BRANCH & BOUND FORMULATION FOR SEQUENTIAL AND PARALLEL GAME TREE SEARCHING*:
PRELIMINARY RESULTS

Laveen Kanal and Vipin Kumar

The Laboratory for
Department of Computer
University of Maryland,

ABSTRACT

In this paper we present a Branch and Bound
(B&B) formulation for finding the minlmax value of
a game tree and show, that in case a subset with the
best bound is chosen for branching, the resulting
algorithm is identical to the SSS* algorithm which
Stockman [1] has shown to be better than the Alpha-
Beta algorithm for game tree searching. We propose
parallel Implementations of B& search for the mini-
max evaluation of game trees which lead to a paral-
lel implementation of SSS*. The Branch and Bound
approach provides a unified way of formulating and
analyzing tree searching algorithms such as SSS* and

Alpha-Beta. Viewing SSS* this way, its correctness
proof Is much easier than given in Stockman, as is a
correctness proof for parallel Implementations of
SSS*.
Introduction
Viewing game trees as And/Or trees it can be
shown [1] that search for the minlmax value of a

is equivalent to searching for the maximum
valued solution tree, where the value of a solution
tree is defined to be the minimum of all its tip
values. The algorithm, SSS*, based on State Space
Search, was introduced by Stockman for computing the
minlmax value of game trees and shown to be better
than Alpha-Beta. We formulate a general Branch &
Bound procedure to find the optimum solution tree in
the space of all possible solution trees represented
by a game tree and show that SSS* can be viewed as a
particular practical Implementation of the B& pro-
cedure. We also indicate briefly how this formula-
tion applies to the definition and analysis of Alpha-
Beta and parallel SSS*.

game tree

A B&B procedure can be viewed as a technique
for finding the optimum value (maximum or minimum)
of a real valued function f, over a possibly infi-
nite domain S, without computing the value of the
function for every member of the domain. The orig-
inal set is repeatedly decomposed (branch operation)
into smaller and smaller sets. Lower and upper
bounds of the function f for these sets are calcu-
lated. Assuming we are searching for the maximum,
if the lower bound on f for a set X exceeds the up-
per bound for any other set Y, set Y can be Ignored
(bounding operation) since some member of set X will

* This research was supported by NSF Grant ECS-78-
22159 to The Laboratory for Pattern Analysis.

569

College Park,

Pattern Analysis

Science
MD, 20742

always have a higher f value compared to all mem-
bers of set Y. If it can be shown that for any
member x of set X there exists y as a member of set
Y such that f(y)*f(x), then Y dominates X and set X
can be excluded from further consideration without
loss of optimality. This dominance relation was
used in Kohler & Steiglltz [2] and is further dis-
cussed in Ibaraki [3]. Branch and Bound procedures
have been widely used for combinatorial optimiza-
tion problems. Our study of parallel SSS* (and
parallel Alpha-Beta) suggests that other B&B pro-
cedures for various optimization problems can also
be implemented in parallel.

A Branch & Bound Procedure for SSS*

Let S denote the set of all solution trees re-
presented by a game tree, TT denote the collection
of sets of solutions trees under consideration for
branching and bounding, U be the upper bound de-
fined on a set of solution trees and D be the domi-
ance relation. The selection of the set with maxi-
mum upper bound, from IT, is denoted by S(TT). The
following B&B algorithm terminates with the optimum
solution tree:

1. (Initialize) TT « S; U(S) «m + «.

(Select) Choose the set with the highest upper
bound: M « S(TT).

3. (Dominance Test)
other sets eliminate them.

4. (Termination Test) If all the solution trees
represented by the set M have some unexplored
tip nodes in common, go to step 6; else if the
set is a singleton, terminate—the optimum de-
cision tree has been found. If the set is not
a singleton and does not have common tips go to
step 5.

5. (Branch) Divide the set M In several subsets.
Associate with each generated subset the upper
bound associated with the parent set M. Put
all the generated sets into IT.

6. (Evaluate) Explore the tip node ti which is
common to all solution trees in the set and up-
date the upper bound: uM) * Min (U(M),
Value(tl)}; put the set back into TT and go to
step 2.

If the chosen set dominates

Figures 1 & 2 show how the algorithm works.



The algorithm terminates with the optimum solu-
tion tree because ve start with the complete set of
solution trees, divide it into smaller and smaller
sets, and eliminate a set only if we are certain
that the optimum tree does not lie in it. Termina-
tion occures when a singleton set having been com-
pletely explored (i.e., its upper bound is its true
value) is chosen in step 2 as a set with the high-
est upperbound. At that point one can be certain
that no other set has a solution tree better than
the one chosen. The algorithm is bound to termi-
nate because we start with a finite set of finite
size solution trees. In each iteration of the al-
gorithm we are either eliminating some set of solu-
tion trees from further consideration or evaluating
some unevaluated tips of some solution trees.

The detailed presentation of SSS* in Stockman
[1] is not as transparent as the above B& formula-
tion but it can be easily seen that SSS* is equiva-
lent to the B& procedure presented above. SSS*
maintains a list of states of traversals (called
OPEN), each representing a set of solution trees
and the current upperbound associated with it.
State expansion directly corresponds to branching,
and purging of states from OPEN corresponds to elim-
inating the dominated sets of solution trees. Thus
SSS* can be considered a practical Implementation
of the above B&B procedure. SSS* is of interest be-
cause it was proved by Stockman that it never ex-
plores a node that Alpha-Beta can Ignore. For prac-

tical distributions of tip value assignments Stockman

experimentally showed that SSS* explores strictly
fewer game tree nodes than Alpha-Beta. We have
shown that by defining a particular depth first
strategy for selection in the above procedure, one
gets the well known Alpha-Beta algorithm. With a
different choice of select, branch and evaluate
functions we can come up with the "SCOUT" algorithm
proposed by J. Pearl [4]. Several other competing
algorithms also can be derived in this manner. The
above Branch & Bound method provides a unified ap-
proach to formulating and analyzing various search
algorithms for AND/OR trees.

An Asynchronous Parallel Procedure;
Preliminaries

While performing set divisions (node expansions
in SSS*) if the upperbounds of all sets (of solu-
tions trees) under consideration are reduced to some
value U', then the B&B procedure will still find the
true optimum solution tree if its value happens to
be less than U'. However if the value of the opti-
mum tree is greater than or equal to U' then the
algorithm will terminate with the value U\ Let
BB(S,U') be the value returned by B&B if at some
time before it terminates upperbounds of all sets
are lowered to U'- and let U* be the value of the
optimum tree. Then

U* < U' ===> BB(S,U" - U

U* >- U' ===> BB(S,U') - U\
The validity of this statement can be easily proven
by thinking of the act of lowering the upperbounds
of the sets as adding an extra leaf node with value
U' to all the solution trees under consideration.
Since the optimum value of a solution tree is the
minimum of all the values at the tips, this modifi-

>70

cation will keep the optimum value intact if it was

already below U'.

It is easy to show that the number of tip
nodes evaluated by B& (or SSS*) Is a monotonically
increasing function of the initial bound associated
with the starting set of solution trees. The ini-
tial bound represents the guessed value of the op-
timal solution tree. The more accurate this guess,
the more effective the dominance relation becomes.
In Alpha-Beta, this corresponds to making more
cutoffs when better alpha and beta bounds are
known. Experiments have shown that if game tree
node values are chosen Independently from a uniform
distribution between 0 and m, then the dependence
of the number of nodes expanded on the initial
bound is as shown in Figure 3. As long as the
chosen bound is above the true minimax value, the
smaller bound provides the correct minimax value
at a significantly lower cost. This fact can be
used in a seemingly very efficient asynchronous
parallel procedure for searching game trees, which
compares favorably with Baudet's parallel imple-
mentation of Alpha-Beta [5].

Parallel Implementation of SSS*

Let us assume that the minimax value of a game
tree lies between -m and Hn with uniform probabil-
ity. If we have just one processor we would start
B& with +Hn as the initial upper bound for the com-
plete set of solution trees. As branching and node
expansion proceed, upper bounds for various gener-
ated subsets would become lower and lower. At ter-
mination we would find that the upper bound of a
set (which has just one completely explored solu-
tion tree) becomes equal to its own optimum value
and Is higher than the upper bounds of all the
other sets.

With multiple processors we could start sev-
eral B& procedures, one on each available proces-
sor, each with a different initial upper bound as
shown in Figure 4. Any time a process lowers its
current global upperbound it can be guaranteed that
the minimax value is less than or equal to this
lowered global upper bound. Thus in Fig. 4, if
process *n' manages to lower Its upper bound we can
guarantee that the minimax value lies between -m
and Bn where Bn is the current global upper bound
of process n. If process n is allowed to proceed
it will terminate with the correct minimax value.
(Note that In the beginning we could only guarantee
that process 1, with the initial global upper bound
of +m, would terminate with the correct optimum
value). It is clear that processes 1 through n-1
can safely reduce their global upper bounds to some
values below Bn and thus perform the look ahead
function which was previously performed by proces-
ses 2 to n. Thus among the n processes at least
one is guaranteed to find the optimum value and the
others perform a look ahead function. At any time
a process searching in a lower range finds that its
global upper bound is correct, i.e., it can be low-
ered, it can take over as 'master' and the other
processes can perform the look ahead. These paral-
lel processes work independently and communicate
only if the bounds are lowered. Therefore this



parallel algorithm is well suited for implementation
on asynchronous multiprocessors,

(1}

(2]

(31

(4]

(5]

REFERENCES

Stockman, G.C. “A Minimax Algorithm Better Than

Alpha-Betal?” Artificial Intelligence 12 (1979)
179-196.

Kohler, W.H. and Steiglitz, X. "Characteriza-
tion and theoretical comparison of branch and
bound algorithms for permutation problems™ J.
ACM 21 (1974) 140-156.

Ibarski, T. "The Power of Dominance Relations
in Branch-and-Bound Algorithm" J. ACM 24 (1977)
264-279.

Pearl, J. "Asymptotic Properties of Minimax
Trees and Game-Tree Searching Procedures”
Artificial Intelligence 14 (1980) 113-134,

Baudet, G. "The design and analyeis of algori-
thms for asynchronous multiprocessors”, Ph.D.
Dissertation, Carnegie-Mellon Univ. Pittaburgh,
PA, Nov. 1976.

I‘ \\ ’ o
F 1 ’ *. v’ >
'd L] ’ ~ 4 M
N
(1) (2}
Fig 2.8 - Root node re- Fis 2.b - Branching divides
presents total set of inirial total set of solu-
golution trees. tion trees into two disjoint
subsets.

Fig 2.d - After exploring node 16 of the
set of Fig 2.c.1 and nodes 18 and 19 of
the set 2.c.2 we note that solulion tree
set of Pigure 2.c.2 dominates the met of
Figure 2.c.1. This happens becauss

min {valug(16j,vnlue(17)} < min {value
(18) ,value(19}}.

t of nodes

explored by
gequential

555*

hs] b7

26 % 78 52 2@ 3% 53 b 10 % 21 7Y 71 41 9

Fig 1 - An AND/OR tree with hatch marks
showing a solution trese.

B i

ree P ;": :';"‘
s 37; Bopptds
() A

Fig 2.c - Further division is performed on
sets of Fig 2.b.1. All the solution trees
represented by 2.c¢.l have nodes 16 and 17
in common. At the next step, we do not di-
vide this set but evaluate one of its tip
nodes {say node 1l6) to get a better upper
bound on its value.

‘,true minimax value

pra

Initial Starting bound

Fig 3. # of nodes explorad is monotonic
function of initial scarting bound.

- +m

[

I

1

Fig 4. pth process is started with By
initial bound.

571



