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ABSTRACT
in

We present and analyse experimental results

the first extensive use of a theorem prover based
on Resolution by Unification and Equality.
Implicit use is made of equality axioms by the
Inference rules RUE and NRF to achieve incisive
refutations for E-unsatlsflability. Since a
primary issue in automated deduction is the
efficacy of convergence to proof, we describe in
detail the heuristics which were wused to obtain
proofs. A comparative tabulation with the results

who used unification
reduced cumulative

Overbeek and Wos,
shows sharply
counts.

of McCharen,
resolution,
unification

1. Introduction

A primary reason for the failure of binary
resolution relates to the handling of equality, a
predicate which plays a central role in  most
axiomatic systems. The use of the equality axioms
In the input clause set leads to very long proofs
which are unnecessarily cumbersome and para-
modulation which leads to much shorter proofs
presents problems of heuristic search for the
proper paramodulants which experimentors have not
been able to surmount.

theory of
the

In [8,9] the author presented the
resolution by unification and equality in which
axioms of equality are incorporated into the
definition of resolution. In contrast to
paramodulation, RUE resolution does lend itself to

heuristics which converge to refutations and it is

the purpose of this paper to carefully study this
issue.

We will first give a synopsis of the basic
theorems and definitions of RUE resolution as

presented in [9] and then proceed to the discussion
of experiments and heuristic search procedures.

(1.1) A disagreement set of a pair of terms
(t1,t2) is defined in the following manner:

If t1,t2 sre identical the empty set
is the sole disagreement set.

]

(2) If t4,tz are not identical, the set of
one element the pair (tq,t2) is the
origin disagreement set.

(3) If tq4,t2 have the form

17th Road, Whitestone,
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tl- f(.l"'.'.k)' tz' l(bl,Q--.H)

then the set of paire of corresponding
srgusants which are not identical fe
the disagreement set at the topmost
srgument level or more siwply the
topmost digagresasent of t;,t;.

(6) 1f D 49 & disapresment set of tyrty,

then D' obtained by replacing any
member of D by the elements of one of
its disagreement sets is also a
disagresment set of £yt

In the simple example:

t) = f(a, g(b,h{c))

ty, = f(a’,g{b",h{c"))

besides the origin disagresment, there are the
disagresmant sets:

Dy = {u:za’, g{b,hc)): g(d',hic' )}
Dy = {aza’, bib’, hie):h(c')}
Dy = {a:a', bzb’, c:e'} .

The purpose of this definition is to define

all possible ways of proving t} " ts, 1.e. "l cag
ity in every pair o

prove ) =ty by proving squa

any one Ainlgree-ent aet. An input clause set, for
exanple, wmay laply squality in D, but not in D, or
Uy. Or it way most directly prove ty; = ¢t5 by

proving equality in Dy.

In the sequence of derivable disagreement sets
from topmost to bottommost, there iz upward
{mplicatfon of equality, Dy, + Dy, but not
downward tmplication, Dy # Dyyy.

(1.2) We proceed to define a disagreesent set of
complemantary literals:

Plo),uen,ty) F(ry,.nsty)

as the union of disagresment sete:

D=0 D
i=1l,n 1

vhere Dy is a disagressant set of {8,840



Wa sae immadfately that:
?{.1..-...") A ’(:l.oao,tn) * D
whera D now repressnts the disjunction of

inaqualitias specified by & dissgresment set
of P,F, and furthermors, that:

f(.l..ll.%) * f(hl.ool.») « D

wvhere D In the disjunction of inequalicies
specified by a dissgreemant set of

flay,ean,my), By, a0,y

¥We may now define our two rules of infersnce:

(1.3} The RUE Rule of Inference

"Givan the clauses
AvP(e),...,0.) and B v Bley,eoty)

and a substitution o, tha RUE tesolvent
of ¢ appliad to these clauses is

vAvoBvD

where D is the disjunction of fnequalities
spacifiad by a disagreemant sest of the
complemantary litevals of, oF.”

The NRF Rule of Inferance

(1.4) The NRF Rule of
Tthe negative reflexive function tule)

"Given A v t; ¢ ty and » substitution

g, the NRF resolvent of o applisd to this
clause is oA v D, whera D is the disjunc~
tion of inequalitiass specified by a disagree-
mant set of ot;, vey.”

Wa have for exawple:
P(f(a,b),c) » B(f(a',b"),ec")

+ f(a,b) ¢ f(a’,b') v cd e’

and
P(f(a,b),c) A F(f(a' ,b'),c")

+ada’ v bbb v céc'

which are obviously not equivalent deduction®. If
we instead use the equality axioms with unification
resolution, each of the above one step deductions
becomes an elongated sequence of 3 and 6 steps
respectively.

The two important issues which remain are the
selection of substitution and disagreement set when
we resolve complementary literals, for which there
is the theorem:
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(1.3) Completensss Theorem (Strong Form):

"A set of clauses fs E~unsatisfiable 1if
and only if there f{v an RUE=RRF deduction
of the empty clause from S, in which we:

(1) choose as o, the RUE-NRP unifier,

(Z) choose a3 D, the topmost viable
disagreament set,

{3) satisfy the equality restriction when
resolving coaplementary equality
litersls.”

The reader will find in (9] a detailed
treatment of the notion of viability which subtends
the definitions of the above unifying substitution
and also the equality restriction. It suffices to
say. here that we are to use the MGPU (the most
general partial unifier) of P, P and this is a
qualified form of the NGU of standard resolution,
relaxed to permit irreducible disagrements.

The viability criterion enables us to suppress
deductions  which are recognized as provably
irrelevant to a refutation and the equality
restriction enables us to avoid useless variants of
the same deduction path.

of a
[9].

The above is a very cursory description
quite substantial body of theory presented in

2. An RUE Refutation in Group Theory:

which
The

refutation
if x*x - e.

Below we present an RUE
proves that a group is commutative

axioms of group theory are given in (4.3) of this
paper. The style of proof Is similar to that
introduced by Harrison and Rubin in generalized
resolution [7].

In formulating substitutions we are scanning
complementary literals from left to right, skipping
over Irreducible disagreements, and furthermore

substituting first at the topmost argument level
and then at lower levels. This is evident in the
first two steps of the refutation.

We are also being appropriately selective in
choosing a disagreement set, sometimes using the
topmost and sometimes the bottommost according to a
criterion we will develop later in (5.2).

This 9 step proof becomes a 22 step proof when
we use the equality axioms with unification
resolution. The RUE theorem prover deduced the
above refutation in 2.5 seconds using a total of
570 unifications. Typically a 9 step RUE proof
will represent a fairly sophisticated axiomatic
derivation which humans do not easily arrive at.



2.1) Substitution
ab ¥ ba
e % = X ba/x
(ba)e ¥ ab
x(ye} = (xy)z ba/x, bfz
ybde v {(bady #a
xx = e yix, bly
(ba)b ¥ »
ex = x alx
ea 4 (ba)h
(xy)z = x(yz) afe, balx
(ba)y e v yadd
xx = & ba/x, baly
(ba)a ¥ b
{xy)z = x(yz) b/x, aly,
alz
b(aa) ¥ b
xe = x b/x
e ¥ aa
e = xx a/x

empty clause

3. A Comparative Analysis

In evaluating the performance of an automatic
theorem prover, It is always important to compare
machine performance against human performance and
in doing so to avoid extremes. We should not
expect to capture in a computer algorithm the
creative, analytical genius of an exceptional
mathematician, rather we should be content to
compare against astute human performance. We
should require a theorem prover to prove theorems
which astute humans find difficult to deduce.
Since the reader will always consider himself an
astute human, he can put the issue subjectively to
test.
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At this level of performance, automated
deduction has important applications in many
fields, including robotics, the science of

intelligent machines, and also data base technology
which should be more than sophisticated collection
schemes for explicitly stored data.

Since 1965 when resolution was introduced, we
have accumulated substantial experience with
machine deduction by resolution. As recently as
1976, the Computer Transactions of the |IEEE
contained two important articles of major
implementations of resolution theorem provers.

In the Maryland system of Wilson and Minker
[5], the authors conclude with a very negative

assessment of the efficacy of resolution:

"Considering that the average proof attempt
using the best overall proof procedure required 42
CPU seconds, our results are discouraging. Even
though most of the problems were relatively simple
for a human to solve, the total CPU time required
for the study cost more than $30,000. Clearly such
a theorem proving system is far from practical.

None of the inference systems tested enabled
more than a marginal improvement in the overall
power of unrestricted binary resolution. We

have been unable to determine the problem and proof
procedure characteristics which either enable
problems to be solved or prevent them from being
solved."”

In contrast in the Argonne system of HcCharen,
Overbeek and Wos [6], the authors present 63
experiments ranging from trivial to quite difficult
theorems, proven in diverse fields, together with
some theorems in which their system failed. Their
experiments represent one of the most successful
attempts in automatic deduction. They presented
for each experiment the input clause set wused as
well as a systematic tabulation of the amount of
computation required. This paper in singular
fashion established a benchmark other
researchers to compare with and we have used
it as a basis of evaluation of RUE.

for
here

We have conducted 17 experiments taken from
HOV and dealing with Ring Theory, Group Theory and
Boolean Algebra. The heuristic procedures
developed from these experiments have, thus far,
proven effective. We state the comparative results
across 17 experiments between MON and RUE in Table
I



Table 1. Comparative Tabulstion

RUE MOV

Leangth of Total Tine Total Time

RUE Proof Inif. Sec. Unit. Sec.
Boolean Algebra
3l U= (2) &2 0.1 26,702 16.2
12 wl =1 (5) 606 1.2 46,137 28,5
B3 x*) w0 (5) 978 1.9 46,371 27.5
B4 wixy = x (8) 746 1.4
B x(xty) = x (§:}] 1086 2.0
B4 A 85 286,902 s7.0 (%)
B6 x+x = x {5) 851 1.6
B} xtx =» x (s) 756 1.4
6 » B7 105,839 60.6 (6)
Ring Theory
Rl x*) » O (5) 124 0.2 12,328 %.83
R2 O%x = x {5) 199 0.4 KPR
R} xy = (=x)(-y) {13) 14,850 25.9 94,031 45.08
Group Theory
Gl xZ=g + yrezy %) 510 2.5 830 1.0
G2 inveree of x i{s unique (5) 138 0.5 504 1.0
G3 left identity is right identity (10) 1114 21.0 (1) 901 2.0
G& x has a right inverss (€3] 401 2.8 474 .43
GS (a.l)'l -y (5) 200 0.9 RPR
66 (xy)~l = y~lx-1 ) 1932 26.0 (M NFR
€7 % mgs ylayl 3 586 2.4 NPR
Notes on Table 1:
(1) The RUE theorem prover was exceptionally paramodulatlon counts, it seems that they made
superior throughout.the ten boolean and ring little successful use of paramodulation even
theory experiments, and in group theory both though their paper states that this technique
theorem provers achieved impressive results. was incorporated in their system.
(2) The RUE theorem prover was implemented in (4) NPR:  no published reeult without implying
the PL/1 programming language and run on an that MON felled on these theorems.
Amdahl computer. The MON theorem prover was
implemented in Assembly language and run on the (5) MON ran BA and B5 as a single theorem
IBM System 370/195. It is difficult to compare
runtimes in diverse hardware and software (x + xy - x) A X(Xx +y) X
environments, and we suggest total unifications
as a valid measure of comparison. which negated becomes atab=a v a(a+b)f*a

In the Input clause set, and It Is evident that

(3) Since MON used a complete set of equality the refutation of ~(B4 A B5) IS simply the
axioms in the input clause set of all these concatenation of the refutations for ~B4 and
experiments and since they do not tabulate any ~B5 Individually taken and as derived by RUE.
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(6) The same holds for ~(B6 A B7) whose proof
is the concatenation of the RUE refutations
for ~B6 and ~B7 individually taken.

(7) In proving G3 and G6, the RUE theorem
prover compared each new resolvent against each
resolvent already in the refutation search tree
in order to suppress duplicates and the overhead
led to the very slow times 21 and 26 seconds.
However, this duplicate removal can be
implemented much more efficiently to reduce the
runtimes considerably. For the most part,
duplicate removal was not applied in the other
RUE theorems of Table 1.

4, Experiments

The reader may wish to assess the difficulty
of the above theorems by attempting their proof:

{4.1) Given the Boolean axioms

1. xty = yix 5. x4x = 1
2. xy = yx 6, x*x = O
3. ¢l = x 7. x(y+z) = xy¥xz
bo x*1 = x 8. xtyz a {x+y){xtr)
prove the theorems:
Bl. 5 =1 B4, xxy = x
B2, x+l =] B3, x(xty) = x
Bl. x*) = 0 B6. x+x » x
B?7. xX*x = x
(4.2) Civen the axioms in Ring Theory
1. why = yix 5. (xty)z = xz+yz
2. xH) = x B. x+(y+z) = (xby)+e
3. xH(-x) = 0 7. xlyz) = (xy)z
4, w{y+z) » xy+xz 8. xry v xéziyiz
prove the theorama:
Rl. x*0 = 0
RZ, O*x = O
RI. xy = (-x)(~y)
{4.3) Civen the axioms of Group Theory
1. ex = x 4, zx"l m e
2. xe=x 5. x(yz) = (xy)z
3. xlxwe
prove the theorems:
Gl. x*x = e + yzr = ry 2
(s group 1a cosmutative if x* = e}

G2. (xzme & zx=e) » (yzwe A rpyme) + Xy
(the taverse of z 1s unique)

65 .(x"})" = x

66, (xy)! = y7ix71

GT.x3 =& + ylay?
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Furthermore, with the reduced axioms set:

(4.31) 1. ex = x 2. x"lx e @ 3. x{yz) = (xy)z

ptove the theorams:

Gl, xe=x
Gh, xx}

With RUE a computer proved all of the above 17
theorems In 92 seconds which may be compared with

the reader's own achievement. The brevity and
Incislveness of the computer deduced RUE proofs
[10] can also be compared with the reader's own

humanly deduced proofs.

The above represent first experiments with RUE

automated deduction, wherein the longest theorem
proven is 13 RUE steps (27 steps If using the
equality axioms), and we will now outline the

heuristics which were derived and employed in these
first experiments.

5. Heuristic Principles Applied

heuristic
during

the
were

The following
principles which
experimentation:

(1
(2)

are primary

developed
Heuristic ordering by degree of unification

Selection of the loweat level disagreement
set not containing an irreducible literal
Heuristic substitution selection

(3)

Complexity bounds relating to:

(a)
(b)

(c)

(d)
(e)

Purging redundancies by subsumptlon

argument nesting

number of distinct variables
resolvent

number of occurrences of the same
constant or function symbol in a clause
maximum number of literals in a clause
maximum character length of a clause

in a

()
(6)
(7)

Demodulation

Frequency bounds for the use of individual
axioms in a refutation path and bounds on
the consecutive use of the same axiom.

All of the above principles are syntactic in
nature and apply generlcally to experiments
performed. (1) through (3) ae RUE specific but the
remaining principles have commonly been used by
resolution theorem provers.



(5.1) Heurletlc Ordering by Degree of Unification

If we wish to erase cthe literal t1¥tg, ve
measure the relevancy of sn sxiom a, = a3 for cthis
task by computing the degres of uni}tcat on batwean
complemantary literals in the following manner:

(1} Apply the MGPU te complementary licerals
to obtain ot fot,, osy~oa,

(2) Set weD (unification weight)

(3) For i=1,2
if oty matchas cag identically
then v » w450

wlee 1f oap, oty are the sems
function, say

aag= f{by,by), oty~ f{c;,c3),

then v = w20 and, furtharmore, v = w+l5
for ssch matching pair of correaponding

aTgumants.
This is a simple scheme of matching which
computea a weight of 100 when oas«o0a, erases
ctifot? and a weight of O when the complementary

literals do not satisfy the equality restriction.
There is also an intermediate scoring between these
extremes.

For example, in the refutation of ab=ba stated
in (2.1) which proves that a group |Is commutative
if x*x « e, we used the input clause set:

§: 1. ex~»x 2. x = eox

3. xe* x 4, x = xe

5. x'lf L) 6. e = u'lr

T xx* m g 8. e = xx

9. x(yg) = (ay)e 10. (xy)z = x(yz)

11, xx = o (negated theorem)

12. & = xx

13. ab ¥ ba

Note that we have added to the input clause
set the symmetry variant of each axiom which
enablea wua in this experiment to build in symmetry
without introducing the axiom x4y v y-x. This

technique was also used by NOW.

Table 2 shows the unification acoring which
took place for aucceaalve resolvents in the
refutation of ab=ba. We place in parentheaea
axloma having a common score and * above the axiom
actually used in the refutation. We refer to

Ixioms by their index in the input clause set.
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Table 2. (Axiom Unification Scoring)
*
abd bs  : €1,2,3,4,9,10)-70,
(5,6,7,8,11,12)~35

»
(3)-85, (1,2,4,9,10)=70,
(5,6,7,8,11,12)=35

(ba)e ¢ ab :

(5,1:)-100. (1,3,7)-85,
(9'10)-603 (2i‘)-50!
(6,8,12)-0

ybod s :

-

(1,3)-70, {(9,10)-60,
(2,4)-50, (5,7,11)-35,
(5.3.12)—0

(ba)b ¢ a

*
(1,2,3,4,9,10)-70,
(5,6,7,8,11,12)-35

ea ¥ (badh :

®
(7,11)-100, (1,3,5)-8%,
(9,10)-60, (2,4)-50,
{6,8,12)=0

(ba)y ¢ «

"
(1,3)-70, {%,10)-60,
(z,4)-50, (5,7,11)-35,
(6,8,12)-0

(bade ¥ b :

L]

(3)-85, (1)-70, (9,10)-60,
(2,4)-50, (5,7,11)-15,
(6,8,12)-0

b(aa) ¥ b

*
(12)-100, (2,4,6,8)-70,
9,10)-60, (1,2)-50,
¢5.7,11)-0

e v an :

The relative ranking of the refutation axlon
In each acoring la given by the sequence:
3,5,2,1,6,2,4,1,1. The refutation axioms average
to a relative position of 2.78 among 12 candidate
axioms.

Furthermore, If we write the refutation as i

welghted-axloro sequence:

(axion weight)
abfba 70 70 100 70 70 100 60 85 100
3 9 11 1 11 11 10 3 12
(axiom index)
we see that the minimum weight Is 60 and that wc

may disregard an axiom scoring below 60 In the
refutation search.

We may now state our first principle ol
heurlstically ordering the expansion of th<
refutation search tree:

1. Apply axioms to a negative literal In the

order of higher degree of unlficalon first
and set a lower limit SDAWMN below which

we suppress or postpone the application of
an axiom (search directive weight minimum)

2. Furthermore, among axioms which qualify fo
application, select the first SPLIM candi-
dates (search directive limit).



In reviewing all the refutations in group
theory, we found the SDWMIN 50 or 60 applied.
Though the completeness theory specifies that all
axioms for which w > 0 must be wused to preserve
completeness, heurlstically w >- SO specifies a
subspace of search where we should expect to find
the refutation.

Furthermore, SDLIM specifies an inner-subspace
of the latter which is even richer in expectation.

In the Boolean Algebra and Ring Theory experiments,
SDLIM 3 or A was successfully used.

(5.2) Selecting the Lowest Level Disagreement Set
Not Containing an Irreducible Literal

Typically in adding the negated*theorem to the
input clause set, we Introduce skolem constants and

when It is evident that these constants are in
effect arbitrary constants with respect to the
input axioms, then we can conclude that
Inequalities on skolem constants like a=b are
irreducible, l.e. we cannot deduce a-b from the
axiom set.

For example, in group theory the negated
theorem ab=ba Introduces skolem constants a,b,

which with respect to the axioms:

*y "

ex-Xx, xe«x, x~*x"e, xx"-e, x(y«)"(xy)z

constants and we cannot prove from
We should never generate an
inequality afb in a disagreement set during a
refutation search. Furthermore, inequalities like
(a~'a)b-e which demodulate to Irreducible literals,
are also irreducible and can never appear In a

refutation.

are arbitrary
these axioms that a-b.

This leads us to the following heuristic rule:
"In an RUE deduction, the disagreement
set likely to be required by a refuta-
tion, Is the lowest level disagreement

set not containing an irreducible literal."

In fact across 17 experiments containing 109
refutation steps, the above selection was always
correct and what is more important led to proofs

which did not require NRF.

The above rule heurlstically complements the
strict rule specified by the completeness theory
where we state that we must select the topmost
viable disagreement set, which then requires us to
descend to lower levels by NRF If necessary.

(5,3) Heuristic Substitution Selection

In the completeness analysis In [9], we
establish that substitutions are to be performed
only in variables at the first argument level of

predicates in RUE and only In variables at the
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first argument level of the outermost function In
NRF. This qualification of the MGPU It required
for completeness. It leads, however, to proofs
with extensive use of the NRF rule, yielding much
longer refutations requiring deeper search trees.
These same proofs can always be expressed in
shorter form without NRF steps, by using Immediate
substitutions at lower argument levels*

Intuitively It Is desirable to wuse an
unrestricted MGPU, achieving a maximum degree of
unification so that Inequalities In a disagreement

set are reduced In number.

It In fact occurs In all 109 refutation steps
In 17 experiments performed that maximum
unification as described below Is the refutation

substitution:

1. First subsltute In a left-to-rlght scan
only In variables at the first argument

level.

2. Then In a second left-to-rlght scan,
substitute In variables at all lower
argument levels.

Let us now apply both the notion of maximum
unification and Irreducible literals to our
refutation of abffba In group theory. From the
constants

(a,a~,b,571,4)
we define as Irreducible literals:
(ada™t, apb, adt™l, afe,
a L, u'lib'l. l_"ic.
Hh-l. Wl.
b7 1lge )
and augment this set with any literal which
demodulates to one of Its members, using the
demodulating substitutions
(ex+ x, xe+ x, x°Ix+ ., xxl +a).
If In searching for a refutation of ab=ba, we

the maximum unification MGPU
disagreement set not

heuristleally choose
and the lowest level
containing an Irreducible literal , we obtain the
refutation we have already stated In (2.1). This
proof which is specified by the heuristic theory is
9 steps compared to the 17 step refutation
specified by the completeness theory which contains

8 additional NRF steps.

6. Completeness vs. Heuristic Theory

There s a polarity between completeness and
heuristic theory, the latter tends to sacrifice
completeness for the sake of efficiency which s
crucial, and the former in giving the highest
priority to the preservation of completeness tends

to be seriously inefficient. It is important,



however, to elaborate both approaches, and we have
dona this In [9] for coapleteness and hare for
heuristics.

7. Longest_Experiment Performed

Let us now examine the longest refutation in
Table 1, containing 13 RUE steps, which proves in
ring theory that xy - (-x)(-y). The RUE theoren
prover deduced this refutation in less than 26
seconds employing 10,850 wunifications in its
heuristic search. The same proof with the equality
ixloms would be a 27 step refutation.

{7.1) ab ¥ (=a)(~-b)

=y v xhrfyh
abiz ¥ (=a)(=b)=x

wukyus(xtyju

(a4y)b ¥ (=) (=D)4yd

™ v xtzduh
(aty)btz ¢ ((~a)(~B)+yb)+s

uwkvus (udv v

((aty)ev)b ¢ ((~a)(-b)+yb)+vd

-0y
0 ¢ (=a)(~b)+yb v (ady)iv ¢ v
x{uds Ymuutze

-al=-bFb) $0 v (at{~a))iw ¥ ¥
Xey ¥ xésfyd
~a{~bbb)tx ¥ 0%z v (ab{-a))iv ¥ v

b o liy

=a(=bkh)4x f 2z v at(=a)dv ¥ v

wrkuy=u{ x+y)
(~btb)iy $ y v ab(-a)iv d v

' O+xex

D4 bidb v at(a)ivdw
Om =ybx
(at(~a))v d v

e Ddmmx

0 4 at+{-a)

0= wb{>x)

empty clause
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Substitution

ablx, {(=a)(=b)ly

s/x, b/u, yh/e

(aty)b/x, (-a)(-b)/u

s+y/u, dblw, vb/z

{{a+y)+v)b/x

-li’xn -b’“l -.,,l b’“

=-a(=btb) /x, Oy

—a{=btb)+e/x

-."ul 'H’bf‘l(. "Yf!

y/x

b/x

v/x

alx



The abova rafutation can be sussarized a»
follovs: “"From the negatad theoren ab ¥ {-a){-b)
and the axiom x¥y v wxbzfy+z, form the construct

ab + yb + vb # (-a)(=b) + yb + vb

which factors to the form
(a+y+v)bed (=a)(-b) + yb + vb .

Substitute =a/y and interpret as follows:
(a + {~a)}) + v)b ¥ -a(~btb) +vb

(0 +)b ¢ "

vh ¥ " "

and we only nesd to prove ~a(=b+h) = 0 which the
refutation does ss follows:

~a{=btb} 4 O
~a(=btb} + £ 4 0 + g
-a(-tbd) +z ¥ 2

substitute -ay/z and factor

q.e.d,

8. Conclusion

The above gives um a messure of the logical
complexity of a 13 step RUE proof. We expact tha
current RUE cheorsm provr to be consistently
effective in flonding proofs of length 15, and we
ars now proceeding to attempt to prove vary long
theorems in the neighborhood of 40 steps, auch as
the following proven by MOW:

the extended axiom

"In group theory, using

set, prove
X3 aa o KMxY).y) =e
where h{x,y)= xyx"ly~l,

Using the equality axioms and the additional
lepmas

(x1ylax andel=0,

MON proved this theorem in 54 seconds using 184,955

unifications. Wos in [3] presented a 38 step
paramodulation proof (humanly deduced) for this
theorem without using additional lemmas. The RUE

proof should be of the same length.

If automatic deduction can be brought to be
consistently successful in proving theorems such as

the above, this will be a landmark achievement.

In the end there is an event which can serve
to signal the maturity of automatic theorem
proving, namely the appearance of controlled

competitions (as in chess) between theorem provers
and finally between machine and astute human.
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