too weak?

If we have a solution to these questions, we could develop an
algorithm as in Figure 3.

Figure 3: A Scheme for an Incremental Algorithm.
Choose some initial conjecture T.
repeat

Examine the next fact.
repeat

while the conjecture T is too strong do
Weaken it.

while the conjecture T is too weak do
Strengthen it.

until the conjecture T is neither too strong nor too weak
with respect to the known facts.

Output T
forever.

2. Refuting Hypotheses with Crucial Experiments,
"The only thing the experiment teaches us is that among

the propositions used there is at least one error; but where this
error lies is just what it does not tell us**

-- Pierre Duhem,
The Aim and Structure of Physical Theory

"...it has to be admitted that we can often test only a large
chunk of theoretical system, and sometimes perhaps only the
whole system, and that, in these cases, it is a sheer guesswork
which of its ingredients should be held responsible for any
falsification**

- Karl R. Popper,
Conjectures and Refutations: The Growth of Scientific Knowledge
If a conjecture is too strong, i.e. it implies a false

observational sentence, one can conclude that at least one of its
hypotheses is false. In this section we develop the contradiction
backtracing algorithm, which can detect such an hypotheses by
performing crucial experiments in the model. The conjecture can
then be weakened by removing this false hypothesis from it.

Crucial experiments are experiments that have a potential to
decide between competing theories. A successful crucial
experiment can eliminate at least one of the theories by providing
a counterexample to its prediction. Although one crucial
experiment can, in general, refute only a collection of hypotheses,
the contradiction backtracing algorithm suggests a way of
sequencing crucial experiments, which guarantees singling out a
particular false hypothesis. The algorithm can be applied
whenever a contradiction is derived between some hypotheses
and the facts. Its input is an ordered resolution tree of the empty
sentence Q from a set of hypotheses and true observational
sentences 5. The algorithm assumes that an oracle for M, that
can tell the truth of all ground atoms of L, is given. The
algorithm performs a finite number of experiments in M,
bounded by the depth of the derivation tree, and outputs an
hypothesis peS which is false in M.

We demonstrate what the algorithm does on the

propositional calculus example in Figure 4. In this example
The resolution tree is ordered so

that the atom resolved upon appears in the condition of the left
son and in the conclusion of the right son of the resolvent.

Figure 4: Backtracing Contradictions in Propositional Logic.

The algorithm starts from the root and iteratively tests
the atoms resolved upon. If the atom is true in M i t chooses the
left subtree, otherwise the right subtree, until it reaches a leaf.
The hypothesis in the leaf is false in M. In the illustrated
example, assume that the hypothesis is false, which
means that R and Q are true in M and P is false. The algorithm
first tests whether R is true in M, and since, by our assumption, it
is true, it chooses the left subtree. Next it tests P, finding that it is
false in the model, and chooses the right branch. Finally it tests
Q, finds it to be true, chooses the left branch which leads to a leaf,
outputs the hypothesis which is false in M and
terminates.

The contradiction backtracing algorithm for a first order
language is based on the same idea of detecting a false hypothesis
by systematically constructing a counterexample to it, although
the way this counterexample is constructed is slightly more
involved. The technique used is based on collecting substitutions
in a resolution proof, which is similar to the one suggested by
Green [5] and is used by the Prolog interpreter.

There is, however, another complication in the predicate
calculus case. Since the atom P resolved upon need not be
ground, one cannot always test its truth directly with the oracle
for M. The solution is to instantiate P to a ground atom before
testing it. The choice of how to instantiate P is arbitrary, but
once it has been made all further experiments should be done
with the same substitutions, in order for their results to constitute
a counterexample to the hypothesis reached in the leaf.

The following is an example of the use of contradiction
backtracing by a model inference algorithm, while it is trying to
infer an axiomatization of the relation over the natural
numbers. Assume that the algorithm already conjectured the
hypotheses and encountered the fact

It suggested the hypothesis 8
so together with the hypothesis the sentence

can be derived. However, after adding the new
hypothesis the derivation in Figure 5 can also be constructed. So
we can apply the contradiction backtracing algorithm and find
which of the three hypotheses involved is false.

The atom resolved upon at the root is The oracle is
called on and answers Urue\ so the left branch is chosen.
The atom resolved upon at that node is and applying the

446

The contradiction backtracing algorithm is applicable just as
well to general clauses, and it can be shown that in either case the
number of experiments needed to single out a false hypothesis is
bounded by the depth of the resolution tree.

Since the Prolog interpreter automatically maintains all the
substitutions as the resolution proof progresses, it is extremely
simple to implement the contradiction backtracing algorithm in
it. In [12] we describe such an implementation and discuss its
application to the debugging of logic programs.

3. Refining Refuted Hypotheses.
This section addresses the question of how to strengthen a

conjecture that is too weak. For this task we devise refinement
operators. Intuitively speaking, a refinement operator suggests a
logically weaker plausible replacement to a refuted hypothesis. If
a conjecture is too weak, it can be strengthened by adding to it
refinements of previously refuted hypotheses. The following is
an example of one particular refinement operator used by the
Model Inference System.

We call sentences of the form that satisfy condition 4.
above context-free transformations. It can be shown that any
context-free transformation can be generated from the empty
sentence via a finite sequence of refinements, using this
refinement operator. Some non-trivial predicates have an atomic
complete axiomatization via atoms and context-free
transformations. Examples are the order relation and addition

over integers (Figure I), the subsequence relation over lists,
concatenation relations over lists (Figure 2), and the subtree
relation for binary trees.

With every refinement operator we associate an hypothesis
language: the set of sentences that can be generated from the
empty sentence via a finite sequence of refinement operations.
The hypothesis language associated with the above refinement
operator contains all atoms and context-free transformations of
L We say that one refinement operator is more general than
another if the hypothesis language associated with the first
contains the hypothesis language associated with the second.
There are some immediate generalizations of the refinement
operator described above, whose hypotheses languages suffice to
axiomatize binary tree isomorphism, multiplication,
exponentiation, string reversal and insertion sort. These
refinement operators are implemented in the Model Inference
System.

The effect of a more general refinement operator is a more
powerful, though less efficient algorithm. If the syntactic class of
the intended axiomatization is known, one can tailor a
refinement operator for that class, thus increasing the efficiency
of the algorithm. We may not always have such information,
however. To ensure the theoretical completeness of this
approach, we show in [12] the existence of a most general
refinement operator.

4. A General, IncrementalModelInference Algorithm.
In the last two chapters we have developed mechanisms to

weaken and strengthen the logical power of a conjecture when
needed. We can instantiate now the algorithm scheme in Figure
3, and obtain Algorithm 2.

As in Algorithm I, the tests in the while and repeat loops
are, in general, undecidable. To implement them we choose some
fixed complexity bound h and use is to bound the resources
allocated to these tests. Another unspecified part in the
algorithm is which refinements to add in the second while loop.
One possible approach is to add them in a breadth-first order.
That is, all hypotheses generated by two refinement will be added
before those generated by three refinements, etc. . The main
theorem proved in [12] is that using this approach, Algorithm 2

449

can identify in the limit any A-easy model, or, in other words, that
it is as powerful as Algorithm I.

Another theoretical result obtained in [12], based on the
work of the Blums*[2], says that under some constraints, this is
as powerful as model inference algorithms can get. We say that a
model inference algorithm is sufficient, if whenever it examines a
new fact, the last conjecture it has output implies all the
observational sentences it already knows to be true. It can be
shown that if a model inference algorithm is sufficient, then there
exists a recursive function h such that A-casy models is all it can
identify. Since Algorithm I is sufficient, these results establish
that it is the most powerful of its kind.

5. Relation to Other Work on Machine Lemming.
The approach to inductive inference in logic presented here

follows the direction set by Gold [3], which attempted to
formulate problems of machine learning in a precise way, and to
devise valid criteria for success of solutions to such problems. It
is hoped that the model inference problem provides a natural
setting for the continuing AI work on machine learning. The
framework proposed here makes the results and theoretical tools
developed in the recursion- and complexity-theoretic research in
inductive inference applicable to the more concrete and
experimental work in A I , and provides a solid basis for further
development. It should be emphasized that the model inference
algorithm described here is only one possible approach to
inductive inference in logic, and other approaches to machine
learning may use this theoretical framework with equal success.

The algorithm described here is most similar to the model-
directed, top-down approach of the Version Spaces algorithm of
Mitchell [9]. Both the Version Spaces algorithm and Algorithm
2 converge by finding some hypotheses that "match" the data,
although the notions of "matching" used by the two are quite
different: In the Version Spaces algorithm the pattern should
match the instances. In algorithm 2 the hypotheses should agree
with the facts. The question whether a pattern matches an
instance is always decidable, and usually by a fast algorithm; on
the other hand the corresponding question of whether a theory
agrees with a fact may be undecidable, and in such a case can
only be approximated by some resource-bounded computation.

In most of the recent work on program synthesis from
examples the target programming language is Lisp [1,4,6,14].
Several approaches were used; Smith [13] provides a good survey
of them. We have compared the performance of the Model
Inference System, restricted to infer list-processing logic
programs, to the works of Summers[14] and Biermann [I] . We
summarize briefly the results of this comparison.

Most of the example Lisp programs synthesized by
Summers* system THESYS[14] have equivalent logic programs
which are context-free transformations. Some of the more
complex functions, can be axiomatized using term-free
transformations with auxiliary predicate. An example of one is
pack, a program that packs a list of lists into one list.

packUMD-
P*ek(M Y],Z> - pack(Y,W) & append<X,W,Z)

Using the appropriate refinement operator, the Model Inference

System inferred most of the examples described in his thesis, in
less than one minute of CPU time. For example, it has inferred
the program for pack above in 9 CPU seconds and from 25 facts,
most of them negative. Summers does not give statistical
information on the performance of his system, but it seems that
the number of positive facts needed by the systems is comparable.
THESYS does not need negative facts.

Biermann's system for the synthesis of regular Lisp
programs from examples [I] is strongly influenced by Summers'
method, although it has an enumerative component which
Summers' system does not. Biermann gives a structural
definition of the class of programs synthesized by his algorithm,
and provides more information on the performance of his
system. The simpler examples described in his paper can also be
axiomatized by context-free transformations. For the more
complex examples, context-free transformations with an
auxiliary predicate suffice. This class is strictly contained in the
class of term-free transformations used to infer some of
Summers* examples.

As to the performance of the two systems in this domain,
most of programs were synthesized by Biermann*s system from
one example. The Model Inference System needed anywhere
between 6 and 25 facts. Biermann's system needed between a
fraction of a second to half an hour for these examples. The time
taken by the Model Inference System on the same examples
ranged between 2 and 38 seconds. The systems behaved similarly
on the examples: what is harder for Biermann's system is also
harder for the Model Inference System. The program that took
Biermann's system half an hour to synthesize collects all first
elements in a list of Lisp-atoms and lists. The Model Inference
System synthesized the program following program for this task
from 26 facts and in 38 seconds.

hoads([],U) -
heads(((X]Y]|Z].[X]WJ) - heads(Z.W)
haads([XjY),Z) - atom(X) & heads(Y.Z)

The actual timing figures are not very informative; what should
be noted is the major difference in the growth rate. The systems'
behavior suggest that the asymptotic time complexity of the
Model Inference System compares favorably with Biermann's for
this class of functions.

The Model Inference System has synthesized several
programs that, as far as I know, have not been synthesized from
examples before. Among them are programs for exponentiation,
binary tree isomorphism and satisfiability of boolean formulas.

The most important difference between the Lisp systems and
the Model Inference System is that the former usually
incorporate some hard-wired synthesis algorithm, which can
synthesize only a fixed class of functions. Generalizing such an
algorithm is not a trivial task, as the work of Kodratoff [6] on
generalizing Summers' method shows. The Model Inference
System, on the other hand, incorporates the refinement operator
as a parameter. To illustrate the flexibility of this approach, note
that one refinement operator is sufficient for synthesizing almost
all the examples of Summers. To get a more efficient inference of
the restricted class of functions inferred by Biermann, a more

450

specific refinement operator was designed. The implementation
of the new refinement operator required about 10 minutes of
thought and rewriting five lines of Prolog code.

6. Concluding Remarks.
This paper has presented a general, incremental algorithm

that infers theories from facts. Its theoretical analysis shows that
it is comparable to some of the most powerful algorithms known
from the complexity-theoretic approach to inductive inference.
Its implementation is comparable to existing systems for
inductive inference and program synthesis from examples. 1
believe that these results were made possible by the use of first
order logic as the underlying model of computation.

Here are some of the reasons for the success of logic as a
medium for inductive inference:

Logic has natural semantics. If a Turing Machine computes
an incorrect result on a certain input, there is no sense in which
one of the transitions in its finite control is "wrong" For every
such candidate to be a "wrong" transition, one can always patch
the Turing Machine without changing this transition, so it will
behave correctly on this input. On the other hand, if a set of
logical axioms has a false conclusion, there is a natural sense in
which at least one of the axioms is strictly false. This fact enables
the existence of error detecting algorithms such as contradiction
backtracing.

Logic has an intimate relation between its syntax and
semantics. This is the reason why there are natural ways to
weaken the logical (computational) power of a refuted
hypothesis, or, in other words, why natural and easy-to-compute
refinement operators exist.

Logic is monotonic and modular. Altering an
axiomatization by adding or removing axioms has clear effects
on the expressive (computational) power of this axiomatization.
There are not many practical programming languages for which
such syntactic alterations to a program have predictable effects
on what it computes.

Logic is a programming language that separates logic and
control. It seems that one of the reasons for the efficiency of the
Model Inference System is that it infers only the "logic
component" of a program and leaves the "control component"
unspecified [8]. The logic component of a program contains
more than its specification, and the task of imposing control on a
logic program is similar to the task of program optimization.
The problems of program optimization and program synthesis
from examples are hard enough by themselves to justify
refraining from solving them simultaneously. We propose
separating the task of synthesizing efficient programs from
examples to two sub-tasks: inference of (sometimes inefficient)
programs from examples, and program optimization.

A cknowledgements.
Dana Angluin and Drew McDermott supervised this work.

I also thank Ernie Davis, John Ellis, Bob Kowalski, Bob Nix,
Chris Riesbeck, David Warren and Steve Wood for their various
contributions.

References
[I] Alan W. Biermann.

The Inference of Regular Lisp Programs from Examples.
IEEE Transactions on Systems, Man. and Cybernetics 8,

August, 1978.

[2] Lenore Blum and Manuel Blum.
Towards a Mathematical Theory of Inductive Inference.
Information and Control 28, 1975.

[3] E. M. Gold.
Language identification in the limit.
Information and Control 10:447-474, 1967.

[4] Green C. C. et al.
Progress Reprt on Program Understanding Systems.
Technical Report Stan-CS-74-444, Computer Science

Department, Stanford University, 1974.

[5] C. Cordell Green.
Theorem Proving by Resolution as a Basis for Question

Answering.
In B. Meltzerand D. Mi chie, editor, Machine

Intelligence 4, pages 183-205. Edinburgh University
Press, Edinburgh, 1969.

[6] Yves Kodratoff.
A Class of Functions Synthesized from a Finite Number

of Examples and a Lisp Program Scheme.
International Journal of Computer and Information

Science 8(6):489-52l, 1979.

[7] Robert A. Kowalski.
Logic for Problem Solving.
Elsevier North Holland Inc., 1979.

[8] Robert A. Kowalski.
Algorithm = Logic + Control.
C ACM 22, July, 1979.

[9] Tom Michael Mitchell.
Version Spaces: An Approach to Concept Learning.
Technical Report STAN-CS-78-711, Stanford Artificial

Intelligence Laboratory, December, 1978.

[10] L. Pereira, F. Pereira and D. Warren.
User's Guide to DECsystem-10 PROLOG.
Technical Report 03/13/5570, Labortorio Nacional De

Engenharia Civil, Lisbon, September, 1978.
[I I] Karl R. Popper.

The Logic of Scientific Discovery.
Basic Books. New York, 1959.

[12] Ehud Y. Shapiro.
Inductive Inference of Theories from Facts.
Technical Report 192, Yale University, Department of

Computer Science, February, 1981.

[13] Douglas R. Smith.
A Survey of Synthesis of LISP Programs from Examples.
In International Workshop on Program Conduction,

Chateo de Bonas. INRIA, 1980.

[14] Philip Dale Summers.
Program Construction from Examples.
PhD Thesis, Yale University, 1976.
Computer Science Dept. research report No. 51.

451

