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ABSTRACT

The only technique available for solving many
important problems is searching. Since searching
can be extremely costly, it is important to
identify features that improve the efficiency of
aearch algorithms. We compute the efficiency of
simple backtracking, of an algorithm similar to
backtracking except that it notices when the
predicate is empty instead of noticing when it is
unsatlsfiable (the empty predicate method), of the
combination of simple backtracking with the empty
predicate method, and of search rearrangement
backtracking (the unit clause rule combined with
backtracking). The analysis is done over two sets
of random problems. We also consider the algorithm
based on the pure literal rule that was analyzed by
Goldberg and the results he obtained. All these
algorithms are simplifications of the complete
Putham-David procedure, which has not been analyzed
as yet (although most of its components have been
analyzed). The performances of the algorithms are
compared and features that lead to efficient
algorithms are identified.

1. Introduction

Some problems can be aolved by direct
calculation in an efficient, straightforward way,
but for many important classes of problems the best
known method is a controlled search for solutions.
Such searches, unfortunately, can consume extremely
(exponentially) large amounts of time. Efforts to
study and improve search methods are therefore of
considerable practical importance.

* This research was supported in part by the
National Science Foundation under Grant no. MCS

7906110.

388

By carefully analyzing a particular set of
problems it may be possible to find problem-
specific information that can be used to control
the search. This can be an excellent approach; in
some cases it has led to algorithms that avoid
searching altogether. Often, however, after all
problem-specific information has been used,
excessive search time is still required. Another
approach is to study general search algorithms and
identify features that lead to an efficient search.
The two approaches are complementary; the best
algorithm for a particular problem is often
obtained by combining problem-specific techniques
with the best general search methods.

Here we report the initial results of a
systematic study of the average time performance of
search methods. All methods have about the same
worst case time (exponentially large). Also,
techniques that lead to an improvement in average
performance often result in a minor degradation of
worst-case behavior, so a study of worst-case
behavior can be misleading. The average time
performance of these algorithms can be much better
than the worst-case performance. Some of the
methods we study lead to an exponential improvement
in average search time.

The search methods we analyzed include simple
backtracking, search rearrangement backtracking
[1,15], an algorithm similar to backtracking except
that it notices when the predicate is true instead
of noticing when it is unsatlsfiable (the empty
predicate method), and the empty predicate method
combined with simple backtracking. Our analysis
shows that the empty predicate rule does not
contribute much to the performance of search
algorithms, and that search rearrangement
backtracking can be much more efficient than
ordinary backtracking when the typical problem
contains a large number of clauses with few
literals per clause.

Goldberg [8] analyzed a version of the Putnam-



Davis procedure that essentially relies on the pure
literal rule. The analysis shows that the pure
literal rule can save a huge amount of time on
problems that have a large number of literals per
clause, but it also suggests that the rule is
unimportant when the typical clause does not have
many literals.

We hope to analyze the full Putnam-Davis
procedure[4]. The points that remain to be
analyzed are the effect of stopping the search when
the first solution is found and the effect of the
pure literal rule when the typical clause has only
a few literals. The effect of combining various
techniques also needs to be analyzed.

2. Search Prooeduras

Searching is used to solve problems that can
be sxpressed in the form

P & 15_,1‘5]!1‘1("'11'...,“.1,11) Q1)

where each Ry, 1<igm , is a relation (a function
whose value is true or false) over a smal]l number
of varisbles, and the variables v, are taken
ik
from a set {vy | 1i¢n} of variables, each of
which 1= restricted to a finite set of values, A
solution of the problem is an assignment of values
to the variables that makes all of the relationa
true,

Any problem in the class NP can be expressed
as a predicate in the form of Eq.O). Many
examples of such problems are given in [6]. We
illustrate the encoding of problems in this form
with the game of generalized instant insanity [16].
The game is played with n cubes. Each face of each
cube is painted with some color. The object of the
game is to form a stack of n cubes with each cube
oriented so that each face of the stack consists of

cube faces that have distinct colors. Each cube
has twenty-four possible orientations. Since the
order of the cubes in the stack is irrelevant, the
problem is equivalent to the predicate

A Rij(oi,o‘j) (2)

141,35n

1£)
where o is the orientation of cube k and
Rij(0i;Oj) is true if and only if, when cube i
has orientation o+ and cube | has orientation
0j, the pair of cubes forms a legal stack of

height two (all faces of the stack are made up of
distinct colors).
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The most obvious method of searching for
solutions to a predicate in this form is to try all
combinations of values of the variables. This sort
of exhaustive searoh is prohibitively slow for
large problems. Fortunately, the special form of
Eq, 1 permits three types of improvements. First,
since each relation is defined over a small subset
of the variables, a relation may become false as
soon as all of its variables have been assigned
values. In this case no extension of the current
partial assignment of values to variables can be a
solution. Such extensions need not be
investigated. This is the idea behind
backtracking,

A second improvement consists of looking for
variables that should be assigned values early in
the search. It is particularly helpful to find a
variable all of whose values make a clause false
(under the current partial assignment), or which
has only one value which does not make a clause
false. This is the basic idea of search
rearrangement backtracking [1,15], and of the unit
clause rule in the Putnam-Davis procedure [4],

A third approach Involves looking for the
values of a variable that are most likely to lead
to a solution. In some cases there is a value that
makes all relations which depend on the variable
true. In that case only that one value of the
variable requires consideration. This is the basis
of the pure literal rule in the Putnam-Davis
procedure.

These ideas have been used extensively to
improve the average running time of search
algorithms. We are studying algorithms that use
various combinations of the ideas. To specify
these algorithms we first give a common general
procedure and then present the details that
distinguish the various methods. The procedure
uses a stack to keep track of which variables have
been set.

Generalized Search Procedure

1. [Initialize,] Set each variable to undefined.
Set Stack to empty,

2. [Select variable,] Select as the current
variable a variable that needs to be tested. If
there is no such variable, go to Step 5* Push
the current variable onto Stack and mark all
of its values as untested.



3. [Select value.] For the current variable select
an untested value that requires testing. |If
there is no such value, go to Step 6. Otherwise
set the variable to that value and mark the
value as tested.

4. [Test.] |If some clause of the predicate is
false under the present partial assignment of
values to variables, go to Step 3 If all
solutions are desired, go to Step 2.

5. [Solution.] The current assignment of values to
variables Is a solution (any remaining
unasslgned variables may take on any of their
values). If only one solution is desired,
stop. |If all solutions are desired, go to step
3.

6. [Back up.] Set the current variable to
undefined. Pop Stack. The new current
variable is at the top of Stack. If Stack is
empty, stop. Otherwise go to Step 3.

Many search algorithms simplify the predicate
as they search. For example, in the Putnam-Davis
procedure clauses that become true are dropped.
The dropped clauses are restored when the algorithm
backs up.

The algorithms that we have analyzed search
for all solutions; they never stop at Step 5. In
the future, unless otherwise stated, we will assume
that Step 5 always goes to Step 3. For these
algorithms the order in which values are tested at
Step 3 is immaterial, since all values must
eventually be tested.

Simple backtracking Is obtained from the
generalized search procedure by selecting the
variables in a fixed order at Step 2 and the values
in a fixed order at Step 3* Every variable and
every value that is considered at Step 3 requires
testing. In search rearrangement backtracking [1]
a simple test is used to select a variable at Step
2. Each value of each variable is tested (using
the same test used in Step 4), and the variable
for which the fewest values pass the test is
selected. More sophisticated search rearrangement
algorithms [15] test combinations of values.

In the Putnam-Davis procedure variables are
selected by examining the predicate directly rather
than by testing the values of variables. This
method of selection is more powerful, but it is
also more difficult to program and requires more
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knowledge of the internal structure of the clauses.

The original Putnam-Davis procedure was
designed for predicates in conjunctive normal form.
To describe a more general procedure we first give

some (nonstandard) definitions. A relation R s
a unit clause if, under the current partial
assignment of values to variables, there is an

is false for every
v the associated
A variable v is

R whose value

unset variable v such that R
value but one of v. We call
variable of the unit clause.
relevant if there is a relation
under the current partial assignment depends on v.
A variable v is associated with a BUS literal If
under the current partial assignment there is some
value x of v such that when v s assigned
value x every R that depends on v is true.
The value x is called a safe IftlUft*

The generalized Putnam-Davis procedure is our
general search procedure with the following
modifications. In Step 2, if possible, select a
variable associated with a unit clause. Otherwise,
if possible, select a variable associated with a
pure literal. Only one safe value is tested. If
there are no variables associated with pure
literals or unit clauses, then select any relevant
variable. |If there are no relevant variables, go
to Step 5. The Putnam-Davis procedure stops when
the first solution is found.

We also considered the empty predicate method,
an algorithm that may be viewed as an extremely
simplified version of the Putnam-Davis procedure.
In this algorithm variables are selected in fixed
order at Step 2, as long as some variable is
relevant (the selected variable is not necessarily
relevant). All values are tested at Step 3, and no
tests are done at Step 1 (i.e. the test gives the
result true) unless all relevant variables have
been assigned values. The procedure searches for
all solutions. The procedure is like backtracking
except that it backs up when all the Ry are true
instead of when one of them is false. It works by
noticing when the predicate can be simplified to
the point where it is empty.

3" Random Prpffiffiff

To do an average time analysis it is necessary
to select a set of representative problems and a
probability distribution over the set. For
backtracking it is not obvious what a "typical"
problem is. In this paper we consider two types of
random problem sets. Both are Instances of



conjunctive normal form predicates. For each type
of problem set we give a method of forming a random
clause; a random predicate is then the conjunction
of t random clauses selected independently
(thus, a random predicate may happen to contain two
copies of the same clause).

In the first method of constructing random
clauses each clause has s |literals for some fixed
s. The s literals are independently selected
from the 2v possible literals. This method was
used in our earlier analyses of backtracking
algorithms [2,13].

In the second method each literal has
probablity p of being in the clause for some
fixed p. This method was used by Goldberg [8].
The two models are roughly equivalent when the
parameters are set so that p z &2v.

We follow the original papers in computing
"running time" in the two models. In our model we
assume that the "running time" is equal to the
number of binary nodes in the search tree. The
actual running time increases more rapidly (by a

Table 1.

factor of approximately v [3]) but this error is
unimportant compared to the exponential differences
in the average running times of the various search
algorithms.

In Goldberg's model we assume that the time to
process a node is equal to avt , where a s a
constant, v is the number of unset variables, and
t is the number of terms that are still being
considered. Both wunary and binary nodes are
counted.

4. Results

Table 1 summarizes the exact results for the
average "running time" of various search
algorithms. Most of the exact results are not in
closed form, so it is difficult to understand their
significance. An asymptotic analysis makes these
results easier to interpret. To obtain an
interesting asymptotic analysis, careful
consideration must be given to how s, p, and t
should vary as v increases. We believe that

Exact formulae for tha number of solutions a&d for tha " running

tine" of various starching algorithms for two sodala of random problems.

Case Our Mods] Goldbezg’s Model
Solutions 2% (1 - r(v))t
P = (o’ l F(1) = (1 - p3vi
Simple reo) + )28 m(1) (2 ~ R(s-1))E
Backtraokiag 1<igw
(Lavel 0) R{4) =1 Ri{i) = al{v1)t
Empty .t
Predicste 1+ ; 2l 1 -a-§hon oJ20op17 - 2019y + (2p-1)ef
Muthod A1y (2p-1)
; . PR AL |
simpie |1+ 32 (A -FU-t- (-1 -4)) atfv+} vl
Backtrackisg] 1<igv 11yl - -2
with Empty whore
Predicate - 2(v-3) 4
L= TT (-(1-p) ¥{1-p)
Rule 1 109<t
Search Se» [13]. Nodify the resulte im {13].
REearcangeneat
Backtruoking
{Level 1)

591



keeping s fixed (or letting p= al/v for fixed
a) and letting t = by for fixed b gives
results similar to those for many interesting
realistic problems. This keeps the individual

terms small while letting the number of terms
increase with v. We also consider ts v for
fixed a>1. (For example, generalized instant
insanity can be coded with s s 10 (five logical
variables for each o” in the original problem) and
t s (v/5)2) The first choice for t produces
problems where the number of constraints increases
proportionately to the number of variables. The
second choice produces problems where the number of
constraints increases more rapidly.

Table 2 gives the approximate value of the
logarithm of the average "running time" for each
algorithm. The two models generate problems with
the same number of solutions when a = (In 2) s.
Usually the form of the answers is the same for the

Tadvle 2.

asymptotio expansiocn is given.

two models, but Goldberg's model generates problems
that are much easier to solve by backtracking when
t s v (for 1<8£a}, The results show that the
empty predicate method is not helpful when p ->
0. Alittle thought suggests that this method is
less helpful than stopping the search when the
first solution is found, because both approaches
need a solution before they can save any time.

Comparing the results for simple backtracking
with those for search rearrangement on our model
with t s v® shows that search rearrangement saves
about as much time as reducing the size of the
clauses by one literal. This exponential
improvement indicates that search rearrangement can
be much more effective than simple backtracking.
Further analysis is needed to determine how search
rearrangement behaves for t = bv.

The approximets valus of the logarithm (base ¢) of the
sunber of solutions asd “reaning time”,

The leading term in am

Cane Our Nodel Goldherg's Nodel
& (a+k)lavw
Simple (..n(i..P..l) vl:* whers 1 $ k {2
Backtrasking (Mi-d!ﬂ')i!rll 2+ 2 1n2 - 1’-3- in (1 + IP,-)
Lo
b1s a-igdah . - a1+ 0] Y
i vial v lin 2
Predicate
v ia 2 via 2
| Method
2T = 01
siple | (e-n (-l dy’ - favm lay
vhore 1 Sk (2
Basktraocking J]'
vith Bapty | ORAND a2+ {2 1a2 - 21 a e Ay
ad i -
Prediosts I 1a u—-(H!ﬁ)-"rl v -v 12 1+ d8g20) Y
Eule
Jearph 'i!i‘
Ressrangoneat Olv )
Backtrasking
{Level 1)
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The following table shows the results of
setting s =3,a=31In2:208, and b=
(In2) (In (1-2-®))-" z 519 in the formulas
from Table 2. These values for the parameters lead
to an interesting set of difficult problems where
the typical problem has about one solution
regardless of the size of the problem, as is often
the case for realistic difficult problems. The
values in the table demonstrate clearly the
exponential improvement that can result from using
simple backtracking.

Goldberg's
Case Our Model

1 wode)

Solutiona =0 =0
Simple Backtracking 0.247 ¥ 0.456 v
Empty Predicate Method 0.693 v 0.693 v
Simple Backtracking 0.247 v 0.456 v

with Empty Predicate Rule

5. Goldberg*a results

In [8] Goldberg reported an average time
analysis of an algorithm based on using the pure
literal rule to simplify the predicate. When no
pure literal is available it chooses a variable and
creates two simplified predicates, one for each
value of the variable. It uses the same stopping
rule as the empty predicate method. The analysis
is over the Goldberg model as described above, but
with p constant. We are preparing a joint paper
with Goldberg in which some minor errors in the
derivation presented in [8] are corrected.
(Reference [14] is becoming a draft of this paper.)
These analyses show that Goldberg's procedure takes
polynomial average time on his model. When p is
fixed, the size of the clauses increases with the
number of variables, and the number of solutions to
a typical predicate also increases. The analysis
does not apply to models with variable p, but it
suggests that, for the case in which p approaches
zero as Vv becomes large, the performance of
Goldberg's algorithm is not dramatically better
than that of the empty predicate method.

6. conclusions

The Putnam-Davis procedure is the source of
many good ideas for improving the efficiency of
search algorithms. It may be viewed as a
combination of 1) backtracking, 2) unit clause
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selection (one level aearoh rearrangement), 3)
empty predicate detection, 4) pure literal
selection, and 5) stopping at the first solution.
The methods of [2,131 and of this paper are
adequate to analyze an algorithm with the first
three features. To analyze the first four is more
difficult. Goldberg [8] analyzed the effect of the
pure literal rule in an algorithm where it does not
affect the order of selection of the variables. It
is quite likely that his methods can be combined
with those of [2,13,14] to analyze an algorithm
that uses all of the first four features. No work
has yet been done on the effect of stopping at the
first solution.

The analyses of random problems show that
backtracking is effective on problems that contain
a large number of clauses with few literals per
clause. When backtracking is effective,
backtracking combined with the unit clause rule is
even more effective, but when backtracking is not
effective adding the unit clause rule does not help
much. The pure literal rule works well when each
clause contains a large number of literals. Since
such predicates usually have a large number of
solutions, stopping at the first solution is also
effective in this case [5]. None of the analyzed
methods is very effective for problems with a
moderate number of literals per term and with the
number of terms equal to several times the number
of variables.

The most straightforward direction for future
work is completion of the analysis of search
rearrangement backtracking. The blank entries in
Table 3 for level one backtracking can be filled in
by completing calculations similar to those which
led to the first entry. The multi-level
backtracking algorithms appear to be even more
efficient for large problems [3], but analyzing
their performance is difficult.

Backtracking algorithms are easy to use: once
the general search algorithm has been coded the
user need only provide the routine to test partial
solutions. Adding features of the Putnam-Davis
procedure that manipulate the predicate requires
more programming effort, but the resulting
algorithm may also be much more powerful. Analyses
are needed to determine whether this is the case.

There
to analyze
procedure.
procedure
concerning

may be algorithms that are both simpler
and more powerful than the Putnam-Davis

One weakness of the Putnam-Davis
is that it does not have any guidance
which variable to select in eases where



the pure literal rule ami the unit clause rule oo
not apply. A good technique is to select a
variable from the shortest remaing clauae. A
recent analysis by Monien et al [12] shotted that a
problem with three literals per term can always be
salved in time 1.62' using an improvement on the
Putnam-Davis algorithm that selects variables from
the shortest clause. Some improvement is also
obtained for problems with more than three literals
per term. Other interesting techniques for
modifying backtracking have been proposed
[7,9,10,11].

Another area where progress is possible is in
the use of rules to manipulate the predicate.
Subsumption can be combined with the Putnam-Davis
procedure. Substitution of equal quantities can
also be used.

Many of the techniques used in this paper were
developed in earlier work [2,8,13]. Each of the
original papers analyses one algorithm on one
model. Here we apply the techniques to a variety
of algorithms and models to determine how important
various features are to efficient searching. A
large number of ideas have been suggested for
improving the efficiency of searching. If they
were all combined the result would be a large,
complex program, containing many parts that made
little or no contribution to its efficiency.
Analysis of average running time is a powerful
technique for determining the value of proposed
improvements.
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