SEARCH METHODS USING HEURISTIC STRATEGIES

Michael

Georgeff

Department of Computer Science,
Monash University,

Clayton, V

Abstract

Real-valued heuristic functions have been extensive-
ly used as a means for constraining search In large
problem spaces. In this paper we look at an alter-
native approach, called strategic search, In which
heuristic information is expressed as strategies.
Strategic search generates a search graph by follow-
ing some strategy or set of strategies, backtracking
to previous choice points when the current strategy
falls. We first examine algorithms for performing
strategic search using both determlnisltic and non-
deterministic strategies. Some examples are given
which indicate that strategic search can out-perform
standard heuristic search methods. The construction
of strategies is also considered, and reans for ac-
quiring strategic information both from analagous
problems and from example execution traces are des-
cribed. Finally, we indicate how meta-level strat-
egies can be used to guide the application of object
level strategies, thus providing a hierarchy of
strategic information.

1. Introduction

Search for solutions in combinatorially large prob-
lem spaces still remains one of the major problems
in artificial intelligence. For such problems ex-
haustive search methods are not feasible, and it is
necessary to guide the search process in some way.
Most of the early techniques were based on heuristic
functions whose value for a given state provided a
numeric measure of the promise or otherwise of pur-
suing the search from this state [10].

However, it soon became apparent that some form of
planning had to be Incorporated into such problem
solvers if substantial reductions in search effort
were to be achieved. This led to the development
of a number of schemes for constructing and then
executing plans [4, 12, 13]. The basis of these
schemes is to constructa global plan to constrain
the set of possible paths In the search space, and
then to search for a solution in this constrained
solution space. The entire plan is constructed from
the initial state to the goal state, making use of
information associated with the operators to devise
the plan.

However, there are many problems where this approach
either does not work or is inappropriate. For

example, in chess it is not clear how to define the
abstract spaces in which the planning can take place,
and the variation in environmental influences (i.e.

ic,

563

Australia.

the responses of the other player) makes global plan
formation and modification very difficult. In such
situations we may wish to construct localized plans
that involve conditional operations [17). In other
problem domains, plan knowledge may simply be part
of the domain specific knowledge of the problem
solver (e.g. tesuji in the game of GO [1], strate-
gies for Rublk's Cube [16] and program transform-
ations [2], and methods of experimental design [5]),
These plans are often heuristic in nature that
is, they are intended to advance us towards a goal,
but they may take us down a dead-end, or fall by
suggesting an illegal or impossible transition.

In this paper we examine some basic search algorithms
which use such heuristic plans or strategies rather
than numeric valued heuristic functions. That Is,
for any given state, the heuristics provide a set of
promising strategies or plans for advancing towards
the goal. The basis of these algorithms Is quite
straightforward -— we pursue promising strategies
until either they are no longer applicable or they
generate an illegal transition. Then, exactly as in
the standard heuristic search methods, we back-up and
try some other promising strategy. In the more gen-
eral case, we may alternatively apply corrective
strategies, allow for the dynamic creation of strat-
egies or use meta-level strategies to guide the use
of object-level strategies. Such search algorithms
will be called strategic search algorithms.

2. Definitions

We define a problem P to be a quadruple

P - <D, Q, ss, Dg>

where D is a setof states called the problem space,
Q is a set of partial functions D -->* D called operat-
ors, ss in D is the start state, and Dg is a
subset of D called the set of goal states.

We say that a state s in D directly generates a
state s* in D, denoted s»>s' (assumed to be
Indexed by P), if for some operator o in Q we
have o(s) « s'. We will also say that <s,s*> is a

legal transition in P. We call 8* an (immediate)
successor of s, and we call s an (immediate) pre-
decessor of s'. A state s in D generates a
state s* in D if s > s' where -* s the
transitive closure of -* We call s' a descendant
of s, and s an ancestor of s*.

2.1 Strategies

A strategy is simply a program or machine that gener-



ates ssquances of state transitions. We will firet
consider deterministic strategliss, wvhich for a
given state in the domain of the problem generate
at most one such seguence.

Consider a probles P =D, Q, as, Dg>.Lat sp be &

strategy for P, and assume that, for some state
8y in D, Sp generates the sequence 8,:8,..:3

of states in D. State L is called a terminal
state and the states i =1..n~1 are called

5
1.
interaediate states. Then we say By in D
generatey the states . in Db, 1 = ..k, k<=,
under the strategy sp. if <My e8> are lagal

tranaitions in P. Where no ambiguity can arise,
we will simply say that s, atrategically gener-

ates the statas LT 1=1..k. If k< n, then we
ey & is a failure state, or that sp fails at

& The sequence of states s,, 1 = 0..k, or some

i.
interval thereof, is called a strategic path of sp.

Note that S that

is, it may be that a strategy is not defined for
some states in D. Furthermore, no restrictions
are placed on the state transitions specified by
the strategy. In particular, they need not be
legal transitions of P. Neither is there any re-
quirement that the final state of the sequence be
a goal state of P, although it would be expected
that the strategy at least moved us closer to a

is allowed to be partial

goal. Finally, note that it is possible for states
in D to have more than one strategic successor
that is, the strategic successor of an inter-

mediate state may depend on the strategic path to
that state.

For example, consider the eight puzzle [10]. A
very simple strategy for this problem might be
given by

procedure stratl (s)
while » is not the goal state do

1f the blank ia net in the centre then
svap the blank with the tile
whose position the hlank cccupies

else swvap the blank with the firt
misplaced tile

‘end-if

end whils
and stratl.

There are three points to note about this strategy.
First, the strategy contains conditional and iter-
ative constructs, and in general could have an
arbitrarily complex control structure. Second,
is clear that in many cases the strategy will
invoke an illegal transition for P. Finally, the
strategy is problem specific, as it depends on the
goal state of P. In general, the strategy could
also depend on other properties of the problem,
such as the start state, the operators or some
cost function.

it

564

2.2 Strategy-first Search

Consider a problem P « <D, Q, 88, Dg> and the
graph C defined by G - “D,'"*”> . The search
problem Is to find a path (possibly of minimum cost)

in this graph from the start state ss to some goal
state. Generation of all successors of a state is
called expanding that state [10]. |If, during a

search, all successors of a state have been gener-
ated, we will say that the state is closed Other-
wise the state is said to be open. |If a state s
generates more than one successor in the search
graph then we call state s (or the node correspond-
ing to s) a choice point.

P, we will attempt to

Given a strategy S for

find a path to a goal state by applying the strategy
S to the start state ss. However, in most cases
P

we will reach a point in the search where the
strategy cannot be followed (either because the
strategy terminates without finding a goal or be-
cause some lllegal transition is invoked). We
might then want to apply the strategy afresh to
some of the strategically generated states or to
some of their non-strategic successors. We there-
fore need a selection scheme for determining which
choice point to expand next.

Given that strategic moves can be expected to
advance the search towards a goal, one possible
scheme is to pursue paths containing the least
number of non-strategic moves in preference to other
possible paths. The search resulting from the use
of such selection schemes will be called strategy-
first search.

3. The Basic Algorithm

The procedure for performing strategy first search
is essentially the same as standard search algor-
ithms [10], except that the selection scheme is
based on choosing strategic transitions in prefer-
ence to non-strategic transitions. The simplicity
of this selection scheme, however, has important
consequences for the representation of open choice
points. In particular, unlike best-first search,
selection of the next choice point need not involve
a search of the list of open choice points. For
example, all strategically generated states can be
placed directly on the list representing the open
states, where as all those generated by non-strategic
transitions can be held temporarily on some other
list. Only when all strategic transitions have
been exhausted need the held states be opened for

selection. Indeed, there is no need to expand held
states until they are opened, resulting in further
gains in efficiency.

In the following algorithm, the operator denotes
the standard list constructor (LISP cons), hd
denotes the head of the list and tI denotes the
tail of the list. The expression (x - y) denotes

set (more accurately, list) difference and (x + y)

denotes set union.



function basic (as)

open := (list ma);

held :» smptylint;

clonad :=» emptylist;

vhile (not (null open)) de
st i= (select open);
Af (succ st) then return (path st);
closed := (st . closed):;
atratseg := (atrat st):
open :=(stratsaq - closed + open);
held := (st . held);
1f (null open) then

forall » in held do

open :=- ((ex;nd 8) - closed + open);

end~forall;
held := emptylist;
and=-1f:
end-while;
recurn 'failed;

end basic.

The function select pops the top element off open;
strat returns the list of states generated at st
by the strategy Sp ; expand returns the list of

the state s: and
in the search tree
st (in this case the

states directly generated from
path returns the (unique) path
from the start state to state
path may simply be taken to be

The ordering placed on open states and held states
will determine the order in which strategic moves
and non-strategic moves,
One of the simplest schemes is to treat both the
open and held lists as stacks, giving depth first
generation of both types of move. This scheme is

used in the examples that follow.
3.1 Examples

The example to be considered is the 8 puzzle. We
will assume that the square is numbered clockwise
starting at the top left hand corner, with square 9
in the centre. We will further assume that the goal
state is such that the number on each square corres-
ponds with its position and that the blank "tile" is
in the centre (i.e. at position 9).

We will consider two strategies represented by the
following rules:

(i) If the blank is not in the centre, then swap
the blank with the tile whose position the blank

occupies; otherwise swap the blank with the first
misplaced tile.

(ii) If the blank is not in the centre, swap the
blank with the tile whose position the blank occup-
ies; otherwise rotate the 3 tiles in some quarter of
the square so that the number of misplaced tiles is
reduced, and the blank is returned to the centre.

In order that strategy (ii) be deterministic, the
first of the (possibly many) rotations that satisfy
the condition is taken as the strategy. For example
in state (2 8 3 A 56 7 1 9) the strategy produces a
clockwise rotation of the top left hand quarter of
the square, giving state (12 34 56 789).

the first path found).

respectively, are generated.

563

Note that using strategy-first search with depth-
first expansion of open states, strategy (1)
generates exactly the same search tree as does the
strategy strati given in section 2. Note also that
strategy (11) Is partial and does not generate a
strategy when the blank is In the centre and the
number of misplaced tiles cannot be reduced by a
quarter square rotation.

Tree from strategy (i)

Fig. 1.

Figure 1 shows the search tree generated by
strategy-first search using strategy (i). The
states at which the strategy is evaluated are indi-
cated with *. Strategy (ii) generates the solution
path directly with two evaluations of the strategy.
These search trees may be compared with the search
tree generated using the standard heuristic search
method with the heuristic function h(n) = W(n),
where W(n) is the number of misplaced tiles in the
state n (see [10]). This search tree finds the
same solution path and contains 14 nodes (states).
Moreover, the heuristic function is evaluated at
every node in the tree.

Thus for both strategies, and particularly strategy
(ii), the number of evaluations of the strategy
during the search is considerably less than the
number of evaluations of the heuristic function.
Moreover, evaluation of strategy (1) and evaluation
of the above heuristic function are of comparable
complexity, and evaluation of strategy (11) can be
achieved in about twice the time. Thus, in this
case, strategic search is more efficient than
heuristic search by a factor of almost two for
strategy (i) and over three for strategy (ii).
Furthermore, the heuristic search method requires
that the entire list of open states be searched



either on state insertion or selection —
strategy-first search simply pops a stack.

It is important to note that in the above cases it
was possible to determine the appropriate strategic
transitions without explicitly generating and
evaluating different paths in the search space.
Thus, for example, under strategy (11) it was not
necessary to try all possible (or in fact any)
quarter souare rotations in order to determine which
to use. If this criterion were not met, then
strategic search would be grossly inefficient.
Interestingly, this is exactly the kind of criteria
imposed on real world strategies a strategy is
not much help if one needs to do a complete search
to determine what to do next.

4. Non-deterministic strategies

In many problems the strategy adopted may be non-
deterministic in the sense that for a given state
in the domain of the strategy a set of strategic
paths, rather than a single strategic path, is
generated. That is, the strategy is generated by
a non-deterministic program or machine. The
situation is exactly the same if, instead of a
single strategy, we specify s set of strategies
that can be applied to each problem state the
set of strategies can be considered to be a single
non-deterministic strategy.

The basic strategic search algorithm can be readily

generalized to allow of non-deterministic strategies.

We simply require that the function strat return the
(possibly non-singleton) set of state paths gener-
ated by the non-deterministic strategy. Given that
we usually process lists rather than sets, it is
natural to also allow that the set of state paths
generated by strat be ordered with preferred
sequences occurring first.

Of course, while this approach will work, consider-
able effort can be expended in generating states
that are not subsequently used. This is not so

much of a problem n the standard heuristic search
methods as the expense of applying a single operator
is usually quite small. However it can be very in-
efficient in strategic search, where the generation
of new states can involve the calculation of long
sequences of state transitions. When possible, it
is thus preferable to initially generate only the
most promising state path while allowing the
possibility later in the sesrch of generating more
state sequences. In the most general case it may
then be best to represent open as s list of co-
routines or generators. Each time a non-determin-
istic branch occurs in the strategy, additional co-
routines are sprouted and added to open.

4.1 Example
let us say that a state s, is better-ordered than
a state s* If, considering only those tiles

around the perimeter of the square, more tiles in
s, are followed by their proper successor than in

s1. Now consider the following strategy.

566

If the blank is in the centre, and a
rotation of the tiles is some quarter
of the square or in some half of the
square produces a better-ordered state,
then rotate the appropriate tiles. If
more than one rotation Is applicable,
order the set so that the quarter
square rotations occur first. If the
tiles are perfectly ordered, but not
in place, then rotate the tiles around
the entire perimeter so that each
moves closer to home.

Figure 2 shows the search tree generated by

applying the above strategy to the configuration

(2 1683574 9). Only those states at which

the strategy is evaluated are shown. Each arc is
labelled with the operator sequence used the
symbol represents the four quarters of the square,
the arrow specifies the tiles rotated and the direc-
tion of rotation.

Fig. 2. Tree from strategic search

For comparison, consider the tree produced by the
heuristic search algorithm based on the heuristic

h(n) - P(nH3S(n)

where P(n) Is the sum of the distances that each
tile Is from home, end S(n) is a sequence score
obtained by checking around the perimeter tiles in
turn, alloting 2 for every tile not followed by its
proper successor and 0 for every other tile, except
that a (non-blank) tile in the centre scores 1
(see [10]). This search tree contains 44 nodes and
the length of the (optimal) solution path is 18
moves.



Although the path found by the strategic search is
considerably longer than that found by the standard
heuristic search, it is interesting to note that
the strategy is again evaluated for far fewer
states than is the heuristic function. Further-
more, the solution found by the strategic search is
very similar to the type of solution generated by
humans attempting the task that is, the first
priority is to achieve the proper ordering; the
perimeter rotation is straightforward and can be
done with little processing effort at the last
stage.

In fact, the comparison above is a little unfair to
the strategic search method as it did not make use
of any information on distance from home. If we
use the same strategy as above, but order the
strategic moves on the basis of the change in dis-
tance from home and weighting the half square rota-
tions by +2, then in this case strategic search
generates the minimum cost path to the goal state
directly: no other path is explored.

Strategies also have other advantages. They tend
to be more transparent that parameterized heuris-
tics, local information can be readily incorporated
and subsequent modifications can be made easier.

In development, it is not necessary to try adjusting
the values of a numeric values expression, which,
while improving selection on one area may impair it
in another. For example, consider that the goal
state for the eight puzzle Is changed so that the
blank now occurs in the corner. Then we only need
modify the above strategy so that once it achieves
the "intermediate" goal with the blank tile in the
centre, it makes two further moves to get the
blank to the appropriate corner. It is far less
clear how one would go about modifying the heuris-
tic function.

It is also possible to modify the above algorithms
so that they are admissable [10] when the strategy
satisfies certain restrictions. The details can be
found in [7].

5. Discovering Strategies

Several approaches to constructing heuristic
functions have been proposed. Most have attempted
to optimise the values of coefficients in an
heuristic function so as to maximize overall per-
formance [11, 14]. A potentially more powerful
approach has been suggested by Gashnig [6]. Given
some problem P, instead of seeking an heuristic
directly for P, one seeks instead another problem,
P' say, similar to the given problem but easier

to solve. In particular, there must exist an algo-
rithm A' for solving P', and the transitions
specified by A" applied to P* must be capable

of being represented by a graph which is an "edge
subgraph" or "edge supergraph" of the given problem.
Gashnlg then proposes that the value of the
heuristic function for some state s in P be
simply the number of transitions from s to the
goal state under the algorithm A".

For example, we can use the MAXSORT algorithm for
sorting the numbers 1 to 9 to calculate heuristic
values for the 8 puzzle. MAXSORT simply swaps the

567

9 with the element whose proper place in the
permutation It occupies, except when the 9 Is in
the 9th position, in which case the first misplaced
element is swapped. For a given state, the number
of swaps to reach the goal is taken as the
heuristic value of this state. (Note that except
for a small perturbation caused by swapping the 9
into the ninth position, the number of swaps under
MAXSORT is the same as the number of misplaced
tiles).

The major problem with this approach is that unless
an analytic result Is available, the problem P'
has to be solved (i.e. the algorithm A* executed)
separately for each state In the search graph of P.
However, we can use the same approach much more
advantageously if we use strategic search rather
than heuristic search in solving P. In this case
we simply transfer the strategy of P° (in essence,
the control structure of A') to the problem P.
For example, the strategy strati given in section 2
(equivalently, strategy (1) in section 3) is exactly
the MAXSORT strategy.

Informally, consider that we are given two problems
P - <D, Q, ss, Dg> and P' - <D', Q', as', Dg*> and
a partial map g from D' to D. Now assume that
we have a strategy (program) A' for solving P,
and that we can construct (appropriate) mappings
h- and h from the functions f' and predicates

p! occurring in A' to functions f.
ates p. over the domain D of P.

obtain a strategy A for P by replacing each
occurrence of f* in A" by h¢(f!) and each

p' by h (p!). Of course,

nothing in this definition that guarantees that
will be a useful strategy for solving P.

and predic-

Then we can

there is
A

occurrence of

For example, consider that we know how to fix

leaking taps:

procedure leak
determine whether you need a spanner

if you do then go to position of spanner
grasp spanner
take spanner to tap
use spanner to fix tap
release spanner

else go to tap
fix tap

end-1f

end-procedure,

This strategy can be transferred to the monkey and
bananas problem [10] by associating the functions
and predlcatea in the tap world with corresponding
one8 in the banana world, giving the following
algorithm:



procedure bananas
determine whether you need the box

if you do then go to poaition of box
hands on box
push box to bananas
climb on box; grasp bananas
get off box

else go to bananas
grasp bananas

end-if

end-procedure.

With this strategy the monkey can solve his problem
determlinistlically. In fact, it is not too difficult
to generalize this strategy to one governing the use
of most types of tool, viz.

if you need to use a tool, go to the tool
first, then take it to the job and use it.

As far as automating the problem solving process is
concerned, the problem of constraining the expans-
ion of the search graph for a given problem has
been reduced to finding an analagous problem for
which we already have a solution method. This is a
more tractable task than that of generating an
heuristic function [8,9].

Another approach is to learn the strategy directly
from traces of aample solutions generated during
some sort of training session. This is a standard
inductive Inference problem: find a program that
generates successful execution traces for the
problem P. Associating with each operator o. in

D a

distinct symbol from some alphabet V, then success-
ful execution traces form a language over V. The
problem then reduces to a grammatical inference
problem, that is, to the construction of a grammar
which generates this language. Some interesting
work has been done along these lines by Stolfo [16].

Q and (pre-specified) predicate p. over

6. Meta-level strategies

Strategy-first search is a simple but effective way
for constraining search in many problems. However,
in more complex problems we may need more sophisti-
cated and possibly problem specific selection
schemes. One way to achieve this is to use other
strategies for defining the selection scheme. We
will call such strategies meta-level strategies, in
contrast to the object level strategies such as
those discussed above. Thus strategy-first search
corresponds to the very simple problem-independent
meta-strategy

Choose the choice point generated by the
fewest number of non-strategic transitions.

The use of numeric valued heuristic functions is
also a special case of meta-level strategic infor-
mation, as is the use of mats -level production
rules in TEIRESIAS [3]. However, none of these
cases involve; sequences of selections. More gen-
eral meta-level strategies could take account of
information -derived during the aearch, and could
allow for dynamically changing lines of reasoning.

More abstractly, given a problem P we construct
a meta -level problem M over states that repre-
sent the progress of the search. A meta-level

568

strategy Is a strategy for M; that Is, a program
(possibly non-deterministic) that specifies how the
search space should be expanded.

As the meta-level problem M is no different

from any other problem, the basic procedure out-
lined above, or some variation of it, can be used
to generate a solution to M, and hence to P. How-
ever, in almost all cases we can expect the meta-
level problem to be commutative — that is, if for
a given state there exists a number of possible
successors, and one of these leads to a solution,
then so do all the others. In such a situation
there is no need to back-up and consider previous
states of the computation. In systems that are re-
quired to Interact with experts, such uniformity of
knowledge representation is an important consider-
ation. Furthermore, with such a scheme it is poss-
ible to provide a hierarchy of meta-level problems
and strategies, each determining how to handle the
non-determinism of the one below it.

References

1. BROWRI, D.J.H. (1979) "Hierarchical Reasoning in
the Came of GO", Proc IJCAL 6, 114-116.

2. BURSTALL, R.M. and DARLINGTON, J. (1976) "A
Transformation System for Developing Recursive
Programa”" DAI Research Repert 1%, Uni of Edinburgh

3. DAVIS, K. {1977) "Generalized Procedure Calling
and Content-Directed Invocation', I
Bewvaletter, August, 45-54.

4. DAWSON, C. and SIKLOSSY, L. (1977) "The Role of
Preprocessing in Problem Solving Systems", Proc
JICAL 6, A65-471.

5, FRIEDLAND, P. (1979) "Knowledge-based Experimant
Derign in Molecular Genetica", Proc JLJICAL 6, 285-
287,

6. GASHNIG, J. (1979) “A Protlem Simdlarity approach
to Devising Heuristics:Firet Results”, Prog I1JCAI
301-307.

7. GEORGEFY, M.P, (1981) To appear.

8. McDERMDTT, J. {1979) "Learning to Use Analogies",
Proc. L1JCAL 6, 568-582.

9. MOLL, R, and ULRICH, J.W, (1979)"The Synthesis of
Programs by Analogy", Proc LJCAI &, 592-594.

10. NILSS0N, N.J. (1971) Problem Solving Methods in

, McGraw-Hill, N.Y,

11. RENDELL, L, {1977) "A Locally Optimal Solution of
the Fifteen Puzzle Produced by an Automatic Eval-
uation Function Generator”, Report CS-77-36, Dapt.
Comp. Seci., Unli, Waterloo,

12, SACERDOTI, E.D.(1975) "Planning in a Hierarchy of
Abstraction Spaces”, Artificisl Intelligence, 5,
115-135.

13. SACERDOTT, E.D. (1977) A Structyre for Plans and

Behaviour, Flsevier, K.Y,
14. SAMUEL, A. (1963) "Some Studies in Machine Learn-

ing Using the Game of Checkers”, in E, Feigenbaum
and J. Feldman (ed) Computeryand Thought,M:Craw-
Hill, 71-105.

15. SINGMASTER, D. (1979) Notes on the ‘Magic ',
Polytechnic of the South Bank, London.

16. STOLFO, S.J. and HARRISOR, M.C. "Automatic Dis-
covery of Heuristics for Non-deterministic Pro-
grams", Proc LJCAI 6, 853-855.

17. WILKINS, D. (197%) "Using Plans in Chess" Proc

I1JCAY 6, 960-967.



