
An Examination of Brute Force Intelligence

Hans J. Berliner
Carnegie-Mellon University

Pittsburgh, Pa. 16213

Abstract

We here examine the current state of brute-force chess
programs. We are interested in their strong points and how these
are achieved, and in their weak points and what can be done
about them. We compare some excellent play by Belle, the
current World Computer Chess Champion, with what expert
humans would do in the same situation. These comparisons show
that such programs already are capable of displaying what is
usually called imagination and understanding. Finally, we
examine the prospects for a brute-force program in championship
level play.

Introduction

In 1976, CHESS 4.5, the Northwestern University Chess
Program, played in an all Class "B" tournament in California. It's
rating at the time was about 1700, middle Class NB". To
everyone's surprise, the program romped away with the first prize
with a 5-0 score, decimating its opponents on the way. The
reason for this later became apparent; it was running on a
machine that was 10 times faster than the one it usually ran on.
This made it possible to search on average a little more that one
ply deeper. This resulted in at least a 200 point (one grade)
improvement in its performance.

From 1973 to 1975, Slate & Atkin at Northwestern University [5]
had been perfecting the techniques required to make a depth-first
alpha-beta search into the powerful brute-force searching tool
that it is today. Two devices and their interaction were
responsible for this advance. Firstly, there was iterative
deepening. A depth-first search must have a maximum depth
specified in order for it to be able to halt. In iterative deepening,
the search starts with a maximum depth of 2, and then iterates to
depth 3, 4, etc., as long there is time. At first sight this appears to
be very wasteful of computing time. However, the introduction of
the second device, a hash table, changes this. The hash table
retains two important pieces of information about any node (within
the limits of the table size) visited in the search:

1. It remembers the most effective move tried at that
node. When such a move is stored from a depth N
search, it can now be tried first whenever the node is
reached on a depth N + i search. If such a move is
successful in lermiiiultiig sviircli i't tlna IILUO without
examining any other alternative:, then not only has
the search been brought to a quick conclusion, but
the cost of doing a move generation at that node i3
also avoided. This happens about 70% of the time.

2. Upon quitting a node, its value is written into the hash
table. This may be an exact value for this depth of
search, an upper bound on that value, or a lower
bound. It may only be a bound because often it is only
neccessary to determine that the node is at least this
good, and the exact value need not be determined. If,
in this or future iterations, the node is again
encountered with the same depth of search
remaining, then a great deal is already known about
its value and this may suffice to terminate the search
at this node, or reduce the remaining effort by further
constraining the value that the node may take.
Because the tree is really a graph, two nodes in such
a tree may coincide. For instance, the moves A, B, C
in one branch, if produced in order C, B, A in another,
may result in identical nodes.

The combination of these two techniques made possible
searches that were faster than what is theoretically possible with
alpha-beta. This is due to the fact that knowing the best move
from a previous iteration produces an ordering of nodes that
comes close enough to being optimum to make alpha-beta work
near its maximum possible effectiveness. Further, the detection of
identical nodes produces another exponential saving, that is
especially significant in deeper searches.

These advances in search theory together with faster hardware
made brute-force searching into a very powerful tool. Clearly, the
deeper one could look, the better the program would play.
However, it was not clear whether advances in speed of the
magnitude required to really make a big difference were possible.
At about this time, Qreenblatt at MIT and Thompson at Bell Labs
started building special purpose chess machines, while others
began to look for the fastest machine they might gain access to.
Thus the race for speed was on. The undisputed leader at the
moment is Belle, the creation of Ken Thompson and Joe Condon
of Bell Telephone Labs [6]. It searches about 30 million nodes in
the time allowed for one tournament move (about 150 sees.). It
does this with special purpose chess hardware for move
generation and some evaluation, and a high degree of parallelism.
With its ability to look ahead at least 8 ply, plus all captures from
any leaf node, we have learned that a great deal that was
considered "perceptual" can actually be discovered by brute
force. In fact, the program is so good at calculating variations that
I doubt that anyone in the world could equal it in complicated
positions wheie accuracy oi calculation is required. It executes
an evaluation function at loaf nodes that is similar to that of the
Northwestern program [5], which has knowledge at about the level
of a class "C" player's understanding. However, such knowledge
applied 8 ply down the tree appears to be sufficient to generate at

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

581

least expert level concepts a high percentage of the time. In fact,
the latest incarnation of Belle has achieved a performance rating
of 2328 (high master) against humans in serious competition.
Thus despite its tack of "conceptualization", Belle is able to
perform among the top 300 player in the U. S. We now examine
this phenomenon, and the remaining shortcomings of the brute-
force approach.1

Pattern Knowledge in Chess
Figure 1 shows a basic chess situation known as "Philador's

Legacy". White to play can mate in 4 moves by 1. NB7ch, K-N1,
2. NR6ch!, KR1 (K-B1, OB7mate), 3. QN8chl, RxQ,
4. NB7mate. This is all very well known, and I doubt there are
many class "B" chess players that do not know this particular
pattern; i.e. it is fundamental. In this case it leads to mate; yet
under slightly differing conditions the mate can be avoided at the
cost of some material. For instance, in Figure 2 White only wins
rook for knight (the exchange), while in Figure 3 he again mates,
while in Figure 4, he again wins the exchange. It would be
possible to conceptualize this configuration by indicating that the
queen must be on squares K6, 05, OB4, ON3, or QR2, the knight
on KN5, K5,06, or 08, the black king on KR1 and that there must
be a black pawn on his KR2 and KN2. However, this is only part of
such a description. Actually, the KR2 and KN2 squares must
either be controlled by white men (but not the knight or queen) or
be occupied by black men that cannot capture on KN1 or KB2.
Further, the square KN1, if defended, must be defended by a piece
that would not control KB2 when it captured on KN1; i.e. it cannot

The experiences with
informal cooperative erri
suggested certain lasts, the
concerned

to BoNe cited herein were derived ee pert of en
with the authors of Bete, during which I

results of which were presumably useful to aH parties

be a queen. So there are a number of non-trivial tests to
determine whether such a situation as Philador's Legacy pertains;
yet, this is among the first 1000 or so tactical patterns that a chess
player learns. Certainly, top players have many tens of thousands
of such patterns stored [4]. Further, the same pattern could occur
around a different focus (the location of the losing king) as in
Figure 5 where the whole configuration is shifted to the other side
of the board and is one file more distant from the edge. This is the
most general pattern of this class and reouires several additional
specifications. Further, the exact defense status of the square on
which the knight chocks and of the back rank make the difference
between mating and only winning the exchange; the latter being
paltry if this were a position for which material had already been
sacrificed.

Thus, we have our prototypical quandary: to generate patterns
to drive a tree search is very complicated, and to attempt to detect
the presence of any of thousands of such patterns is probably
impossible in any real time environment that is not highly
parallelized (we conjecture that humans detect such patterns at
the visual level where parallel, array type processing is known to
exist). However, a brute force search would have to look ahead 7
p\y in order to find the win. Actually, the best programs now do
not count responses to check as a ply of depth, so it only requires
a 4 ply search. However, since such opportunites must usually be
cultivated by previous play, it would seem that a brute-force
program to be able to detect such a possibility would have to be
searching at least 7 ply deep. Belle certainly fulfills this
requirement. The 4 ply search required to find the Philador mate
in a full blown position would take Belle less than 1 second.
Wllkens [7] developed a highly sophisticated and efficient pattern
mechanism for his program PARADISE, yet it would not be able to
go through a very minimal set of patterns in anything approaching
such time, not to speak of actually completing the search to verify

582

that everything works. Clearly, Belle has a distinct advantage in
this comparison, having specialized hardware. Possibly, with
special pattern detecting hardware such operations could be
considerably speeded up. However, then we would have to have
some guarantee of near completeness; i.e. the brute force search
will find anything within its depth, whereas the patterns, though
possibly able to detect deeper ideas, may be far from complete. In
fact, we have now seen about 20 games from the new Belle and
have found 3 or 4 ideas in these games that we have never seen
before anywhere. Thus, there is good reason to believe that such
a searching program will outperform an idea driven program on
shallow ideas (and we consider the above example shallow).

E x a m p l e s o f B r u t e F o r c e " I m a g i n a t i o n " a n d
" U n d e r s t a n d i n g "

That humans are not the only ones that can have imagination in
chess first became very clear to me as the result of the game
shown in Figure 6. This was the position after White's 34th move
in a game DUCHESS - KAISSA from the 2nd World Computer
Chess Championship, Toronto, 1977. KAISSA, the defending
champion, here played R-K1, losing a rook. There was a great
deal of amazement that this fine program should make such a
terrible blunder. Among the lamenters were former World Chess
Champion (and very likely the greatest player of all time) Mikhail
Botwinnik, who was with the Soviet delegation accompanying
KAIbSA, and several very strong Canadian players along with
master Levy who was commenting on the games. AH assumed
that 34.- RK1 was the result of a program bug, as had been seen
in programs over and over again. It was not until the next day,
after the programmers had had a chance to go over their debug
listings that the reason for the move R-K1 became known. To
everyone's surprise, KAISSA had made this move to avoid getting
mated! After the obvious 34. -- K N2, would come 35. O-BSchl!
(the move everyone overlooked), KxO, 36. BR6ch, ANY,
37. R-B8ch and mate in two more moves. Clearly, both programs
saw what was coming, and a collection of human masters did not.
In a way the masters were right; RK1 is a blunder, as losing a rook
in this position is no different from being mated. However, the
important point remained; not a single player saw what was
coming. It is possible that because the idea was 10 ply deep, they
did not anticipate that the programs were up to such things.
However, the correct view of the situation was "Black is lost*4 not
"Black made a blunder", and no human spectator saw it correctly.

In the above example, once a strong player is shown the move
35. QB8ch, he says "obviously" and is apologetic for not having
seen it himself right away. However, the remaining examples are
much more sophisticated and require quite a bit of study to
understand them as they do not fall into obvious patterns.
Consider the position in Figure 7 (from a game Belle-Fry, Virginia
Open, 1981) and the game continuation. Here, White would like to
take the bishop at OB8. However, he cannot now or after RxRch,
because with OxR Black renews the threat of mate on the back
rank, thus forcing an ending in which he has some chances of
survival. When I first saw the game, I knew "something might be
up" in the diagram position, but could net find it. Since then, I
have shown this and the following positions to a number of
experts and masters and none have been able to produce the right
move or even the right idea in the 5 or so minutes they had to try.
Yet, when playing 30. B-B2, Belle saw It could drive the
opponent's king up the board, and one move later it realized that it
could win queen for rook and bishop by continuing on the course
it chose. 30. BB2 counters the mate threat and thus reactivates
the attack on the black bishop, besides threatening B 0 4 ch which

would win the rook; thus Black's reply is forced. Further, 32. B-B6
is also sensational. It threatens the bishop, and the white bishop
cannot be taken because of 33. 0-R8ch, KN4, 34. P-R4ch
winning the rook. Finally, at move 33, R-B3 wins easily because
the threat of R-R3 cannot be met effectively (this Is what Belle saw
at move 31). However, Belle realized that Black could then put up
a modicum of resistance by playing 33.- OxB, 34. RxOch, RxR,
and instead played 33. 0R8ch, QR2 (forced) 34. 0-061. Now
catastropy is unavoidable; however, Belle had to calculate among
other lines, one that it took me 1/2 hour of moving the pieces
around to find: 34.- R 0 2 , 35. B N5ch. KR4!, 36. PN4ch!, KxP.
37. R-B4ch, K-R6,38. OxRch, OxO, 39. RR4. This had to be seen
at move 33 by White. In a sense this is guilding the lily, because a
sure win is there and no master in his right mind would do such
calculation unneccessarily. However, the depth of this analysis
shows the potential of the machine in such situations.

Another example is shown in Figure 8 from a game Belle - Mess,
New Jersey Masters Open, 1961. Here it looks as if White will lose
his knight at KR7 (it went there on the last move when Belle clearly
saw what was coming). This opinion is reinforced by examining
the variation 20. P-KN4, RxKP when the knight remains trapped.
However, Belle calmly plays 20. P-KB4, relying on 20.- KxN?,
21. P KN4. However, after 2 0 - N-K5 it again looks bad because
21. P-KN4 is answered by RB2 when the knight is lost. However,
Belle played 21. NB6ch and, as the game continuation shows,
ended up winning the exchange; most unexpected (to a human)
and disconcerting.

The final example of this type, Figure 9, comes from a 30 moves
in 30 minutes game Vaivo -Belle. The former has a rating above
2400, which is Senior Master. Here Beile is Black and caJmiy piays
16.- BxPII. White still did not see what was coming although it
was only one move away and played 17. RxB? (it's protected isn't

583

it). Now came 17. N-K4, whereupon he gave up because he must
lose back a whole rook now and more later.

It should be noted that it is not at all difficult to describe what
happened in the above examples ex post facto. This is done using
the accepted language of functions (i.e. piece X performs function
Y on square Z) which is an excellent descriptive method used by
good players and evidenced in their protocols. The fact that good
players have extreme difficulty with the above -examples would
indicate that this language of functions does not play a very strong
rote in the analysis that drives the search. Rather, the process of
qualifying moves for searching would appear to be based on
familiar patterns.

Depth 8 searching (11 or so in most endgames) can also
produce remarkable positional chess even when coupled with a
class "C" evaluation function. Witness the position in Figure 10
that occured between Belle and Gibson (a U. S. Chess Federation
expert) as part of the Fredkin prize matches [8]. The position is
rather even, and Black should keep his kfng in the center with
satisfactory results. The only thing he really should not allow is an
endgame with his bad (light squared) bishop against the white
knight. It should be noted that Belle has no information allowing it
to determine when one equi valued piece is better than another.
Given the above, consider how Belle maneuvers to get just this
advantage whereas the expert appears to be unaware of the need
to counter this strategy. Note how 25. P-ON4 is played to keep its
knight secure, and how Belle keeps its grip on the dark squares
while maneuvering to take over the whole board. There are
probably one or two minor inaccuracies in White's play. However,
even the best players don't play such positions perfectly at the
board, and compared to Black's efforts at countering, White
clearly dominates with effort to spare. One is led to wonder how a
program with Class "C" chess knowledge can play like this. The
answer is that the concept space control (which I believe is the
primary factor in all the above) is applied many ply from the root.
The move that maximizes apace control over such a long span,
also results in doing the right things with one's own pieces and
making it difficult for the opponent to do so with his.

Belle was also tested on the 300 positions in Win at Chess [3],
and turned in a surprising performance. It only got 19.5 wrong (.5
credit is given when the correct move is tendered but the
supporting analysis is not all present) out of the set. According to
the compiler of the volume, a master could expect to get about 30
wrong. However, the most surprising thing was that Belle
discovered. 0 errors in the solutions presented by the author, only
2 of which were previously known. This is certainly a convincing
performance of what brute-force at depth 8 can do in chess.

Some Remaining Weaknesses of the Brute
Force Approach

On the other hand, Belle does not always perform like this. It
has considerable problems at times in situations that are relatively
simple strategically, but require some long term plan (certain long
term plans are found by merely following one's nose; others
require some conceptualization and possibly reasoning). Figure
11 shows a position from the other Gibson-Belle game of the
match, where Black (Belle) has established a winning position.
Even good players would not be able to tell at first sight whether
this position is a win, because with bishops on opposite colors it is
frequently difficult or impossible to win with a 2 pawn advantage.
However, even a weak player will understand that it is important to
move the black king to a more active location. To this end, he will
almost certainly try K B4 followed by K-N5, and when White plays
B K6 to defend the pawn he will probably play K-B6. Now White
will be in a quandary. His bishop cannot move without allowing a
pawn to be lost or the king side pawns to advance. And if White
plays K B3, then K-Q5, B-B5 when Black plays B B8 and the king-
pawn advances by means of the tactical threat P K5ch (BxP,
P N5ch wins). The latter would be child's play for Belle were the
king already at OB6; however, it saw no advantage in heading in
that direction, and the game was ultimately drawn.

The above problem would be easy to remedy by simply doing a
static analysis at the root of the search tree and marking those
squares that would be desirable for each kind of piece. This type
of devise has already been used with success by the Northwestern
University chess program, although in this case it also failed to
find the win.

584

There are a number of cases where Belle, playing against
masters and experts, really did not understand the position and
drifted somewhat. However, as soon as the opponent made a real
threat, Belle was there on the job, defending itself. It is significant,
that of the 5 or so games in which this occurred, Belle did not lose
a single one by being outplayed in the usual sense; i.e. by having
its disadvantage gradually pushed down its throat. Besides the
games Belle has lost where it was trying to win something that
should have been left alone (see below), the only other games it
has lost stem from some gross mis-evaluation of a position. It
seems doubtful that such cases can be resolved easily by deeper
searches; rather some method of detecting the problem would
appear to be needed in the evaluation function.

A Re-Examination of Earlier Precepts

In 1973 I examined some problems that a program would have
to overcome in order to play master level chess [1]. Since such a
program now exists, it would seem appropriate to determine to
what extent this has been accomplished in the manner that was
said to be necessary.

A major issue related to the horizon effect and how it could
cause grievous errors to be made. Belle makes no attempt to
overcome the horizon effect. However, the horizon effect in an 8
ply search does not appear to cause significant problems. This is
because delaying tactics require a pair of moves for each delay;
one for the threat and one for the counter Such delaying tactics
are bad when they lose material or otherwise worsen the position.
If material is involved, the minimum transaction unit is likely to be a
pawn, and in 8 ply, 4 pawns or more would have to be sacrificed to
push a threat over the horizon. This is unlikely to occur naturally.
Further, the cost of the "saving maneuver" at such depth very
likely is going to be greater than the original loss that is being
prevented. The fact that the horizon effect is still there can be
demonstrated from Figure 12, in which an 8 ply searching program
playing Black will duly play 1.- PN7, delaying the loss of.the
queen. However, this example is contrived, and such situations
are very unlikely to occur in an actual game. However, the horizon
effect can and does occur at the end of long forced variations (see
below). This only causes problems when the program relies
heavily in making its move, on the branch in which the horizon
effect occurs. Again, this does not occur often.

Another problem was the program's need to have a global
strategy at times. We presented a pawn endgame (Figure 13) that
reouired 13 oiv of search to resolve and thus conjectured the .need
for a global viewpoint since such searches were then not possible,
or likely to be in the foreseeable future. However, this has
changed drastically. Problems such as this can now be solved
easily by the best programs because the hash table detects

identical positions in the tree, and terminates the search at nodes
for which the value has already been computed. Thus in
endgames of few moves, searching deeply is trivial for Belle and
other programs too. However, as Figure 11 showed, strategy is
still a real problem for programs, and one that will certainly have to
be dealt with if the program is to be able to cash in its advantages
in most endgames.

We also presented a position that required a 19 ply search to
find the mating combination. This was intended to show the need
for precise and deep calculation. No performance program can at
present do this, although they are not too far away. However, the
examples in Figures 7 and 8 are convincing proof that Belle can
play tactics with the best humans. It may not be able to deal with
long thin lines of play as well, but it deals with medium long, bushy
lines with incredible effectiveness. It is not at all clear that it is
more important to deal with long, thin lines of play better than with
bushy lines; rather the reverse is probably true. Thus we must
consider this task as more than satisfactorily met.

Issues in efficiency of searches were examined to show that a
great deal of effort would be wasted by a searching program
without the proper knowledge. Again r because of the efficiency of
iterative deepening and the hash table, such problem have
evaporated since the programs just go through variations at an
incredible rate. Attempts to incorporate knowledge mechanisms
into the framework of searching have, to date, been tedious,
subject to certain errors of omission, and not even guaranteed to
be faster.

Finally, we indicated that programs would need more detailed
evaluation of terminal patterns than they have at present. This is
still valid, and is now the largest cause of Belle losing games. In
Figure 14, from a game McKenna • Belle, Virginia Open, 1981,
Belle has finally equalized the position after a long struggle. Now,
it sees the opportunity to win a pawn and proceeds with
56. • RKB87?, unable to see that one of the terminal
configurations in which it is ahead in material is clearly lost. Belle
was searching to a depth of 10 ply when making this move. The
game continued 57. RxR, NxPch, 58. KN6, NxR, 59. PR 5!, NxB,
60. P R6 and the pawn will queen winning the game. The line
given above has consumed 7 ply so far (the response to check not
being counted), and it is not possible to detect the queening of the
pawn in the remaining three ply. Thus, after 60.- N-Q4,61. PR7,
N-K2ch, 62. K-N7, the 10 ply are up, and Belle must evaluate the
position. Its evaluation function is not sensitive enough to notice
that the white pawn cannot be prevented from promoting, so it
judges the position as favorable for Black. It is interesting to note
that if the search were being conducted one ply deeper, it would
still not solve the problem correctly. We would then have

t a t

62.- N-N3, and White may start sequences of captures in the
quiescence search. However, Black win end up a pawn ahead in
any case, and, unless the evaluation function judges the pawn on
the 7th rank to be worth more than 2 connected passed pawns on
the 4th rank, the wrong decision will still be made. Here, however,
the problem would be due to the horizon effect (see above) as
62.- N-N3 is a delaying action that sacrifices a knight to push the
queening of the pawn over the horizon.

In a game with Belle, I discovered a strategy that can be used
against a program that plays tactics much better than it evaluates.
I intentionally let it win 2 knights for rook and pawn (a small
material advantage) in order to reach a very superior endgame.
The point here is that in considering a position in which it is ahead
in material but behind in positional factors, it may fail to evaluate
the tradeoff properly. In this case, the positional advantage was
worth much more than the material that it gained. The McKenna
game above, could also be seen in this light, although it seems
doubtful that he planned it that way.

The Prospects for Brute-Force Chess

Brute-force programs win because they have a good mix of
depth of search, and knowledge applied at leaf nodes. The first
brute-force programs [2] only counted material at leaf nodes.
Then it became evident that even small amounts of knowledge
provided programs with a sense of direction when there was no
material gain to be had or defended against. The fun-width search
is important to ensure that all alternatives are examined, but
knowledge assures that small advantages will be striven for.
Programs that search one ply or so deeper than the Northwestern
University program but evaluate less finery have historically lost to
it. This makes sense when one considers that the concepts in the
evaluation function, no matter how primitive, do produce an added
projection of several pry on the leaf position being evaluated. The
importance of knowledge is also substantiated by results from
computer Othello. In two recent tournaments where all programs
did brute-force searches, the winning program was not the one
that searched deepest but the one that evaluated beet. In both
contests a near perfect transitive ordering could be established
among the participating programs, in terms of who beat who. This
would appear to indicate that whatever each knew, it was enough
to beat those that knew lees.

One reason why the current generation of brute-force programs
play so well is Slate's principle2 Slate's principle states: "A
program that understands several goods that are worth achieving
will act in such a way as to maximize its own options and restrict
those of the-opponent", it is not too difficult to see why this is so.
Let us define as the "player", the side to move at the root, and as
the "opponent", the other side. In a minimax search, it is
necessary for the player to have at least one good move at every
node at which it is his turn to play. Conversely, he must be able to
refute every move at a node where the opponent is to play. Now,
assume a program recognizes a small set of goods worth
achieving, and preventing the opponent from achieving. It will be
able to realize a certain value for the minimax most easily, all other
things being equal, if it has the largest number of choices and the
opponent has the fewest. The important point is that, when the
knowledge applied at the leaf nodes is minimal, the program wHI
only indulge in forcing behavior when some Hem specified by the
knowledge is achievable, no matter how the opponent plays. If no
known advantage is achievable, the program wiH vacillate.

nptnonsl cftft*WMftfcithw, not previously fluMtalisd

Clearly, the more knowledge a program has, the more likely it is to
be able to force something it recognizes as worthwhile, and thus
indulge in forcing behavior. Even, if the good in one branch turns
out to be unattainable upon deeper searching, the fact that forcing
moves are being made restricts the opponent's ability to achieve
things on his own. This is a fine example of how a mechanism
intended to provide one thing can produce additional benefits that
humans find necessary to dignify with Special principles. It should
be noted that when something can be forced, but there is no hurry
to force it, an iterative deepening program still does not vacillate.
The most direct method of forcing the good is discovered at an
early iteration, and the starting move of this sequence will be
retained as the candidate to beat for future iterations, so it will win
out over all moves that do not accomplish more.

The technique of analyzing the root position and marking
squares on which pieces would be well located if they can survive
there (e. g. near the opponent's king) has served the Northwestern
program well in the past in producing strategy-like behavior. It
should be noted that this valuation of the placement of the pieces
does not get at one important aspect of chess: the cooperation of
pieces. Merely, because a pieces is well placed, this does not
mean that it can cooperate with its fellow pieces well from this
location. However, I have not found any examples of such lacks in
the play of Belle or the Northwestern program. It is possible that
such needs are being taken care of by other mechanisms, or that
the level of play has not yet reached the point where such
concepts are important.

Full-width searches are now beginning to find moves that are
obscure to even very good players. The ability to see everything
within a given search envelope is more complete than anything
that a pattern driven process that projects no deeper can do. At
present such searches are being performed in approximately the
same time that it takes expert humans to perform at the same level
of skill. Thus, within its 8 ply performance envelope, Belle is
superior to human performance. However, pattern driven
processes do at times capture notions that are deeper than what
any brute-force program can achieve. Therefore the issue is: for
any given domain, are the deep ideas capturable by patterns, and
can a pattern-driven process have access to a sufficient number
of such patterns so it can outperform the brute-force searcher. At
present, the best human players feel that their understanding of
chess will allow them to survive the onslaught of brute-force
searching. The choice is between being absolutely accurate
within the first 8 ply of search and having a weak-understanding of
what lies beyond, or making occasional errors in low level
searches, but having a much better long-range understanding of
the game. In chess, it is well known that it is important to play
soundly. "Tactics is 90% of chess" is a common dictum. This
means that calculated sequences of moves may not have any
errors in them if one wishes to succeed. It is apparent from the
games of Belle against good players that they make lots of
mistakes in tactical calculation. However, being forewarned about
Belle's strong and weak points, it may be possible for very good
players to avoid tactical situations in order to attempt to assert
their strategic strengths. It is not clear if such a strategy can be
consistently pursued against a program that knows as much as
Belle does.

it appears that the strategy of deliberately creating an
opportunity for Belle to win some very slight amount of material at
some long term strategic cost is the best way to try to beat it. In
tactical play It appears to be of World Championship caliber, and

586

even when unable to find a useful strategy, it is usually able to
defend itself against the intentions of an opponent when these
become apparent. Thus the best hope is to get it to bite on
something that turns out in the long run to be indigestible.
However, it would take a strong and experienced player to
succeed at that, as baited traps frequently catch the baiter.

With a 2300 performance capability at present, it would seem
that improving the evaluating procedures (that can also be
executed in parallel in hardware) should be able to raise the
program's ability the 200 or so points needed to play with the best
players in the World. Some such contests are already scheduled,
and should provide some interesting data on just how far away
machines are from wresting the World chess title from humans.

BIBLIOGRAPHY

[1] Berliner, H. J., "Some Necessary Conditions for a Master
Chess Program", Proceedings 3rd International Joint Conference
on Artificial Intelligence, pp. 77-85, August 1973.

(2] Berliner, H. J., "A Chronology of Computer Chess and its
Literature**, Artificial Intelligence, Vol. 10, No. 2, April, 1978,
pp.201:214.

[3] Reinfeld, F., Win at Chess, Dover Books, 1958.

[4] Simon, H. A., and Gilmartin, K., "A Simulation of Memory for
Chess Positions", Cognitive Psychology, Vol. 5, pp. 29-46,1974.

[5] Slate, D.J., and Atkin, L. R., "CHESS 4.5 - The
Northwestern University Chess Program", in Chess Skill in Man
and Machine, P. Frey (Ed.), Springer-Vertag, 1977.

[6] Condon, J. H. and Thompson, K., "Belle Chess Hardware",
to appear in Advances in Computer Chess ■ 3, Pergammon Press,
Ltd., London.

[7J Wilkins, D., "Using Patterns and Plans in Chess", Artificial
Intelligence, Vol. 14, No. 2, September, 1980, pps. 165-203.

[8] Anonymous, "$100,000 Prize established for First Computer
World Chess Champion", SIGART Newsletter, #73, October,
1980, p. 15.

587

