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ABSTRACT 

We p r e s e n t and a n a l y s e e x p e r i m e n t a l r e s u l t s i n 
t h e f i r s t e x t e n s i v e use o f a theo rem p r o v e r based 
o n R e s o l u t i o n b y U n i f i c a t i o n and E q u a l i t y . 
I m p l i c i t use i s made o f e q u a l i t y ax ioms b y t h e 
I n f e r e n c e r u l e s RUE and NRF to a c h i e v e i n c i s i v e 
r e f u t a t i o n s f o r E - u n s a t l s f l a b i l i t y . S i n c e a 
p r i m a r y i s s u e i n au tomated d e d u c t i o n i s t h e 
e f f i c a c y o f conve rgence t o p r o o f , w e d e s c r i b e i n 
d e t a i l t he h e u r i s t i c s w h i c h were used t o o b t a i n 
p r o o f s . A c o m p a r a t i v e t a b u l a t i o n w i t h t h e r e s u l t s 
o f McCharen, Overbeek and Wos, who used u n i f i c a t i o n 
r e s o l u t i o n , shows s h a r p l y reduced c u m u l a t i v e 
u n i f i c a t i o n c o u n t s . 

1 . I n t r o d u c t i o n 

A p r i m a r y r e a s o n f o r t h e f a i l u r e o f b i n a r y 
r e s o l u t i o n r e l a t e s t o t h e h a n d l i n g o f e q u a l i t y , a 
p r e d i c a t e w h i c h p l a y s a c e n t r a l r o l e i n most 
a x i o m a t i c s y s t e m s . The use o f t h e e q u a l i t y ax ioms 
I n t h e i n p u t c l a u s e s e t l e a d s t o v e r y l o n g p r o o f s 
w h i c h a re u n n e c e s s a r i l y cumbersome and p a r a -
m o d u l a t i o n w h i c h l e a d s t o much s h o r t e r p r o o f s 
p r e s e n t s p rob lems o f h e u r i s t i c s e a r c h f o r t h e 
p r o p e r p a r a m o d u l a n t s w h i c h e x p e r i m e n t o r s have n o t 
been a b l e t o s u r m o u n t . 

I n [ 8 , 9 ] t h e a u t h o r p r e s e n t e d t h e t h e o r y o f 
r e s o l u t i o n b y u n i f i c a t i o n and e q u a l i t y i n w h i c h t h e 
ax ioms o f e q u a l i t y a r e i n c o r p o r a t e d i n t o t h e 
d e f i n i t i o n o f r e s o l u t i o n . I n c o n t r a s t t o 
p a r a m o d u l a t l o n , RUE r e s o l u t i o n does l e n d i t s e l f t o 
h e u r i s t i c s w h i c h conve rge t o r e f u t a t i o n s and i t i s 
t h e purpose o f t h i s paper t o c a r e f u l l y s t u d y t h i s 
i s s u e . 

W e w i l l f i r s t g i v e a s y n o p s i s o f t h e b a s i c 
theorems and d e f i n i t i o n s o f RUE r e s o l u t i o n as 
p r e s e n t e d i n [ 9 ] and t h e n p roceed t o t h e d i s c u s s i o n 
o f e x p e r i m e n t s and h e u r i s t i c s e a r c h p r o c e d u r e s . 

(1.1) A disagreement set of a pair of terms 
(t1,t2) is defined in the following manner: 

(1) If t 1 , t 2 sre ident ical the empty set 
is the sole disagreement set. 

(2) If t1,t2 are not ident ica l , the set of 
one element the pair ( t 1 , t 2 ) is the 
or ig in disagreement set. 

(3) If t 1 , t 2 have the form 
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which are obviously not equ iva lent deduct ion* . If 
we instead use the equa l i t y axioms w i t h u n i f i c a t i o n 
r e s o l u t i o n , each of the above one step deductions 
becomes an elongated sequence of 3 and 6 steps 
respec t ive ly . 

The two important issues which remain are the 
se lec t ion of s u b s t i t u t i o n and disagreement set when 
we resolve complementary l i t e r a l s , f o r which there 
is the theorem: 

The reader w i l l f i n d in (9] a de ta i l ed 
treatment of the no t ion of v i a b i l i t y which subtends 
the d e f i n i t i o n s of the above u n i f y i n g s u b s t i t u t i o n 
and also the equa l i t y r e s t r i c t i o n . I t su f f i ces to 
say. here that we are to use the MGPU ( the most 
general p a r t i a l u n i f i e r ) of P, P and t h i s is a 
q u a l i f i e d form of the NGU of standard r e s o l u t i o n , 
relaxed to permit i r r e d u c i b l e disagrements. 

The v i a b i l i t y c r i t e r i o n enables us to suppress 
deductions which are recognized as provably 
i r re levant to a r e f u t a t i o n and the equa l i t y 
r e s t r i c t i o n enables us to avoid useless va r ian ts of 
the same deduction pa th . 

The above is a very cursory desc r ip t i on of a 
qu i te subs tan t ia l body of theory presented in [ 9 ] . 

2. An RUE Refu ta t ion in Group Theory: 

Below we present an RUE r e f u t a t i o n which 
proves that a group is commutative if x*x - e. The 
axioms of group theory are given in (4 .3) of t h i s 
paper. The s t y l e of proof Is s i m i l a r to that 
introduced by Harr ison and Rubin in general ized 
reso lu t i on [ 7 ] . 

In formulat ing subs t i t u t i ons we are scanning 
complementary l i t e r a l s from l e f t to r i g h t , sk ipping 
over I r reduc ib le disagreements, and furthermore 
s u b s t i t u t i n g f i r s t at the topmost argument l e v e l 
and then at lower l e v e l s . This is evident in the 
f i r s t two steps of the r e f u t a t i o n . 

We are also being appropr ia te ly se lec t i ve in 
choosing a disagreement se t , sometimes using the 
topmost and sometimes the bottommost according to a 
c r i t e r i o n we w i l l develop l a t e r in ( 5 . 2 ) . 

This 9 step proof becomes a 22 step proof when 
we use the equa l i t y axioms w i th u n i f i c a t i o n 
r e s o l u t i o n . The RUE theorem prover deduced the 
above r e f u t a t i o n in 2.5 seconds using a t o t a l of 
570 u n i f i c a t i o n s . Typ i ca l l y a 9 step RUE proof 
w i l l represent a f a i r l y soph is t ica ted axiomatic 
de r i va t i on which humans do not eas i l y a r r i v e a t . 
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3. A Comparative Analysis 

In evaluat ing the performance of an automatic 
theorem prover, It is always important to compare 
machine performance against human performance and 
in doing so to avoid extremes. We should not 
expect to capture in a computer a lgor i thm the 
c r e a t i v e , a n a l y t i c a l genius of an except ional 
mathematician, rather we should be content to 
compare against astute human performance. We 
should requi re a theorem prover to prove theorems 
which astute humans f i nd d i f f i c u l t to deduce. 
Since the reader w i l l always consider himself an 
astute human, he can put the issue sub jec t i ve l y to 
t e s t . 
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At t h i s l e v e l of performance, automated 
deduct ion has important app l i ca t ions in many 
f i e l d s , inc lud ing robo t i cs , the science o f 
i n t e l l i g e n t machines, and also data base technology 
which should be more than sophis t icated c o l l e c t i o n 
schemes f o r e x p l i c i t l y stored da ta . 

Since 1965 when reso lu t i on was in t roduced, we 
have accumulated subs tan t ia l experience w i t h 
machine deduction by reso lu t i on . As recen t l y as 
1976, the Computer Transactions of the IEEE 
contained two important a r t i c l e s of major 
implementations of reso lu t i on theorem provers. 

In the Maryland system of Wilson and Minker 
[ 5 ] , the authors conclude w i t h a very negat ive 
assessment of the e f f i cacy of r e s o l u t i o n : 

"Considering that the average proof attempt 
using the best o v e r a l l proof procedure requi red 42 
CPU seconds, our r esu l t s are d iscouraging. Even 
though most of the problems were r e l a t i v e l y simple 
f o r a human to so lve, the t o t a l CPU time requi red 
f o r the study cost more than $30,000. C lea r l y such 
a theorem proving system is f a r from p r a c t i c a l . 

None of the inference systems tested enabled 
more than a marginal improvement in the o v e r a l l 
power of un res t r i c ted binary r e s o l u t i o n . . . . We 
have been unable to determine the problem and proof 
procedure cha rac te r i s t i cs which e i t he r enable 
problems to be solved or prevent them from being 
so lved . " 

In contrast in the Argonne system of HcCharen, 
Overbeek and Wos [ 6 ] , the authors present 63 
experiments ranging from t r i v i a l to qu i te d i f f i c u l t 
theorems, proven in diverse f i e l d s , together w i t h 
some theorems in which t h e i r system f a i l e d . Their 
experiments represent one of the most successful 
attempts in automatic deduct ion. They presented 
f o r each experiment the input clause set used as 
w e l l as a systematic tabu la t i on of the amount of 
computation requ i red . This paper in s ingu la r 
fashion establ ished a benchmark f o r other 
researchers to compare w i th and we have here used 
it as a basis of eva luat ion of RUE. 

We have conducted 17 experiments taken from 
HOW and deal ing w i th Ring Theory, Group Theory and 
Boolean Algebra. The h e u r i s t i c procedures 
developed from these experiments have, thus f a r , 
proven e f f e c t i v e . We s ta te the comparative r e s u l t s 
across 17 experiments between MOW and RUE in Table 
I . 



Notes on Table 1: 

(1) The RUE theorem prover was excep t iona l l y 
super ior throughout. the ten boolean and r i n g 
theory experiments, and in group theory both 
theorem provers achieved impressive r e s u l t s . 

(2) The RUE theorem prover was implemented in 
the PL/1 programming language and run on an 
Amdahl computer. The MOW theorem prover was 
implemented in Assembly language and run on the 
IBM System 370/195. It is d i f f i c u l t to compare 
runtimes in d iverse hardware and software 
environments, and we suggest t o t a l u n i f i c a t i o n s 
as a v a l i d measure of comparison. 

(3) Since MOW used a complete set of equa l i t y 
axioms in the input clause set of a l l these 
experiments and since they do not tabu la te any 

paramodulatlon counts, it seems tha t they made 
l i t t l e successful use of paramodulatlon even 
though t h e i r paper s tates tha t t h i s technique 
was incorporated in t h e i r system. 

(4) NPR: no published reeu l t w i thout implying 
that MOW f e l l e d on these theorems. 

(5) MOW ran BA and B5 as a s ing le theorem 

(x + xy - x) A x (x + y) • x 

which negated becomes a+ab=a v a(a+b)f*a 
In the Input clause s e t , and I t Is evident tha t 
the r e f u t a t i o n of ~(B4 A B5) IS simply the 
concatenation of the r e f u t a t i o n s f o r ~B4 and 
~B5 I n d i v i d u a l l y taken and as der ived by RUE. 
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(6) The same holds f o r ~(B6 A B7) whose proof 
is the concatenation of the RUE re fu ta t i ons 
fo r ~B6 and ~B7 i n d i v i d u a l l y taken. 

(7) In proving G3 and G6, the RUE theorem 
prover compared each new resolvent against each 
resolvent already in the r e f u t a t i o n search t ree 
in order to suppress dupl icates and the overhead 
led to the very slow times 21 and 26 seconds. 
However, t h i s dup l ica te removal can be 
implemented much more e f f i c i e n t l y to reduce the 
runtimes considerably. For the most p a r t , 
dup l ica te removal was not appl ied in the other 
RUE theorems of Table 1. 

With RUE a computer proved a l l of the above 17 
theorems In 92 seconds which may be compared w i t h 
the reader 's own achievement. The b rev i t y and 
lnc is lveness of the computer deduced RUE proofs 
[10] can also be compared w i th the reader 's own 
humanly deduced p roo fs . 

The above represent f i r s t experiments w i th RUE 
automated deduct ion, wherein the longest theorem 
proven is 13 RUE steps (27 steps If using the 
equa l i t y axioms), and we w i l l now o u t l i n e the 
heu r i s t i c s which were der ived and employed in these 
f i r s t experiments. 

5. Heu r i s t i c P r i nc ip les Appl ied 

The fo l l ow ing are the primary h e u r i s t i c 
p r i nc i p l es which were developed dur ing 
exper imentat ion: 

(1) Heu r i s t i c order ing by degree of u n i f i c a t i o n 

(2) Select ion of the loweat l e v e l disagreement 
set not conta in ing an i r r e d u c i b l e l i t e r a l 

(3) Heur i s t i c s u b s t i t u t i o n se lec t i on 

(A) Complexity bounds r e l a t i n g t o : 

(a) argument nest ing 
(b) number of d i s t i n c t var iab les in a 

resolvent 
(c ) number of occurrences of the same 

constant or func t ion symbol in a clause 
(d) maximum number of l i t e r a l s in a clause 
(e) maximum character length of a clause 

(5) Purging redundancies by subsumptlon 

(6) Demodulation 

(7) Frequency bounds f o r the use of i n d i v i d u a l 
axioms in a r e f u t a t i o n path and bounds on 
the consecutive use of the same axiom. 

A l l o f the above p r i n c i p l e s are syn tac t i c in 
nature and apply gener l ca l l y to experiments 
performed. (1) through (3) ae RUE spec i f i c but the 
remaining p r i nc i p l es have commonly been used by 
reso lu t i on theorem provers. 
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(5 .1 ) Heur le t l c Ordering by Degree of U n i f i c a t i o n 

This is a simple scheme of matching which 
computea a weight of 100 when oa1«oa2 erases 
c t i f o t ? and a weight of 0 when the complementary 
l i t e r a l s do not s a t i s f y the equa l i t y r e s t r i c t i o n . 
There is also an intermediate scor ing between these 
extremes. 

For example, in the r e f u t a t i o n of ab=ba stated 
in (2 .1 ) which proves that a group Is commutative 
if x*x • e, we used the input clause se t : 

Note that we have added to the input clause 
set the symmetry va r ian t of each axiom which 
enablea ua in t h i s experiment to b u i l d in symmetry 
wi thout int roducing the axiom x4y v y - x . This 
technique was also used by NOW. 

Table 2 shows the u n i f i c a t i o n acor ing which 
took place f o r aucceaalve resolvents in the 
r e f u t a t i o n of ab=ba. We place in parentheaea 
axloma having a common score and * above the axiom 
ac tua l l y used in the r e f u t a t i o n . We re fe r to 
lxioms by t h e i r index in the input clause s e t . 

The r e l a t i v e ranking of the r e f u t a t i o n axIon 
In each acorlng la given by the sequence: 
3 , 5 , 2 , 1 , 6 , 2 , 4 , 1 , 1 . The r e f u t a t i o n axioms average 
to a r e l a t i v e p o s i t i o n of 2.78 among 12 candidate 
axioms. 

Furthermore, If we w r i t e the r e f u t a t i o n as i 
welghted-axloro sequence: 

we see that the minimum weight Is 60 and tha t wc 
may disregard an axiom scor ing below 60 In the 
r e f u t a t i o n search. 

We may now sta te our f i r s t p r i n c i p l e ol 
h e u r l s t l c a l l y order ing the expansion of th< 
r e f u t a t i o n search t r e e : 

1. Apply axioms to a negative l i t e r a l In the 
order of higher degree of u n l f l c a l o n f i r s t 
and set a lower l i m i t SDWMIN below which 
we suppress or postpone the a p p l i c a t i o n of 
an axiom (search d i r e c t i v e weight minimum) 

2. Furthermore, among axioms which q u a l i f y fo 
a p p l i c a t i o n , se lec t the f i r s t SPLIM cand i ­
dates (search d i r e c t i v e l i m i t ) . 
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I n reviewing a l l the r e fu ta t i ons i n group 
theory , we found the SDWMIN 50 or 60 app l i ed . 
Though the completeness theory spec i f i es tha t a l l 
axioms f o r which w > 0 must be used to preserve 
completeness, h e u r l s t l c a l l y w >- SO spec i f i es a 
subspace of search where we should expect to f i n d 
the r e f u t a t i o n . 

Furthermore, SDLIM spec i f ies an inner-subspace 
of the l a t t e r which is even r i che r in expecta t ion . 
In the Boolean Algebra and Ring Theory experiments, 
SDLIM 3 or A was successfu l ly used. 

(5 .2 ) Se lec t ing the Lowest Level Disagreement Set 
Not Containing an I r r educ ib l e L i t e r a l 

Typ i ca l l y in adding the negated*theorem to the 
input clause se t , we Introduce skolem constants and 
when I t is evident that these constants are in 
e f f ec t a r b i t r a r y constants w i th respect to the 
input axioms, then we can conclude that 
I nequa l i t i e s on skolem constants l i k e a=b are 
i r r e d u c i b l e , I . e . we cannot deduce a-b from the 
axiom se t . 

For example, in group theory the negated 
theorem ab=ba Introduces skolem constants a ,b , 
which w i th respect to the axioms: 

ex-x , xe«x, x~*x"e, x x ^ - e , x (y« ) " (xy )z 

are a r b i t r a r y constants and we cannot prove from 
these axioms that a-b. We should never generate an 
i nequa l i t y af*b in a disagreement set dur ing a 
r e f u t a t i o n search. Furthermore, i n e q u a l i t i e s l i k e 
(a~1a)b-e which demodulate to I r r educ ib le l i t e r a l s , 
are also i r r e d u c i b l e and can never appear In a 
r e f u t a t i o n . 

This leads us to the fo l l ow ing h e u r i s t i c r u l e : 

" I n an RUE deduct ion, the disagreement 

set l i k e l y to be required by a r e f u t a ­

t i o n , Is the lowest l eve l disagreement 

set not conta in ing an i r r e d u c i b l e l i t e r a l . " 

In fac t across 17 experiments conta in ing 109 
r e f u t a t i o n s teps, the above se lec t ion was always 
cor rec t and what is more important led to proofs 
which d id not requi re NRF. 

The above r u l e h e u r l s t l c a l l y complements the 
s t r i c t ru le spec i f ied by the completeness theory 
where we s ta te that we must se lect the topmost 
v iab le disagreement se t , which then requires us to 
descend to lower leve ls by NRF If necessary. 

(5 ,3 ) Heu r i s t i c Subs t i t u t i on Select ion 

In the completeness analys is In [ 9 ] , we 
es tab l i sh that subs t i t u t i ons are to be performed 
only in var iab les a t the f i r s t argument l eve l o f 
predicates in RUE and only In var iab les at the 

f i r s t argument l e v e l o f the outermost f unc t i on In 
NRF. This q u a l i f i c a t i o n of the MGPU It requ i red 
f o r completeness. I t leads, however, to proofs 
w i t h extensive use of the NRF r u l e , y i e l d i n g much 
longer r e fu ta t i ons requ i r i ng deeper search t r e e s . 
These same proofs can always be expressed in 
shorter f o r m wi thout NRF s teps, by using Immediate 
subs t i t u t i ons at lower argument leve ls * 

I n t u i t i v e l y I t I s des i rab le to use an 
un res t r i c t ed MGPU, achieving a maximum degree of 
u n i f i c a t i o n so tha t I nequa l i t i e s In a disagreement 
set are reduced In number. 

I t I n fac t occurs In a l l 109 r e f u t a t i o n steps 
In 17 experiments performed tha t maximum 
u n i f i c a t i o n as described below Is the r e f u t a t i o n 
s u b s t i t u t i o n : 

1 . F i r s t subs l tu te In a l e f t - t o - r l g h t scan 
only In var iab les a t the f i r s t argument 
l e v e l . 

2. Then In a second l e f t - t o - r l g h t scan, 
subs t i t u te I n var iab les a t a l l lower 
argument l e v e l s . 

Let us now apply both the no t ion of maximum 
u n i f i c a t i o n and I r r educ ib le l i t e r a l s to our 
r e f u t a t i o n of abffba In group theory . From the 
constants 

we def ine as I r r educ ib l e l i t e r a l s : 

and augment t h i s set w i th any l i t e r a l which 
demodulates to one of I t s members, using the 
demodulating subs t i t u t i ons 

If In searching f o r a r e f u t a t i o n of ab=ba, we 
heu r1s t l ea l l y choose the maximum u n i f i c a t i o n MGPU 
and the lowest l e v e l disagreement set not 
conta in ing an I r r educ ib le l i t e r a l , we ob ta in the 
r e f u t a t i o n we have already s ta ted In ( 2 . 1 ) . This 
proof which is spec i f i ed by the h e u r i s t i c theory is 
9 steps compared to the 17 step r e f u t a t i o n 
spec i f i ed by the completeness theory which contains 
8 add i t i ona l NRF steps. 

6. Completeness vs. Heu r i s t i c Theory 

There s a p o l a r i t y between completeness and 
h e u r i s t i c theory, the l a t t e r tends to s a c r i f i c e 
completeness f o r the sake of e f f i c i e n c y which is 
c r u c i a l , and the former in g i v ing the highest 
p r i o r i t y to the preservat ion of completeness tends 
to be ser ious ly i n e f f i c i e n t . I t is important, 
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however, to e laborate both approaches, and we have 
dona this In [ 9 ] f o r coapleteness and hare f o r 
h e u r i s t i c s . 

7. Longest Experiment Performed 

Let us now examine the longest r e f u t a t i o n in 
Table 1, conta in ing 13 RUE s teps , which proves in 
r i n g theory tha t xy - ( - x ) ( - y ) . The RUE theoren 
prover deduced t h i s r e f u t a t i o n in less than 26 
seconds employing 10,850 u n i f i c a t i o n s in i t s 
h e u r i s t i c search. The same proof w i t h the equa l i t y 
ixloms would be a 27 step r e f u t a t i o n . 
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MOW proved t h i s theorem in 54 seconds using 184,955 
u n i f i c a t i o n s . Wos in [3 ] presented a 38 step 
paramodulation proof (humanly deduced) f o r t h i s 
theorem wi thout using add i t i ona l lemmas. The RUE 
proof should be of the same leng th . 

If automatic deduction can be brought to be 
cons is ten t l y successful in proving theorems such as 
the above, t h i s w i l l be a landmark achievement. 

In the end there is an event which can serve 
to s igna l the matur i ty of automatic theorem 
prov ing , namely the appearance of con t ro l l ed 
competi t ions (as in chess) between theorem provers 
and f i n a l l y between machine and astute human. 
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