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Abstract 
A framework for inductive inference in logic is 

presented: a Model Inference Problem is defined, and it 
is shown that problems of machine learning and 
program synthesis from examples can be formulated 
naturally as model inference problems. A general, 
incremental inductive inference algorithm for solving 
model inference problems is developed. This algorithm 
is based on Popper's methodology of conjectures and 
refutations [ I I ] . The algorithm can be shown to 
identify in the limit [3] any model in a family of 
complexity classes of models, is most powerful of its 
kind, and is flexible enough to have been successfully 
implemented for several concrete domains. 

The Model Inference System is a Prolog 
implementation of this algorithm, specialized to infer 
theories in Horn form. It can infer axiomatizations of 
concrete models from a small number of facts in a 
practical amount of time. 

/. Introduction. 
A model inference problem is an abstraction of the problem 

faced by a scientist, working in some domain under a fixed 
conceptual framework, performing experiments and trying to 
find a theory capable of explaining their results. 

In a model inference problem we assume some unknown 
model M for a given first order language L. We distinguish two 
types of sentences in L. observational sentences, which 
correspond to descriptions of experimental results, and 
hypotheses, which can serve as explanations for these results. 
The model inference problem is. 

Given the ability to test observational sentences for 
their truth in some unknown model M, find a finite set 
of hypotheses, true in M, that imply all true 
observational sentences. 

J J. Some Model Inference Problems, 
An example of a model inference problem is illustrated in 

Figure 1. In this example the domain of inquiry is the Integers, 
and the given first order language contains one constant 0, the 
successor function X', and three predicates: 

X<Y for X is less than or equal to Y, plus(X,Y,Z) for X plus 

Y is 2 and times(X,Y,Z) for X times Y is Z Assume that w< 
test whether these relations hold between concrete numbers, 
is, we can test ground (variable-free) atoms such as 0 
plus(0',0',0") and tim*s(0",0",0"") for their truth in M It 
setting, the model inference problem is to find a finite s 
sentences that are true of arithmetic and imply all true gr< 
atoms. Figure I shows such a set of sentences. We use the 
arrow — to stand for "is implied by". The sentence P- QA 
read "f is implied by the conjunction of Q and R". 

Note that we do not need to discover all the properties o 
functions and predicates involved to solve this model infer 
problem. In particular, the above set of axioms does not cor 
axioms for associativity of addition, transitivity of the orde 
relation, etc.. If T is a set of sentences true in M that implic 
ground atoms of L true in M then T" is called an atomic-comi 
axiomatization of M. The set of sentences in Figure 1 ii 
atomic complete axiomatization of arithmetic. It has I 
inferred by the Model Inference System from 36 facts ii 
seconds of CPU time. 

Another type of inductive inference problem that natui 
fits in this framework is program synthesis from exam 
[1,4,14]. The task is to infer a program inductively, g 
examples of its input-output behavior. This task can be rest 
as a model inference problem, and in this case the programs t 
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inferred are logic programs [7,8,10]. 

A logic program is a collection of Horn clauses, which are 
universally quantified sentences of the form 
/ * - Qv A Q% a\ ... & Qn for n>0, where /»and the Q%% are atoms. 
Such a sentence is read "P is implied by the conjunction of the 
QY\ and is interpreted procedurally "to satisfy goal P, satiify 
goals QuQt fin" If the (?*s are missing, the sentence reads "P 
is true** or "goal P is satisfied**. If P is missing, the sentence reads 
"the g's are false**, or "satisfy the QY\ A collection of Horn 
clauses can be executed as a program, using this procedural 
interpretation. 

Figure 2 shows two logic programs. In this example of a 
model inference problem, the language L contains the two place 
function symbol [X)Y] (the Prolog list constructor, the equivalent 
of the LISP function cona). the constant [] (Prolog's nil) and the 
two predicates append(X,Y,Z) and reverae(X.Y). The model M 
for this language is defined as follows: the elements of M are all 
lists constructed from [X|Y] and [ ] ; the atom append(X,Y,Z) is 
true in M just in case the list Z is the result of appending the list X 
to the list Y, e.g. append(|a,b,c),[d,e),[a fb,c,d,e]); the atom 
reverae(X.Y) is true in M just in case that the list Y is the reverse 
of the list X, e.g. reverae(Ia,b,c),[c,b,a]). The Horn clauses in 
Figure 2 are an atomic-complete axiomatization of the model 
thus defined, and are also Prolog programs for computing 
append and reverae. The Model Inference System synthesized 
the logic program for append in 11 CPU seconds from 34 facts* 
and a similar program for reverae from 13 facts in 6 CPU 
seconds. 

In this paper we restrict ourselves to model inference 
problems in which the hypothesis language is the Horn clauses 
and the observational language is the ground atoms of L. In [12] 
we discuss a more general setting, and show that problems of 
grammatical inference and concept learning can also be 
formulated as model inference problems. Our restricted model 
inference problem is the following: 

Given the ability to test ground atoms for their 
truth in some unknown model At, find an 
atomic-complete Horn axiomatization ofM. 

1.2. Solutions to Model Inference Problems. 
An algorithm that solves model inference problems it called 

a model Inference algorithm. Such an algorithm tests the truth of 
ground atoms in the model, and once in a while produces a 
conjecture, a collection of Horn clauses. Since a finite number of 
facts about a model can not in general determine it uniquely 
among all possible models, and since a model inference algorithm 
always bases its conjectures on a finite number of facts, it is 
bound to make mistakes. The most one can expect of a model 
inference algorithm is that after examining a finite number of 
facts about the model, and making a finite number of wrong 
conjectures, the algorithm will correctly conjecture an atomic-
complete axiomatization of a model and never change its 
conjecture afterwards. Following Gold [3], we say that in such a 
case the algorithm identifies the model in the limit. Note that a 
model inference algorithm cannot, in general, determine whether 
it actually has identified a model. 

One inductive inference technique that can be used to solve 
model inference problems is enumeration. Algorithm I 
exemplifies this technique. 

We say that a conjecture T is too strong with respect to some 
model M if it implies an observational sentence false in M. We 
say that it is too weak if it does not imply an observational 
sentence true in M. Note that a conjecture can be 
simultaneously too strong and too weak. The test of whether a 
conjecture is too strong or too weak is, in general, undecidable. 
To implement Algorithm 1 we choose some fixed complexity 
bound and use is to bound the resources allocated to this test. 
The complexity bound we choose determines the class of models 
the algorithm can identify in the limit, as explained below. 

Let h be some total computable function from ground atoms 
to non-negative integers. A finite set of Horn clauses T is called 
h-easy if its atomic consequences are easy to derive modulo h, 
that is, if T derives a in at most h(a) derivation steps for almost 
every (that is, for all except a finite number of) ground atom o 
such that T implies a. A model hi is h-easy if it has a finite 
atomic-complete h-easy axiomatization. Using this concept, we 
can characterize the power of Algorithm I: if we choose such an 
h to bound the resources allocated to the test in the while loop, 
then the algorithm can identify in the limit exactly h-easy models. 

Although the enumerative approach is very powerful, its 
inherent inefficiency limits its practical applications. Making 
better use of the syntactic and semantic properties of logic, we 
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develop an incremental algorithm that overcomes some of this 
inefficiency without loss of power. In developing the incremental 
algorithm we focus on two questions: 

/. How to weaken a conjecture if it is discovered to be 
too strong? 

2. How to strengthen a conjecture if it is discovered to be 
too weak? 

If we have a solution to these questions, we could develop an 
algorithm as in Figure 3. 

Figure 3: A Scheme for an Incremental Algorithm. 
Choose some initial conjecture T. 
repeat 

Examine the next fact. 
repeat 

while the conjecture T is too strong do 
Weaken it. 

while the conjecture T is too weak do 
Strengthen it. 

until the conjecture T is neither too strong nor too weak 
with respect to the known facts. 

Output T 
forever. 

2. Refuting Hypotheses with Crucial Experiments, 
"The only thing the experiment teaches us is that among 

the propositions used there is at least one error; but where this 
error lies is just what it does not tell us** 

-- Pierre Duhem, 
The Aim and Structure of Physical Theory 

"...it has to be admitted that we can often test only a large 
chunk of theoretical system, and sometimes perhaps only the 
whole system, and that, in these cases, it is a sheer guesswork 
which of its ingredients should be held responsible for any 
falsification** 

- Karl R. Popper, 
Conjectures and Refutations: The Growth of Scientific Knowledge 
If a conjecture is too strong, i.e. it implies a false 

observational sentence, one can conclude that at least one of its 
hypotheses is false. In this section we develop the contradiction 
backtracing algorithm, which can detect such an hypotheses by 
performing crucial experiments in the model. The conjecture can 
then be weakened by removing this false hypothesis from it. 

Crucial experiments are experiments that have a potential to 
decide between competing theories. A successful crucial 
experiment can eliminate at least one of the theories by providing 
a counterexample to its prediction. Although one crucial 
experiment can, in general, refute only a collection of hypotheses, 
the contradiction backtracing algorithm suggests a way of 
sequencing crucial experiments, which guarantees singling out a 
particular false hypothesis. The algorithm can be applied 
whenever a contradiction is derived between some hypotheses 
and the facts. Its input is an ordered resolution tree of the empty 
sentence Q from a set of hypotheses and true observational 
sentences 5. The algorithm assumes that an oracle for M, that 
can tell the truth of all ground atoms of L, is given. The 
algorithm performs a finite number of experiments in M, 
bounded by the depth of the derivation tree, and outputs an 
hypothesis peS which is false in M. 

We demonstrate what the algorithm does on the 

propositional calculus example in Figure 4. In this example 
The resolution tree is ordered so 

that the atom resolved upon appears in the condition of the left 
son and in the conclusion of the right son of the resolvent. 

Figure 4: Backtracing Contradictions in Propositional Logic. 

The algorithm starts from the root and iteratively tests 
the atoms resolved upon. If the atom is true in M i t chooses the 
left subtree, otherwise the right subtree, until it reaches a leaf. 
The hypothesis in the leaf is false in M. In the illustrated 
example, assume that the hypothesis is false, which 
means that R and Q are true in M and P is false. The algorithm 
first tests whether R is true in M, and since, by our assumption, it 
is true, it chooses the left subtree. Next it tests P, finding that it is 
false in the model, and chooses the right branch. Finally it tests 
Q, finds it to be true, chooses the left branch which leads to a leaf, 
outputs the hypothesis which is false in M and 
terminates. 

The contradiction backtracing algorithm for a first order 
language is based on the same idea of detecting a false hypothesis 
by systematically constructing a counterexample to it, although 
the way this counterexample is constructed is slightly more 
involved. The technique used is based on collecting substitutions 
in a resolution proof, which is similar to the one suggested by 
Green [5] and is used by the Prolog interpreter. 

There is, however, another complication in the predicate 
calculus case. Since the atom P resolved upon need not be 
ground, one cannot always test its truth directly with the oracle 
for M. The solution is to instantiate P to a ground atom before 
testing it. The choice of how to instantiate P is arbitrary, but 
once it has been made all further experiments should be done 
with the same substitutions, in order for their results to constitute 
a counterexample to the hypothesis reached in the leaf. 

The following is an example of the use of contradiction 
backtracing by a model inference algorithm, while it is trying to 
infer an axiomatization of the relation over the natural 
numbers. Assume that the algorithm already conjectured the 
hypotheses and encountered the fact 

It suggested the hypothesis 8 
so together with the hypothesis the sentence 

can be derived. However, after adding the new 
hypothesis the derivation in Figure 5 can also be constructed. So 
we can apply the contradiction backtracing algorithm and find 
which of the three hypotheses involved is false. 

The atom resolved upon at the root is The oracle is 
called on and answers Urue\ so the left branch is chosen. 
The atom resolved upon at that node is and applying the 
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The contradiction backtracing algorithm is applicable just as 
well to general clauses, and it can be shown that in either case the 
number of experiments needed to single out a false hypothesis is 
bounded by the depth of the resolution tree. 

Since the Prolog interpreter automatically maintains all the 
substitutions as the resolution proof progresses, it is extremely 
simple to implement the contradiction backtracing algorithm in 
it. In [12] we describe such an implementation and discuss its 
application to the debugging of logic programs. 

3. Refining Refuted Hypotheses. 
This section addresses the question of how to strengthen a 

conjecture that is too weak. For this task we devise refinement 
operators. Intuitively speaking, a refinement operator suggests a 
logically weaker plausible replacement to a refuted hypothesis. If 
a conjecture is too weak, it can be strengthened by adding to it 
refinements of previously refuted hypotheses. The following is 
an example of one particular refinement operator used by the 
Model Inference System. 

We call sentences of the form that satisfy condition 4. 
above context-free transformations. It can be shown that any 
context-free transformation can be generated from the empty 
sentence via a finite sequence of refinements, using this 
refinement operator. Some non-trivial predicates have an atomic 
complete axiomatization via atoms and context-free 
transformations. Examples are the order relation and addition 

over integers (Figure I), the subsequence relation over lists, 
concatenation relations over lists (Figure 2), and the subtree 
relation for binary trees. 

With every refinement operator we associate an hypothesis 
language: the set of sentences that can be generated from the 
empty sentence via a finite sequence of refinement operations. 
The hypothesis language associated with the above refinement 
operator contains all atoms and context-free transformations of 
L We say that one refinement operator is more general than 
another if the hypothesis language associated with the first 
contains the hypothesis language associated with the second. 
There are some immediate generalizations of the refinement 
operator described above, whose hypotheses languages suffice to 
axiomatize binary tree isomorphism, multiplication, 
exponentiation, string reversal and insertion sort. These 
refinement operators are implemented in the Model Inference 
System. 

The effect of a more general refinement operator is a more 
powerful, though less efficient algorithm. If the syntactic class of 
the intended axiomatization is known, one can tailor a 
refinement operator for that class, thus increasing the efficiency 
of the algorithm. We may not always have such information, 
however. To ensure the theoretical completeness of this 
approach, we show in [12] the existence of a most general 
refinement operator. 

4. A General, IncrementalModelInference Algorithm. 
In the last two chapters we have developed mechanisms to 

weaken and strengthen the logical power of a conjecture when 
needed. We can instantiate now the algorithm scheme in Figure 
3, and obtain Algorithm 2. 

As in Algorithm I, the tests in the while and repeat loops 
are, in general, undecidable. To implement them we choose some 
fixed complexity bound h and use is to bound the resources 
allocated to these tests. Another unspecified part in the 
algorithm is which refinements to add in the second while loop. 
One possible approach is to add them in a breadth-first order. 
That is, all hypotheses generated by two refinement will be added 
before those generated by three refinements, etc. . The main 
theorem proved in [12] is that using this approach, Algorithm 2 
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can identify in the limit any A-easy model, or, in other words, that 
it is as powerful as Algorithm I. 

Another theoretical result obtained in [12], based on the 
work of the Blums*[2], says that under some constraints, this is 
as powerful as model inference algorithms can get. We say that a 
model inference algorithm is sufficient, if whenever it examines a 
new fact, the last conjecture it has output implies all the 
observational sentences it already knows to be true. It can be 
shown that if a model inference algorithm is sufficient, then there 
exists a recursive function h such that A-casy models is all it can 
identify. Since Algorithm I is sufficient, these results establish 
that it is the most powerful of its kind. 

5. Relation to Other Work on Machine Lemming. 
The approach to inductive inference in logic presented here 

follows the direction set by Gold [3], which attempted to 
formulate problems of machine learning in a precise way, and to 
devise valid criteria for success of solutions to such problems. It 
is hoped that the model inference problem provides a natural 
setting for the continuing AI work on machine learning. The 
framework proposed here makes the results and theoretical tools 
developed in the recursion- and complexity-theoretic research in 
inductive inference applicable to the more concrete and 
experimental work in A I , and provides a solid basis for further 
development. It should be emphasized that the model inference 
algorithm described here is only one possible approach to 
inductive inference in logic, and other approaches to machine 
learning may use this theoretical framework with equal success. 

The algorithm described here is most similar to the model-
directed, top-down approach of the Version Spaces algorithm of 
Mitchell [9]. Both the Version Spaces algorithm and Algorithm 
2 converge by finding some hypotheses that "match" the data, 
although the notions of "matching" used by the two are quite 
different: In the Version Spaces algorithm the pattern should 
match the instances. In algorithm 2 the hypotheses should agree 
with the facts. The question whether a pattern matches an 
instance is always decidable, and usually by a fast algorithm; on 
the other hand the corresponding question of whether a theory 
agrees with a fact may be undecidable, and in such a case can 
only be approximated by some resource-bounded computation. 

In most of the recent work on program synthesis from 
examples the target programming language is Lisp [1,4,6,14]. 
Several approaches were used; Smith [13] provides a good survey 
of them. We have compared the performance of the Model 
Inference System, restricted to infer list-processing logic 
programs, to the works of Summers[14] and Biermann [ I ] . We 
summarize briefly the results of this comparison. 

Most of the example Lisp programs synthesized by 
Summers* system THESYS[14] have equivalent logic programs 
which are context-free transformations. Some of the more 
complex functions, can be axiomatized using term-free 
transformations with auxiliary predicate. An example of one is 
pack, a program that packs a list of lists into one list. 

packUMD-
P*ek(M Y],Z> - pack(Y,W) & append<X,W,Z) 

Using the appropriate refinement operator, the Model Inference 

System inferred most of the examples described in his thesis, in 
less than one minute of CPU time. For example, it has inferred 
the program for pack above in 9 CPU seconds and from 25 facts, 
most of them negative. Summers does not give statistical 
information on the performance of his system, but it seems that 
the number of positive facts needed by the systems is comparable. 
THESYS does not need negative facts. 

Biermann's system for the synthesis of regular Lisp 
programs from examples [ I ] is strongly influenced by Summers' 
method, although it has an enumerative component which 
Summers' system does not. Biermann gives a structural 
definition of the class of programs synthesized by his algorithm, 
and provides more information on the performance of his 
system. The simpler examples described in his paper can also be 
axiomatized by context-free transformations. For the more 
complex examples, context-free transformations with an 
auxiliary predicate suffice. This class is strictly contained in the 
class of term-free transformations used to infer some of 
Summers* examples. 

As to the performance of the two systems in this domain, 
most of programs were synthesized by Biermann*s system from 
one example. The Model Inference System needed anywhere 
between 6 and 25 facts. Biermann's system needed between a 
fraction of a second to half an hour for these examples. The time 
taken by the Model Inference System on the same examples 
ranged between 2 and 38 seconds. The systems behaved similarly 
on the examples: what is harder for Biermann's system is also 
harder for the Model Inference System. The program that took 
Biermann's system half an hour to synthesize collects all first 
elements in a list of Lisp-atoms and lists. The Model Inference 
System synthesized the program following program for this task 
from 26 facts and in 38 seconds. 

hoads([],U) -
heads(((X]Y]|Z].[X]WJ) - heads(Z.W) 
haads([XjY),Z) - atom(X) & heads(Y.Z) 

The actual timing figures are not very informative; what should 
be noted is the major difference in the growth rate. The systems' 
behavior suggest that the asymptotic time complexity of the 
Model Inference System compares favorably with Biermann's for 
this class of functions. 

The Model Inference System has synthesized several 
programs that, as far as I know, have not been synthesized from 
examples before. Among them are programs for exponentiation, 
binary tree isomorphism and satisfiability of boolean formulas. 

The most important difference between the Lisp systems and 
the Model Inference System is that the former usually 
incorporate some hard-wired synthesis algorithm, which can 
synthesize only a fixed class of functions. Generalizing such an 
algorithm is not a trivial task, as the work of Kodratoff [6] on 
generalizing Summers' method shows. The Model Inference 
System, on the other hand, incorporates the refinement operator 
as a parameter. To illustrate the flexibility of this approach, note 
that one refinement operator is sufficient for synthesizing almost 
all the examples of Summers. To get a more efficient inference of 
the restricted class of functions inferred by Biermann, a more 
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specific refinement operator was designed. The implementation 
of the new refinement operator required about 10 minutes of 
thought and rewriting five lines of Prolog code. 

6. Concluding Remarks. 
This paper has presented a general, incremental algorithm 

that infers theories from facts. Its theoretical analysis shows that 
it is comparable to some of the most powerful algorithms known 
from the complexity-theoretic approach to inductive inference. 
Its implementation is comparable to existing systems for 
inductive inference and program synthesis from examples. 1 
believe that these results were made possible by the use of first 
order logic as the underlying model of computation. 

Here are some of the reasons for the success of logic as a 
medium for inductive inference: 

Logic has natural semantics. If a Turing Machine computes 
an incorrect result on a certain input, there is no sense in which 
one of the transitions in its finite control is "wrong" For every 
such candidate to be a "wrong" transition, one can always patch 
the Turing Machine without changing this transition, so it will 
behave correctly on this input. On the other hand, if a set of 
logical axioms has a false conclusion, there is a natural sense in 
which at least one of the axioms is strictly false. This fact enables 
the existence of error detecting algorithms such as contradiction 
backtracing. 

Logic has an intimate relation between its syntax and 
semantics. This is the reason why there are natural ways to 
weaken the logical (computational) power of a refuted 
hypothesis, or, in other words, why natural and easy-to-compute 
refinement operators exist. 

Logic is monotonic and modular. Altering an 
axiomatization by adding or removing axioms has clear effects 
on the expressive (computational) power of this axiomatization. 
There are not many practical programming languages for which 
such syntactic alterations to a program have predictable effects 
on what it computes. 

Logic is a programming language that separates logic and 
control. It seems that one of the reasons for the efficiency of the 
Model Inference System is that it infers only the "logic 
component" of a program and leaves the "control component" 
unspecified [8]. The logic component of a program contains 
more than its specification, and the task of imposing control on a 
logic program is similar to the task of program optimization. 
The problems of program optimization and program synthesis 
from examples are hard enough by themselves to justify 
refraining from solving them simultaneously. We propose 
separating the task of synthesizing efficient programs from 
examples to two sub-tasks: inference of (sometimes inefficient) 
programs from examples, and program optimization. 
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