AUTOMATIC PROGRAVMING USING ABSTRACT DATA TYPES

Gerard Guiho

Universite Paris Sud LRI - Bat.

ABSTRACT

In this paper we first try to characterize
one meaning of automatic programming. We consider
it to be one part of the Programming environment
related to Artificial Intelligence techniques.

We then illustrate an automatic programning process,
on a simple example, using an Abstract Data Type
theory to which we add the not ion of schemes which are
particularly useful in program derivation from Ab-
stract Type decomposition. We conclude that all
the concepts treated in this paper must be contai-
ned in one way or another in any automatic program-
ming system. However this necessitates further
study in such theoretical fields as Abstract Data
Type Theory, Specification languages, Theorem pro-
vers or proof cheekers and rule rewriting systems.

| GENERALITIES

I.1. In my opinion the concepts implied in the
words "Automatic Programning" are not very precise
and may even seem completly unrealistic. However
many people, like myself may consider that even if
they seem vague and sometimes unrealistic they ap-
pear worthwhile for studying.

In the first part of my paper, | will try to
specify the definition of these concepts, created
by the juxtaposition of the two words "Automatic"
and "Programming".

In Webster's dictionary, we can see that "au-
tomatic" can be the obtention of something which
can be produced without thinking, by habit or re-
flex. In this case, Automatic Progranming could be
considered as a kind of programming methodology,
which is sufficient to follow to obtain a good
program. This can only be applied in areas where
the programing process is repetitive enough that
a method can grasp the mechanical aspect. In this
way. in the business-oriented programming field,
some program generators or methodologies can be
considered as automatic programming.

A second meaning to the word automatic con-
cerns one action which is done by itself. We could
then look for a programming technique which is en-
tirely produced by any kind of mechanism. This is
a more Artificial Intelligence approach. In this
sense we could consider building a system which
would receive the specification of a problem as
input and which will give a program as output.
This field is often called Program Synthesis. The

490 91405 ORSAY - FRANCE

input specification can be formal specifications
(as logic) [II[2] , Examples [3][4]f5] or Natural
Language. Taking into account the research which
has been done on this subject during the last five
years and my own personal experience, | think that
this approach is only possible for restricted
fields of application and toy problems. In other
cases the specification language is close to a
programming language and it is more a compiling
technique than automatic programming. | am there-
fore convinced that this approach can be useful
locally but that programming, in the general sense,
will never be completly automatic.

A third sense to the word automatic will also
help us. It characterizes one action which is done
using automatic equipment. This dictionary defini-
tion is in fact recursive !! That leaves us now to
consider that it is not the action of programming
which has to be automatic but the equipment which
could help do this action. Lastly we can interpret
"Automatic Programming" as the programming action
using a computer, which allows us to write pro-
grams in the best way possible". That does not im-
ply that the whole programming process has to be
automatic.

Unfortunately,this definition is too general.
If any system used during the programming process
is relevant to automatic programming then most of
the programmers are in fact using automatic pro-
gramming techniques without knowing it. Is a text
editor, a compiler, a linker, relevant to au-
tomatic programming ? And is there any difference
between "Automatic Programming" and "Programming
Environment" ?

In fact | consider that automatic programming
is a part of what is called programming environment.
It consists of the tools which are the most advan-
ced in the programming environment and which are
directly related to the programmer. We are very
close here to an Artificial Intelligence paradigm
because the action of programming can be conside-
red as one of the most difficult and intelligent
action a human can do. Sofisticated tools which
could help the programmer during this powerful ac-
tion may be relevant to the Artificial Intelligen-
ce field.

However, even if the line between Artificial
Intelligence and classical Computer Science is not
really precise in Automatic Programming, | consi-
der that it is a domain in which many different

2 G. Guiho

Artificial Intelligence techniques can be extreme-
ly useful. This must be a challenge for Artificial
Intelligence people. It is not a coincidence if the
first and most powerful programming environments
came from the Artificial Intelligence community,
(Interlisp, Maclisp...)

1.2. | will summarize some fields of Artificial In-
telligence and just give some areas where they
could be profitable in automatic programming.

- Natural Language Understanding—This sub-
field could be very useful, not in the command to
be given to a system but to help the programmer in
the various commands and utilities of the program-
ming environment. For an experienced programmer,
the the commands he knows have to be very short.
They are generally keys. The problem is that when
we want to explore some new possibilities, we do
not know precisely the keys or the successions of
keys to use for these new possibilities. Looking
through the documentation (even in line) is some-
times boring. The "a propos" command under emacs is
useful but is only a key word search. The develop-
ment of a natural language interface would allow a
sophisticated help system which would then be very
effective.

- Expert Systems—I| do not think an expert
system can be constructed at the present in the
program-creating process because it is too diffi-
cult and may even be outside of classical expert
systems approach. However, in many parts of the
programming process an expert system viewed as an
assistant can be used. These systems have to be se-
parate tools

The organisation of large programs. How to
find some information in a large base of programs
or data types ? What has been done until now and
what would be the most suitable to do now etc...?
It is a knowledge-based oriented system [6].

The process of transforming programs [7] .

Restricted areas. When the field is very
small and the derivation of the program from the
specification very easy, it would be fruitful to
design some small expert systems.

The validation of programs using test sets.
The generation of the test set for programs is ne-
ver completly satisfactory and is a difficult art.
Testing a program can be relevant to Expert System
techniques.

- Theorem Proving—Testing programs are not
sufficient and in the future most of the programs
will have to be proven, at least partially. Many
interactive systems will have to be designed in or-
der to help the programmer prove the correctness of
this work. This domain is highly related to Theore-
tical Computer Science because most of the concepts
in languages or programs have not yet been suffi-
ciently studied to be used in practive for real
programs. Some systems as GYPSY [8], STP [9],
FORMEL [10] are milestones towards this approach.

The rest of this paper will try to show that
even for small examples, the proof can be long and
the material involved very sophisticated.

- Other techniques—Many other aspects which
only use heuristics can be very useful in the pro-

granrning process. | will just give some of them here
but this is not exhaustive.

-Help during the programming process—Proposing
program schemes, data decomposition, programs which
are "close" to the one the programmer is actually
doing etc...

- Intelligent display of all the information
needed during the programming process (a screen with
a multiple-window oriented editor).

- Organisation for work scheduling.

I PROGRAM CONSTRUCTION

We will.now describe one proposal for a program
construction technique. It is not aimed to be enti-
rely general but shows many concepts which, in one
form or another, are necessary in every future auto-
matic programming system.

It is now beginning to be admitted that a Ii-
brary which is useful in the programming process
must contain both data and programs. All these ob-
jects have to be encapsulated in modules. Some of
these modules involve descriptions of powerful data
types with basic operators ; some others involve
sets of programs with one common functionality.

Ail these modules contains two parts. One which
shows that which is visible outside of the module,
which attempts to describe the specification of
the manner in which to use it. The second part des-
cribes how effectively the elements of the modules
are implemented. This is one of the most important
aspects of ADA with the PACKAGE and PACKAGE BODY
parts. Generally the description part (which we will
call the specification part) only contains the pro-
file of the operations which are visible outside the
module and few other helpful things for type chee-
king and documentation. However, even if this aspect
constitutes a major improvement, it does not allows
us to produce proofs.

The nature of the objects which have to be
grasped in our system can be represented as

Data types Frocedures
DS PS
Specificaticn SpecificaticﬁJ
Algebralc Abstract Algebraic
Data Type Specification
DI PI
Implementation Implementation
One Algebra Algorithm

where

1. Data Type Specification (DS)

We use Algebraic Abstract Data Types in an ex-
tended manner which will be described in sectionlll.

According to the theory, an Algebraic Abstract Data
Type specification denotes a class of Algebra Algy
and in our theory this class has one initial algebra
Ts. (ie for each algebra A in Algy there exists one
unique morphism h : Ty+A.

2. Data Implementation (DlI)

Generally the Data Implementation is not vi'.
sible to the user (and it must not be visible). We
will consider that the Data Implementation repre-

sents one of the algebra in Algsy denoted by the ab-

stract type specification. The fact that there e-
xists one morphism between Ty (which is a particu-
lar Algebra of Terms) and A helps us prove proper-
ties or theorems on the type using Ts. These pro-
perties will be properties of any implementation.
Of course the correctness of the implementation
has to be provenin the same ways that many proper-
ties concerning abstract specification. That is
done once for all and could be considered as the
responsability of the data type designer. Note that
our class of algebra is the class of finitely ge-
nerated algebras so that we can use term rewriting
and structural induction for producing proof.

3. Procedure specification (PS)

In a first approximation we will consider spe-
cifications in an algebraic manner. This will be
easier for proofs but it may lead to specifications
which are not really readable. | consider that
there does not exist for the moment an effective,
convenient specification language. If one such
language would exist, its semantic would have to
be expressed algebraically, but for our purposes
here | have chosen to express it directly in its
algebraic form.

4. Procedure implementation (PI)

First we need a programming language with a
well-defined semantic in order to produce proofs.
Section IV will describe such a toy language.

Given a program P written in such a language
and proving its correctness may not be sufficient.
These properties are proven in fact, in an exten-
sion of T , the initial term algebra : Ty + P and
the program will actually be used in an algebra
A + P. The fact that there exists an horaomorphism
h : Ty-+A does not prove that it can be naturally
extended to an homomorphism n : Ty + P-->A + P.
This has to be proven again and it can be done
either

- By proving it on each program !!

- By restricting the form of programs or by
directing the program construction such
that any morphism can be extended.

- By using monomorphic abstract types.

5. Program construction

Two main methods can be used in building pro-
cedures concerning a problem we have in mind or

G. Guiho 3

which is expressed in a natural language manner

a. Knowing a family of Data Types Specifica-
tion, build a procedure specification using any in-
tuitive method and then derive a program.

DS
D&

DS

PS]Prucedure Specification!

|Program

The problem whith this method is that even
for short specifications, the risk of error is high
(it may be even higher than directly deriving the
program if the specification language is obscure).
Subsequently the program will be wrong and if the
procedure specification represents in some sense a
"contract", this could be dangerous. One other pro-
blem is that only when the program is effectively
tested that some errors will occur. It might not be
easy to see where they correspond to a mistake in
the specification. The risk is that the programmer
will directly change the program !! One could say
that we have some executable specifications but the
other risk is that the program might easily follow
the specification and could be highly uneffective.

b. Knowing a family of Data Type Specifica-
tions, build a procedure specification, then build
a program separately and prove the correctness of
the program versus the specifications.

idea of
' prahlem

Procedure
Tmplemeatation | PI

Procedure
PS | Specificatien

Froof

Here we have more chance to make errors in the
two constructions but the errors will not be neces-
sarily the same. The proof mechanism will help us
to correct the two parts. In my experience | always
made aproximately the same number of mistakes in
writing programs or specifications. Trying to prove
the correctness always leads me to reconsider both.
The risk is that if the specification is too far
from the implementation (highly non executable spe-
cification for instance) the proof could be very
difficult.

Orne other way would be to extract automatical-
ly the test set from the specification in order to
test the program. [11],

This is the type of program construction tech-

4 G. Guiho

niqgue we wil use in further sections with a syste-
matic methodology for building programs. It could
help us reduce the amount of errors when we try to
express our intuition.Wewill use one toy example all
along (the gcd problem) because it is sufficiently
complex, the concepts significant and sufficiently
short to be shown in one paper.

|1l ALGEBRAIC ABSTRACT DATA TYPeS

We will use the now classical theory of abs-
tract types which is directly inspired from
ADJ [12], Goguen [13l [14] , Broy & Wirsing [15],
complemented by work from Bidoit [16] , Kaplan [17] ,
myself, Boisson and Pavot [18] . Our addenda concern
principally the presentation of type, the use of

positive conditional axioms and the error mechanism.

The schemes are direct extensions of the de-
composition schemes of C. Gresse [19] (same procee-
dings).

An abstract type is given by

1. A signature represented by a set S of Sorts
and a set . of symbols with an arity in (S) . This
differs from the usual theory where the arity be-
longs to S). We use, as Goguen does, overloading
and coercion extensively. The notation of operators
is similar to OBJ (\2\ .

2. A set of positive conditional axioms.

These axioms (as in Goguen [14])contains the
sort in which the equation has to be considered.
The operators are raultioperators and can have more
than one output. In fact, their interpretation is
a function from the domaines of their input to the
union of domaines of their output (which have to be
disjointed). The operators have to be total on the
ground terms but can be partial on terms with va-
riables. Using some kinds of presentation and with
some properties, it can be shown that there can
exist one initial algebra of terms in the class of
specified algebras. More details are available in
Boisson & All [18] .

3. Some induction schemes

These induction schemes will be useful during
the construction and the proof process. They will
be described more precisely in the appropriate sec-
tion. They correspond in a sense to the induction
schemata in Affirm [20] .

4. Some theorems

This part contains properties or theorems
which can be deduced from the axioms. These theo-
rems may be useful in the proofs.

Fig. 1 describes the specification of the po-
sitive integers type. We assume that the type Bool
which represents the booleans is known somewhere
else with all it's suitable operations and axioms.
We can make the following remarks on this example :

- We define here three sorts. The zero sort is

very convenient for constructing programs and for
specifying this type.

- The notation int = int ,,zero is just syntac-
tic. It is to avoid writing int , zero everywhere
in the type.

- The underscore (_) shows the places of the
operands with the disfix notation of operators.

- There are plenty of overloadings in this spe-
cification. For instance there are four + operators!

- When there is more than one sort in the left
part of the arity of one operator, it means that it
is a multioperator. For instance P has two outputs:
int and zero.

- There exists also multiaxioms (a syntactic
level) in the way that an axiom is repeated when
there is some ambiguity in the type of operators or
when there are more than one sort before the axiom.

For instance

int : x +0 =x means zero : x + 0 = x
int : x+0=x
or
bool : x < 0 - False " bool : x : zero < 0 = False
bool : x : int < 0 = False

See figure 1 next page for presentation of the
type.

- There are conditional axioms like
x egal y =* x oivy = True
In fact a correct definition would be
x egal y = True --> div y = True
We accepted this syntactic simplification, in
order not to overload the axioms but they are all
positive conditional.
- We can see with some examples how the initial
term algebra is.
0 is in sort zero
sO is in sort int and [s"O|for n > 1) are inint
because s is not a multioperator. These terms can
be considered as representative of classes of
terms in int
psO is in zero because of the first axiom
ppsO does not exist because p does not apply to
sort zero

. 80 - ssO = 0 - sO by axiom 3

= erint by axiom 4
Then it is in inter

. The term sO + (sO - sssO) does not exist !
It can be proven that there is no ambiguity for
any ground term and then this term algebra is ini-
tial.

- The axiom inter x = erint collects all the
error terms into one single class without avoiding
all the classical problems with the errors in abs-
tract data type.

- It is necessary for the evaluator to do type
cheeking during the evaluation process in order to
choose the correct axioms or to detect terms which
do not exist. In fact these terms will not be gene-
rated with correct programs. It might be possible
here to add some operators which could be applied
to inter to get error propagation and these terms
would then exist (for instance
+ : (int, inter) (int, inter) -> int, inter
in spite of the existing one !)

- An equation can be used iff its two sides
exist and have the same type. Then, for instance,
the third theorem

int ¢ ¥+ {y - x) = ¥ means
If y ~ x ¢ int then the two sides of the equation
can be substituted and this condition has te he

kept during the evaluation of terms.

Type Int+. zerg, inter
Int = Int , zero
Signature
0 : » zero
int+* int
int » int , zero

int
int
int
int

+ int
int +
int ~+
int ~+

, Zero, inter
int
hoal
boa]
boel

int int ~
. . +
int iant » bool

I

Ax iams
Tiat
int
int, inter
inter
in&

int
bool
hool ;
hool

inter

PaER = X

x - 0 = x
5K~ By = ® - ¥

{t = sx = erint

+ 0 = x

+ 8y = a{x + y}

epal ¥y ™ x givy = Trus

Sy PR divy = x diviy -~ x)
¥y *xdivy = False

= erint

bool egal ® = True

bool egal sx = False

bool @ sx egal 0 = False

(=2 I A 2

bool sx egal sy = x ecgal y
hool x -~ 0 = False

haool 0« gx = True

bool @ osx ¢ ry = o<y

bool : 0 » & = False

bool ¢ sx » 00 = Truc
boel : s » sy = x > ¥y

Schemes . +
SHI :: |x:int =y = px : int | ; 0 » out
SH2 :: N . .
SRI1 : [x:int , v ! int =z = x-y : int , v| ;
erint *» SHIZ
o : out N
S8HI2 : [x:int , y : int
erint + SH1I
0 -+ out

.+
*x, z=y-x:Inti;

Theorems
int : x - v = 0 = x egal y = True = x
= y-x=20

1}
e

int @ X + vy =¥ + x
int : x +{y - x) = ¥y
bool : xdivy A x div z = x diviy + z) A x div ¥
Figure 1
IV PROGRAMMING LANGUAGE
1. Syntax

Our programming language here is very simple
. (but powerful), which is in one sense an algorith-
mic gpecification language but it is suitable for
our purpose.

G. Guiho 5

Figure 2 (ncxt page) shows the syntax of this lan-
guage.

2. Semantic

The semantic is given here as a rewrite syscx.
This is particularly useful if we want to evaluate
procedures on terms in order to make proofs | We
will use some auxiliary fonctions or combinators in
order to shorten the description .
return (Env)
Except {exveption name,Em)
kill

i

J{(Elprngr, ¥nv, Cont -

is the basic construction of the semantic. Think
of it as the meaning of one element of program
{which has to be counsidered as abstract syntax awen
if it is very close to the concrete syntax) in some
environments and with some particular continuatioas.
It returns return with one environment or an vxcep-
tion or kill,

One environment can be considered as a list of
couples [<x., v.*| where x. isx a variable and v,
its valuce if some algebre A. Envix} = v. means lhe
value of x in the enwiromment Lnv. It is cquual to
v, if it exists =x., v.> otherwise it is undefined.
Wh will assume all'the’functions fo be strict but
we will pot wse this assumption because of the pro-
gramming construction process.

means the instruction lisc of "le'
associated to name

F. outputvar means the output variables of proce-
dure F

means the input variables of proce-
dure F

medns the body of F

le. name

F. inputvar
F. body

Excepl ? (db(value)) = True if in the algebra en
which the procedure is ap—
plied , Up(value) will give
a domain which is not of the
output sort.

The following rewrite rules give the meaning
of a succession of ingtructions.

A @, Env, [; 1.111.¢) = Jt(i, Env, [1.]1 1.c)
AL, Env, [8 | 18.8 =M@, Env, © 1e
A (@, Env, @) » réturn{Env)

[1. | 1) means a continuation by a list of
instrucEiOnsE(l.) and a list of exception names with
a 1ist of instructions related toeach nane (1) these
two rules show the semantic of raise.

Al (raise name, Env, [1,]1].c) »
' (@, Env, [1 .%amg|ﬂl.c
JL {raise name, Env, a) + Except{name, Env)

This rule is the semantic of one basic opera-
tion which has te apply directly into an algebra

Al (x : = 0p(v), Env, ¢)
+ if except ? (d%(Env(v}))
then A (raiSe(dE(E v{v))),Env, c}
else M (#,[Env, <x,0p(Env(v))>],)

6 G. Guiho

P.__rg "™ B cutput _@_ Procedure input
cedure variable name variables |

A

raise exception o« [Instruction P
=== name R list encproc
instruction -
raise - raise exception L
—_ name {
N Operation
- name —I
| Assigment |= 1| var fl @—— >
Procedure _|
.
> name

variable

—0

1 - - : . exception
‘ Bloc begin _@ neme
A
T PR
. /
L)_ instruction
. Y
list L
e 4
<on | _ Tinst i
excent when exception ._>—® ins rl‘lctlnn >
£xcept waen name list
| _
o3
Figure 2
These three rules are for the asemantic of the cal- J‘L(z "y(return (E),), Env, ¢}
ling of other, procedures. It uses one auxiliary A.(@,[Env,<z ,E(F.ontputvar)>], c)
function * "y, M(z "'S.J(excegt (name, EY, F), Env, c)
{raise name, Eav, c¢)
Mz 1 = F(v), Eav, c) .
+HMz =% M9,l <F, inputvar, Env(v)>], All the tules which follow show the semantic
[F.corps|@]), F), Env, ¢) of the bloc comstruction. It shows taht the begin

end construct is & kind of parallel evaluation of
processes,

oﬁt(be in without nex ; lp exceptwhen le end, Env,d
*j§0 (F?] (lp’ Env, nex), Env, R lel.c)
Here are the successions of processes.

?1(1i] lp" Env, nex) "3%(9 Env,[1.]G}

LEnv nex). Env,nex)

P ay, kv, nex) + R MO, Enbi[1, [#]) .0, Eov nex)

When a process is killed, it leaves the others

te work normally.

{kill, P, Env, nex) * P
{P, kill, Env, nex) » ji(P, @, Env, nex)
1f a provess terminates normally it tries to

export its results after killing the others.

Sg(roLurn (E), P, Env, nex) » return (E)
ji(P return (E}, Env, nex) + return (E)

If a process raises one exception and if thl

end it is]lkt a killing of the prucess,
s like a normal terminating one.

else it

g{(exrept (name, E), P, Env, nex)
+ if name ¢ nex then P uvlse cxcept (mme,E)
52(P oxtept ({name, KY, Env, nex}
~ if name ¢ nex Eﬂiﬂjz(P @, Env,nex)else
oxecepl {name, E)

These three rules give Lhe final result of
the begin end construct followinp the process which

succeedid,
(klll Env, ¢} J{(G Env, c}
(return(E) Env,c) *w“(ﬂifnv tl,e)
0(xcPEt(name E),Fnv,c) *‘}{(ralne name,[Env,E], 0

This langage is in fact toeo rich and we can
prove that the extension of homomorphism h (bet-
WeEn Ty and any algebra of Alp.) cannot be done
for every program. We will res%r1¢t our programs
such that the definition of programs plus the defi-
nition of the semantic plus the definition of abs-
tract types is a canonical system. This means ter-
minating programs and no real nondeterminism. The
schemes which belong teo the astract types will help
us in doing that.

Not that this eliminates programs such that
Proc y « Anynumwber {x: int)

begin

yr=x0 y: (s{x))

= Anynumber
end

endErEE_

which is unbounded determinism.

In order to help the proof process we will
also suppose that we have unique assignment pro-
grams (we can then replace the : = by equalities
during the proofs). The respensability to obey all
these restrictions is left to the programmer be-
cause it is highly non-decidable for all programs.

V¥ PROGRAM CONSTRUCTION PROCESS

One program at the begining can be considered

G. Guiho 7

as a name, a set of input variables and their types,
an gutput variable and its type and a list of excep-
tions which can be raised by the program.

Let y:t'sF(x:t)raise exl ; such an cxpression where
to simplify we use only one input variable and cne
exception name.

The propgram construction process consists of
choosing a sct of input variables and to use onc of
the schemes which belong te the description of the
correspanding types.

This transformation van be expressed as in
figure) where

X, x', j... are only one variahle hut this
gcheme can be generalized to more than one as in
the example.

The inex. mean the cxceptions or the sorts
which can be obfained using multlopcrdtora &p. or
f}p such that the suhscheme SHD can be evalbated
nnrmally] 3
The outex, mean thL exceptions or the sorts
such that no subscheme su! can be used witheut gi-
vinpg a sort outside the normal output of the opera-
[ors.

We assume that for each scheme SH on » there
exists one function ¥V : T + N such that

¥x ¢ T Vi{x") © ¥{x) on cach subscheme SHIi.

That means that the scheme corresponds to a
well-defined or dering on » and is particullarly
useful for making proofs.

. In the program generated
- g5P. denotes subproblems which have tr be ex-
pressed directly by the user or as new subprohlems
te be solved in the same way.
- erF 1is one exception which is systematically ad-
ded to each proredure. 1t can be simplified if it
can be proven at the end that it is useless.
- We assume here that we can use recursion on
F(t : = F(x')) but this can be wasily avoided. If
the recursion is used then an erF exception with
its corresponding subproblem $SPerF is generated.
- An exception for each subproblem qu {(ie er SSP]
and a new subprublem are generated.
- All this is immediately and automatically genera-
ted simply by pointing to a scheme. 1f some of the
subproblems seem to remain unsuvlved or not easily
expressed, the programmer ran choose anather scheme
and so on.,
Example
We will construct the well known ged program
which can be considered as a toy problem, but which
is more difficult that most of the practical real
problems im the concepty it LnxﬂkEB The heading is:
Proc p:int <+ ged{x:int ,y:int '}
We will choose to use the scheme SH2 an type int”
This leads automaticallv to
Proc p:int + gcd(x:int*,y:int Jraise erged
begin without erint ;

z ! =mx-y ; P

Oz :=yx ;¥

Except when
0 : gsp

= ged{z,y) ; SSP]

] = ped{x,z) ; SSPZ

erged : 38?2
erSSPl . 35?5
erfSP, : #SP

end “endproc

8 G. Guiho

We have to "manually” build the subproblems SPi.
It is easy to guess that
#sP. is P:P
1, |
55?2 is P:P|
which rancel erSSPI and erSSP2 then SSP5 and SSPﬁ.

$5PF. is Pi=x
SSP{l by raise erged

An easy transformation leads then to the final
program:
Proc p:int++gcd(x:int+. y:int+)

begin without erint;
ziwx—y: p:gcd{z,y)

O zimy-x; proged{x,z)

except when
O:pt=x

end

endproc

which is quite elegant and well-structured.

SH ::
SHI] :[x:T=’x'=ep|(x) T,
z: =@ p;(x) : T
{inex; * SH;}
{outexi + out}
SHL, :[x ¢ T= x' =0p,(x) : T ;

£z = ep'z(x} : f"]
{inex% - SH{}

]]
{nutexi + out}

Proe v + F{x : T) raise name,...,erF ;

begin without k{inex; :

x' =9p|(x) ;2o o= ep'l(x) H
t:o= F(x') ; $5P,
M x" -sz(x) o2 =9p'2(x) :
t: =F(x") : 55?2
o...
except when
outexi : SSPE;
ersspl SSPerspl
erTf : $5PerF
name : 8 name
end
endproc

Fiaenra

v1 PROOF
As there is nothing really special in the
proef process, we will only describe it on the

example in order to conclude.

We will assume for instance a "non executabld'
algebraic specification of ged is given by

- god{(x,¥) divx A ged(x, y) div y
-z div x A z div ¥y = 1 (ged(x, y) < 2}

1. Let us prove a first lema
(1) ged(x, y) = ged(y, x)

We will use the induction following the scheme.

a) Firse subschame

ged(x, ¥) = ged{x - ¥, y) then x - y € int’
= ged{y, x - y) by induction
ged(y, x} by sceond subscheme.

b) Second subscheme
idem.
c¢) Exception
ged{x, ¥) = » by exception 0 then x - y = 0

=y by theorem | 1n int*
gly, x) by exception on the scheme.

M
2, Let us naw prove the first part of the speci-
fication
ged(x, g) div x & ped(x,y) div vy

Will use the induction on the scheme in the
Same way

a) Firset subscheme

ged(x, y) = ged(x - y, y) = ged(y, x = y)by lemma !

= ged{y, x — ¥) div y & ged(y, x - y) div x - y by
induction

= ged(y, x -~ yv) div y + (x - ¥) A gody, x - yidivy
by theorem of int*

= ped(x, y) div x & gcg(x.y) div y by subscheme 1
and theorem 3 of int

b} Second subscheme
Idem
c) Exception

ged(x, ¥) = x then x -y =0 and x = ¥
gedix, y) div x A ged(x, y) div y
= 5 div x A y div y which is true by property of div.

3. The second part of the specification is now to
prove
2 div x & z div y = [{(ged(x, ¥y} < 2)
which can be proven using the same kind of in—
duction.

This example shows that the proof is not very
easy, even for such a simple example because of the
theorems or lemmas which have to be used. In our opi-
nion, this kind of proof cannot be done automati-
cally by a present theorem prover (with the disco-

very of lemmas).A nice proof checher would be pre-
ferable.

V CONCLUSION

This method, this toy example and the sim-
ple proof do not intend to describe all the
tools which have to be in such a system,
l'e claim here that when we try to be very precise
(and we have to when we build correct programs) all
the concepts which belong to this paper have to be
contained in one way or anotlier in the system, which
leads to many difficult theoretical problems not
completely solved at this time.

What we can hope for in the near future is the ef-
fective implementation of such partial systems
which will become more and more powerful, coupled
with meaningful research on abstract data type the-
ory, Specification languages, Theorem provers or
proof cheekers and rule rewriting systems.

The authors wishes to thank M. Bidoit, M.C.
M. C. Gaudel, C. Gresse, S. Kaplan for many exci-
ting discussions on this subject.

REFERENCES

[1 JManna,Z. & R. Waldinger, "Deductive synthesis
of the unification Algorithm" In Computer Pro-
gram_synthesis methodologies. A. Biermann &

G. Guiho Editors. D. Reidel'Publishing Co 1983.

[2]Bidoit, M& C. Gresse & G. Guiho, "A system
which synthesiezs array manipulating programs
from specifications. Proc 6th 1JCAI-79. Tokyo
pp. 63-65.

[3]Kodratoff, Y, "A class of functions synthesized
from a finite number of examples and a LISP pro-
gram shceme". International J. of Comp. and
Inf. Sciences 8, 1979, pp. 489-521.

[4 1Jouannaud,J. P. & G. Guiho, "SISP/l An inter-
antive system able to synthesize functions form
examples". Proc 5th IJCAI. M.I.T., August, 1977.

[5] Biermann, A. W. & D. R. Smith, "The hierarchi-
cal synthesis of LISP scanning programs". In-
formation processing 77, North Holland, 1977,
pp. 41-45.

[6]Moriconi, M. "A designer/verifier's Assistant"
IEEE Transactions on Software Engineering,
Vol Se-5 N° 4, July, 1979.

[/]1Barstow, D. R. "Automatic Construction of Al-
gorithm and Data Structures using a Knowledge
base of Programming Rules". PHD Dissertation,
Stanford Memo A1M-308, 1977.

G. Guiho 9

[8]1Good D. & All, "Report on the language Gypsy"
Version 2. 0. Institute for computing Science
and computer applications. The University of
Texas. Austin Texas 1978.

[9]Shostak, R. E. and R. Schwartz, Mel 1iard-Smith
P.M. STP : ’A Mechanized Logic for specifica-
tion and verification". 6th conference on Au-
tomated Deduction, NY 1982.

[I0]Huet, G. "Projet Formel", INRIA, France 1983.

[IlBouge, L. "Modelisation de la notion de test
et de programmes". These 3e cycle LITP Paris
Novembre 1982

[12]Thatcher, J. W. and E. G. Wagner and J. B.
Wright, "Specification of Abstract Types using
conditional axioms IBM report 6214, Septem-
ber 1976.

[13]Coguen, J. A. and J. W. Thatcher and E. G.
Wagner, "An Initial Algebra approach to the
specification, correctness and Implementation
of abstract data type. IBM report KC 6487,
October, 1976.

[l4]Goguen, J. "Order Sorted Algebras Exceptions
and Error Sorts, coercion and Overloaded opera-
tors. Report IT 14, S.R.l. December, 1978.

[15]Wirsing, M. and M. Broy, "Abstract data types
as lattices of finitely generated Models".
9th MFCS ,Rydjyna, September, 1980.

[I6]Bidoit, M; "Algebraic Data Types. Structured
Specifications and Fair Presentations". Collo-
que AFCETMA ,Paris, March, 1982.

[17]Kaplan, S. "Un langage de specification de ty-
pes abstraits algebriques". These 3e cycle
LRI- Orsay, Fevrier, 1983.

[18]Boisson, F. and G. Guiho and D. Pavot, "Alge-
bres a Operateurs Multitypes". Rapport interne
LRI-Orsay, Mai, 1983.

[19]Gresse, C. "Automatic programming from Data
Type decomposition paterns". 8th IJCAI-83, Karl-
sruhe, August, 1983.

[20]Loeckx, J. "Proving Properties of algorithmic
Specifications of Abstract data Types in
AFFIRM". Memo-29-JL U.S.C July 1980.

