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ABSTRACT

test based on the principal
connection graph proof
In contrast to the

A subsumption
idea of Kowalski's
procedure is developed.
standard test this new test is sufficiently
efficient to permit the unrestricted use of
the subsumption rule in practice. The test

is not limited to the connection graph proof
procedure, but most naturally embedded into
it. In the latter case the unrestricted

combination of subsumption with other de-
letion rules is shown to be inconsistent.

1. INTRODUCTION

R. Kowalski's connection graph proof proce-

dure [K751 represents a set of logical for-
mulae not as a set but as a graph like
structure. Inference rules such as resolu-

tion and factoring are expressed as opera-

tions on that graph. In addition to these
operations, which usually expand the graph,
the procedure also provides for deletion

that
from the graph.

operations remove certain components
Other approaches based on
graphs have been proposed by [SI76],CSH76],

[AN79],[B79].

One of the
connection graph proof procedure is

striking properties of the

that
application of a deletion operation can
the applicability of further de-
thus

effect which

result in

letion operations, potentially leading

rapidly reduces

this effect

to a snowball
the graph. The probability of

rises with the number of deletion rules

available.

A very powerful deletion rule for resolu-
tion based systems is the subsumption rule
([L78], chapter 4). Unfortunately a test
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for subsumption is very expensive and is

usually implemented only for restricted

cases. In this paper a test for subsumption

based on the principal idea of the connec-

tion graph proof procedure is developed,

which in contrast to the standard test

(CL78]) is sufficiently efficient to permit
unrestricted subsumption in practical cases.
Though not limited to it, the test is most

naturally embedded into the connection graph

proof procedure, but unrestricted combina-

tion of subsumption, tautology, and purity

deletion is shown to render the connection

graph proof procedure inconsistent.

2. DEFINITION AND NOTATIONS

The paper is based on the first order pre-

dicate calculus with the usual notational

conventions for constants, variables, terms,

and clauses. The number of

is denoted by |CI.

atoms, literals,

literals in a clause C

The empty clause is denoted by o. The ele-

ments in a set of clauses are always assu-

med to be variable disjoint.

A is a mapping a from variables

substitution
to terms identical
extended to mappings on terms,
and clauses by the usual homomor-

literals)

almost everywhere. It is
atoms, |i-
terals,
phism. A unifier for two terms (or
s, t is a substitution a for which o(s) »a(t).
If for any other unifier 0 for s, t there

is a 0' with 0 * ©©c, we say a is a most
general unifier (mgu) for s and t. Two Ii-
terals are called a-complementary, if they
are of opposite sign and a is an mgu for




their atoms. Two substitutions o, © are
strongly compatible, if for each variable
v: g{viav a ©(v)ev w» g(v)=G(v). Note that
for a set of pairwise strongly compatible
substitutions their functional composition
is commutative.

A connection graph is a pair ((,L) for which
1) ¢ is a get of clauses
2) Let LIT = \C be the set of all lite-
rale cccuring in the clauses of ¢,
Then L € ¢ x LIT » ¢ » LIT is a relation
such that
a) {(C,L,C",L")EL = C « C', LEC, L'€C', L
and L' are g-complementary
b) (C,L,C',L')€L » {C',L',C,L)EL

The graph is said to be total, if condition
2a) also holds in the opposite direction, A
literal L in a clause C is pure, if there

are no C', L' such that (C,L,C',L'}€EL. The
elements of [ are called links. They con-

nect o-complementary literals in different
clauses, thus indicating possible resolu-

tions.

The connection graph proof procedure defined
in [K75] processes a set  of clauses in the
following way: first all possible links
within ¢ are computed, i.e. a total graph
{C,L) is constructed. This graph is then
reduced by some deletion rules yielding
another total graph. Next a link is selec~
ted and its resolvent created and incorpo-
rated into the graph together with all its
factorg. Then the link resolved upon is de-
leted from the graph and again the reduction
rules are applied. The next link is selected
and so on until DEC oxr L = @,

Incorporating a new clause into the graph
means creating all links between its lite-
rals and the rest of the graph. A literal

in a resclvent or factor has to be connected
to all those places in the graph to which at
least one of its parent literals is connec-
ted by a link. Thus the links are simply in-
herited. In addition to these inherited
links all links batwaen a resvlvent {or fac-
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tor) and its parent clauses have to be ex-
plicitly computed, or, more efficiently,
derived from "autolinks" between comple-
mentary literals in self resolving clauses
(CB753).

The reduction rules contribute both to the
practical attractivity and the theoretical
difficulties of the connection graph proof
The original rules are: delete
it contains a pure
is a tautology.
delete a link

procedure.
literal and
Fur-

a clause if
delete a clause which

ther possible rules include:

if its resolvent is a tautology CWAS81],

delete a clause if it is subsumed by an-
other clause in the graph, delete a link
if its resolvent is subsumed by another

clause in the graph. Note that each dele-
tion may cause a purity to arise, thereby
causing further deletions. It is not yet

known as to which combinations of these
deletion rules preserve the completeness

of the procedure.

3. SUBSUMPTION AND THE S-LINK TEST

Let C and D be clauses. C o-subsumes D, if
ICI s iDI and o is a substitution such that
o(C) c¢ D. Throughout this paper the terms
subsumption and o-subsumption will be used
interchangeably, though usually subsumption
is defined more generally than a-subsumption

(see [L78]).

The standard test for o-subsumption works
as follows: given C and D, first make sure
that Id s IDI and that D is not a tauto-
logy. Then negate D and change variables
yielding a set D of

iffais

in D to constants,
ground unit clauses. C asubsumes D
derivable from {C} u D. (Details can be
found in CC173] and CL78].).

The positive aspect of this subsumption
test is that it uses the same mechanism
which underlies the entire deduction sy-
stem, i.e. resolution. But from a practical
point of view this turns out to be a dis-

avantage. Normally one has to check for



subsumption as soon as a new clause is ge-
nerated, i.e. after each resolution step.
This means that each "major" resolution step
resolution
thus multi-

is followed by several "minor"
steps for the subsumption test,
plying the overall expense. Yet even worse,
given a resolvent C there is no hint as to
which clauses potentially subsume or are

subsumed by C. So the test, already expen-
sive in itself, has to be performed within
an iteration over all elements of the given
set of clauses. In practice, of course, one
would first make sure that the predicates

are in common, so that the test is not per-

formed during each iteration step.

The resulting cost is such that for practi-
cal systems only restricted versions of sub-
sumption are implemented, e.g. only for
cases where the subsuming clause is a unit.
Omitting subsumption, on the other hand, can
cause considerable redundancies.

The central problem for a subsumption test
consists in efficiently finding out which
literals in which clauses are unifiable.
Disregarding the signs of the literals this
corresponds to the very same problem that
arises when two clauses have to be selected
for the next resolution step. In both cases
comparing all literals of all clauses is a

possible but inefficient solution.

In the resolution case the connection graph
procedure provides for a more efficient
alternative. The literals of a set of
clauses are compared with each other once
and forever when the initial graph is con-
structed. Subsequently the necessary infor-
mation is directly available in the form of
the links. Because of the inheritance
mechanism for links the new literals in
resolvents and factors need not go through
any search process either. Thus the problem
of finding two resolvable clauses is reduced
to simply picking a link.

This basic idea can be applied to the sub-
sumption problem by introducing links of a
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new type that connect unifiable literals,
Formally we define a subsumption graph (5-
graph) as & pair {C,5) such that
1} ¢ is a set of clauses
2) Let LIT = 5/C be the set of allliterals
coccuring in the clauses of . Then
& e & % LIT »~ ¢ » LIT is a relation such
that
a) {¢,L,C',L")ES » C * C', LEC, L'EC’,
L and L' are unifiable
p) (C,L,C',L')€E5 » (C',L',C,L)ES

The S-graph is said to be 5-total, if
condition 2a} also holds in the opposite
direction. A literal L in a c¢lause C is S-
pure, if there are no C', L' such that
(C,L,C'",L*'")ES. The elements of § are called
S-links.

Given a set of clauses to be refuted, we
initially compute all pessible S5<links
between literals in these clauses. When a
nev resolvent or factor is derived, the S-
links are inherited from the parent clauses
in the same way ag are the resolution links
in the connection graph proof procedure.
But in contrast to resolution links (R-
links) S-links are naver deleted, unless
one of the parent clauses is removed from
C. It can be shown easily that under these
circumstances the S-graph remains S-total
throughout the entire computation (see
EE8O]).

In order to develop a subsumption test
using S-graphs we need some further de-
finitions:

Let (C,5) be an S-graph, CE€C a clause and
LEC a literal.

We define con(C,L) :« {Dec { 3K€D(C,L,D,KES]
as the set of all clauses connected to L
in ¢ by S-links.

Further let sub(C) := £:}contc,b) be the
set of all clauses connected to every
literal in L by S-links.

For LEC and another clause DEC we define
uni{C,L,D) := {o!3KED(C,L,D,X)ES A O(L) =X}
as the set of all matching substitutions



mapping L onto some literal in D, Finally
let UyeeresUp be sets of substitutions. Then
merge (U;,.. -.Un} Tm {(Ul,...,un) eulx...xunl the
0; are pairwise strongly compatible}

is the subset of their cartesian preoduct,
for which the functional composition of the
components yields a unigue substitution
regqardless of their crder.

The subsumpticn test is provided by the

following theorems:

Theorem 1

let (C,5) be an 5-total subsumption graph

and C = {Ll,...,Ln}GS a c¢lause, nzl, Then

for DEC

C og-subgumes D iff |C| s [D| A DEsub{C) a
merge{uni(c,LI,DL...,uni(C.Ln,D)) L

Theorem 2
Let (C,5) be an S-total subsumption graph
and D = {K,,...,K }€C a clauee, m:l. Then
for C + @

n
C c-subsumes D only if CGMlcon(D,Ki}.
Detajled proofs can be found in {EBOJ.

The following example illustrates the prin-
ciple of a test based on Theorem 1. Assume
the set of clauses ( = (C,Dl,Dz,Da,D‘} with
¢ = {Pub,Quv}, b, = {exy,Qyal, D, =

{pzb, Pab,Qab}, Dy = {Pww, Pw}, D4={Qaa,Rb}.
We want to find all clauses subsumed by C.
In this case only S-links connected to C
are relevant, so for reasons of clarity all
other S-links are cmitted in the S-graph
for C:

Dz: PrhPablab Da: PwwRw

D,: QaaRb

Now |C| < {Dil for all i and sub(C) =
{Dl,Dz), because D; and D, are each connectad
to only one literal of C. We have tc asso-
ciate with each literal of C a set of
matching substitutions for each clause in
sub{C). In this case uni(C,Pub,D;} = @ be-
cause there is no ¢ such that o{Pub) = Pxy.
Thus D1 can be digregarded.

For D, we obtain uni(C,Pub,D,} = {u = 2},
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{u :» a}}and uni(C,Quv,Dy> «{{u:«a, vi»bf}.
The substitutions {u :« a} and {u ;» a,
v :« b} are strongly compatible, thus C

subsumes D, (but none of D,,Dj3,Dy4).

The main point of the test is that the ex-
pensive unification is postponed until the
function sub preselected a plausible sub-
set of candidates for subsumption. In case
we are looking for subsuming rather than

subsumed clauses/ this preselection process
is slightly more complicated. By Theorem 2
we first determine all clauses connected

by at least one S-link to the given clause
D. Then from this set we ascertain those C
for which Id s IDI| and D€sub(C) holds and
only then the unification operations are

performed.

In both cases this preselection and the
fact that the literals to be unified are
explicitly known, can save considerable
time. On the other hand some effort has to
be invested for the computation of all S-
links in the initial graph. As with the
connection graph proof procedure this ad-
vance cost can be higher than a possible
if the set of clauses is only small.
there

gain,
For more complex examples however,
is certainly a pay off. But of course any

gain in time has to be paid for by additio-

nal storage needed for the S-links.

4. REFINEMENTS OF THE S-LINK TEST

The inheriting mechanism for S-links can
be optimized in the same way as described
in [B75] for resolution links. Here the
proofs are very simple because S-graphs
are always total.

Another refinement results from the obser-
vation that for a clause C containing an
S-pure literal sub(C) « 0. That means that
such a clause cannot subsume any other

clause.

When computing the unKCL”AD) we need to
know which K€D are unifiable with L.. As



the definition of uni shows, these are
exactly those literals we already had to
consider for the computation of con and s\i>.
The information obtained during the compu-
tation of con and sub should be stored in
an appropriate data structure to avoid

it for uni.

having to recompute

Thus far the S-link test was developed with-
out considering the underlying inference
mechanism. Since they are based on the same
principal idea as connection graphs, S-
graphs appear to be combined most naturally
with this inference method. We can modify
the definition of a connection graph to be
a triple (CRS) that (C,F) is a
connection graph (in the hitherto sense)
and (£,5) is an S-graph. For such a graph
we can define a new kind of subsumption: a
clause C subsumes an R-link (D,,K,,D;*K,),if
C subsumes the resolvent of (DAKAD-,!7). It
is possible to extend the test to cover
this kind of subsumption (see [E80]).

such

Deleting subsumed links has the effect as
if all resolutions leading
solvents were performed prior to other
steps. This in a stronger reduction
of the graph as in the usual case were sub-
sumptions occur only randomly. The difference
is similar to the one between deleting
tautology clauses and deleting tautology

[WA81].

to subsumed re-

results

links in a graph

5. CONSISTENCY OF THE CONNECTION GRAPH
PROCEDURE WITH SUBSUMPTION

The soundness of a proof procedure guarantees
that whenever an unsatisfiable set of clauses
(e.g. then the
original was unsatisfiable.
Consistency,
from an unsatisfiable set of clauses only

unsatisfiable sets of clauses can be derived.

one containing o) is derived,
set of clauses

on the other hand, assures that

Thus consistency is a necessary condition

for completeness.

In most resolution based proof procedures
consistency is trivial, because the original
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set of clauses is only extended by further

clauses. In the case of the connection
graph procedure, however, clauses can be
deleted from the original This fact
causes consistency to be an extraordinarily

hard problem for connection graphs.

set.

In [E80] deletion
rules mentioned introduction is

proven for o-derivations [SS76 1, using a
introduced in [B793. Un-

is not suitable

the consistency of all
in the

proof technique
fortunately this
to arbitrary derivations, but
shown in CSS76] indicate that there
translation between ot-derivations and ar-
The res-

technique
results
is a

bitrary ground case strategies.
pective proofs are very complex and hard
to follow, but if extended to the case of
subsumption they might ensure the con-

sistency for the ground case.

In the general case, however, the connection
graph proof procedure with unrestricted
subsumption is inconsistent as the follo-

wing example shows:

-0
© ¢, Pa 5

- - h C,: Pc
C.1 Pa Fb c,: Pa Py 4
N ’ !

d —
The resolvent of link 1 is a tautology, the
resolvent of link 2 is subsumed by C,,thus

both links are deleted and the graph be-
comes
6 l 5
C2: Pa Px
c,: Pa B /* c,: Pe
r3 Cj: Fa IPY

Resolution on links 3, 5 and the successor
of 6 (in that order) will yield the empty
clause. Hence the original set of clauses
was unsatisfiable, because of the soundness
of the resolution principle. |If
that we select link 4 for the next step,
is PuPv with link 3 and 5 in-

instead of

the resolvent



herited. This resolvent subsumes both C~
and C*, which are deleted. The resulting
graph is

Ci: PaPb Pu 5 C4 *c

Now C contains a pure literal and the sub-
sequent deletions finally erase the entire
graph, i.e. it is possible to derive a

satisfiable set of clauses from the original

unsatisfiable set!

This result demonstrates the necessity of
restrictions for the deletion rules. It has
yet to be shown which restrictions preserve
consistency and completeness.

6. PRACTICAL RESULTS

The S-link test has been implemented in the
Markgraf Karl system at the University of
Karlsruhe [ESSUWS80], [SS801, fESSW81]. Sub-
sumption was restricted such that a resol-
vent may not be subsumed by its own parent
clauses. The necessity of this restriction
appears plausible, because a similar one
applies to factors. No example for the in-
consistency of the procedure with this
restriction could be found thus far, but
neither has there been a formal proof of

its consistency.

On the average a graph has about the same
number of S-links as it has R-links. This
may seem an inappropriate increase in
storage requirement. But in the actual
implementation S-links need much less
storage than R-links. Moreover, it is not
the physical storage that is important, but
the number of active R-links in the search
space, and this number can be reduced con-

siderably.

Practical tests indicate that the reduction
of the graph caused by subsumption usually
more than compensates for the storage used
by the S-links. An example is P. Andrews’
"challenge" proposed at the deduction work-
shop in Austin 1979: (3xQx«VyQy) =

OxVy m Qx m Qy) . Here subsumption reduces

4ti3

the initial graph by 89 % of the clauses *
and by 99,5 % of the R-links (which is,
however, an extreme case).

In order to get some experience with more
"natural" problems, a selection of examples
from TMOW76] and [WM76] was run using the
strategies basic resolution, set-of-support,
and unit refutation, each with and without

subsumption. The values compared are:

ES r"r"v‘{ar"** - tt clauses in_ proof
-penetrance « ‘«—C'Lavs-e-s—gvn%ra'?ed
A ~p~Afe~w~,a - # Resolvents/Factors in proof
D-p/énetranceA- esolv./Fact. totally Sauced
R value m ft clauses deleted

# clauses generated

The results are compiled in table 1 (- means
that the system did not find a proof).

The table shows that subsumption usually
caused a considerable improvement of the
penetrances, i.e. fewer unnecessary steps
were performed. This demonstrates the re-
duction of the search space. Sometimes the
system even found a proof where it did not
without subsumption. The increase of the

R-value indicates that subsumption infact
has a very strong impact on the size of the

graph.

7. CONCLUSION

The S-link test is a rather efficient sub-
sumbtion criterion and the practical re-
sults are encouraging. The hard theoretical
problem of consistency and completeness of
the connection graph procedure with various
combinations of deletion rules has yet to
await a comprehensive treatment.
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Nams G-panetrance D-~penetrance R~value
& strategy no subs subs no asubs subs no subs subs
Burstall
BASIC 0,37 0,3 0,29 0,31 0,33 0,50
505 0,49 0,50 0,43 0,44 0,31 0,52
OUNIT 0,45 o, 48 o, 38 0,42 0,39 0,42
Burstall-Ss
BASIC 0,37 0, 36 0,29 0,28 0,28 0,41
508 0,42 0,50 0,33 0,44 0,432 0,42
UONIT 0,42 0,45 0, 34 0,38 0,32 0, 35
Prim
BASIC Q,87 0,81 0, B6& 0,86 0, 3s 0,43
808 ©,57 ©,71 0,46 0,63 0,34 0,43
UNIT 0,95 0,96 1,00 1,00 0,23 0,33
W
" BASIC 0,01 0,37 0,01 0,29 0,83 C,58
508 0,78 0,78 1,00 1,00 0,11 0,22
UNIT - - - - - -
[EwW3
BASIC Q,717 o, 8% 0,77 1,00 G,27 0,85
SOS - 94 - 1,00 - 0,94
UNIT - - - - -
*Hasparts-z
BASIC 0,87 0,91 Q, 80 (1 0,35 0,38
508 0,95 1,00 0,92 l,00 0,35 0,42
UNIT - - - - -
LS-17
BASIC 0,23 0,50 0,17 0,45% 0,39 0,35
508 - - 0,76 - 0,88 - 0,38
UNIT 0,15 0,41 0,09 0,33 0,22 0,41
LE-115
BASIC - 0,41 - C,64 - 0,34
508 0, 46 0,48 1,00 1,00 0,00 0,11
UNIT - o,41 - 0,64 - 0,12
—
table 1
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