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A b s t r a c t : Symbolic execution can help clarify the behavior 
implied by a program specification without implementing that 
specification, and can thereby assist the difficult process of 
developing a correct specification. However, symbolic execution 
of specifications poses problems that do not arise in symbolic 
execution of ordinary programming languages. We describe a 
symbolic evaluator, named K O K O 2 , for the Gist specification 
language, and show how it copes with such high-level constructs 
as nondeterminism, constraints, and reference by description 

1. Introduction 
Current research at ISI approaches software development in 

two steps. First a user translates his informal requirements into a 
formal specification. The specification language. Gist [Balzer 
81]. is significantly more powerful and expressive than a 
programming language, allowing the user to concentrate on 
specifying what is required rather than how it is to be 
accomplished. The second step is the implementation of the 
specification with the help of a transformation system. A sound 
transformation system guarantees a correct implementation of 
the specification To support this specification-based paradigm 
we are developing tools to help a user create a specification, to 
explain its behavior to the user, and to allow a user to guide the 
implementation process at an appropriate level [London & 
Feather 82] [Fickas 82]. Two tools especially relevant to this work 
are the Gist to English paraphraser [Swartout 82] and the Trace 
explainer [Swartout 83]. 

An important part of developing a specification is validation, 
i.e.. trying to be sure that what is specified is what is really 
desired. Specifications, like programs, may contain widely 
separated parts that interact in non-obvious ways. Finding such 
interactions is the job of symbolic execution. Symbolic execution 
derives information about the specified behaviors and tries to 
integrate it into a coherent description. This can help the user 
find errors in the specification by revealing unexpected 
consequences or increase his confidence by deducing 
consequences he desires. 

2. Overview of Gist - the Problem 
Gist was designed to allow people to specify behaviors in a 

natural way. It models the state of the world as a relational 
database consisting of a set of objects and relations among them. 
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2 
Koko was the Lord High Executioner in Gilbert and Sullivan's Mikado [Sullivan 

65] He never actually executed anyone, but he did manage to describe in detail 
what would have happened if he had. 

The world may change by the addition or deletion of relations 
among objects, the creation of new objects, or the destruction of 
existing objects (which implies the deletion of any relationships in 
which they participate). A specification defines a set of allowable 
behaviors, i.e., sequences of world states. Gist allows reference 
to objects by description, e.g., a box that contains a big red ball, 
where Contains, Big, and Red are relations. 

Gist is inherently nondeterministic. The descriptive reference 
above can refer to any box containing a big red ball. 
(Nondeterministic control constructs are also supported.) 
However, the set of allowable behaviors may be pruned by 
constraints. Any behavior which violates a constraint is excluded 
from the set of permissible behaviors. For example, a constraint 
that every yellow box be empty after a big red ball is put into a box 
restricts which box the ball can be put into. Constraints may be 
regarded as providing arbitrary look-ahead, in that all 
nondeterministic choices are constrained to the subset which do 
not eventually force the violation of a constraint. 

In addition, Gist provides control constructs such as 
conditional statements, procedure calls, demons, parallelism and 
others that are less common. 

It should be clear at this point that symbolic execution as the 
term applies to implementation languages [Clarke 81] is out of the 
question. Massive (even unbounded) nondeterminism makes the 
enumeration of execution paths infeasible. Reference by 
description poses severe problems of aliasing. The way the world 
changes is more complex than the familiar semantics of 
assignment statements, and constraints seem to have no analog 
at all. 

3. Example of Symbolic Execution 
Following is a very small specification, translated from Gist into 

English by the Gist paraphraser [Swartout 82]. (This has been 
edited because the original translation raises issues that we don't 
want to address here). 

There are sexes and persons. Male and female are the only 
sexes. Each person has one gender which is a sex. Each person 
may have a spouse which is a person. 

To marry a person p2 to a person p1, the following happen 
atomically (simultaneously). 
7. The person p2 becomes the spouse of the person p1. 
2. The person p1 becomes the spouse of the person p2. 

It is always » squired that for all persons y and x, if the spouse of 
x is y then the spouse of y must be x. 

It is always prohibited that there exists a person where the 
person's gender is the gender of the person's spouse. 

The results of symbolically executing the action "marry" are 
paraphrased below by hand. (The Trace explainer is currently 
being extended to explain such results in English.) 

Since spouses cannot have the same gender and every person 
has a gender, no person can ever be his own spouse. 
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Suppose two persons, p1 and p2, get married. Afterwards, p1 
is the spouse of p2 and p2 is the spouse of p1. Since spouses of 
the same gender are prohibited, p1 must not have the same 
gender as p2. Also, p1 is distinct from p2. Before the marriage 
p1 must have no spouse other than p2 and p2 must have no 
spouse other than p1 

This example confirms some of our expectations, e.g., that a 
person cannot marry himself. On the other hand, one might have 
expected that the two people originally have no spouses, KOKO 
shows that this is not necessarily the case. Since Gist allows the 
insertion of relations that already hold, there is nothing in the 
specification to prevent the marriage of people who are already 
married -■ provided that they are already married to each other! If 
this is not what the specifer intended, then symbolic execution 
has revealed a bug in the specification. 

4. Overview of the Solution 
Our approach to symbolic execution regards a specification as 

a large set of domain axioms, expressed in a first order temporal 
logic with typed variables. The axioms define the set of 
acceptable behaviors, i.e.. the specified behaviors correspond to 
the models of the set of axioms. Symbolic execution is a process 
of forward inference, computing consequences of these axioms 
Notice that a specification need not determine the truth or 
falsehood of every relation, i.e., a relation may be true in some 
behaviors and false in others. 

This approach factors symbolic execution into two processes. 
First, each statement in the specification is translated into axioms 
about successive world states. Second, these axioms are used to 
derive certain interesting consequences, e.g.. hidden interactions 
among different parts of the specification. The success of this 
approach depends in large part upon the ability of the forward 
inference engine to find interesting consequences and avoid 
uninteresting ones However, the control of forward inference is 
outside the scope of this paper. The rest of the paper describes 
how various Gist constructs are treated as axioms. We start with 
primitive constructs and then show how compound constructs 
are handled in terms of their components. 

5. Constraints 
Constraints are the easiest Gist construct to handle, in that 

they are already in the form of axioms. For example, the 
constraint that the spouse relation be symmetric is expressed as 

Actually, in the current implementation, facts about different 
states are stored separately: more on this later. 

6. Descriptive Reference 
Part of the meaning of a Gist statement like the constraint 

"require Contains(a box. a ball)" is that there must be referents of 
the object descriptions. KOKO creates a typed "symbolic 
instance" for each such description. If we call these symbolic 
instances boxl and ball2, symbolic execution simply proceeds by 
adding the axiom Contains(box1,ball2). The interpretation in 
which this makes sense is that box l and ball2 are not actually 
objects in the world, but rather names of objects. The distinction 
is that several names can refer to the same object. Thus we do 
not preclude the possibility that ball2 is actually the same object 
as some other ball that was referred to earlier. 

Descriptive reference is merely a constrained form of 
nondeterministic reference, e.g., requiring a box to contain a red 
ball is modelled by adding the axioms Contains(box1,ball2) and 
Red(ball2). 

One kind of consequence KOKO considers interesting is that 
two descriptions must (or cannot) refer to the same object. 

Specifications often contain constraints that imply the identity or 
non-identity of such descriptions. The most common such 
constraint requires that a relation be a single-valued function of 
one of the arguments, e.g., Gender. Another common constraint 
specifies that a relation describes an optional attribute, e.g.. 
Spouse. 

The consequences of uniqueness constraints are found by 
forward inference. For instance, from Spouse(pl,p2) and 
Spouse(pl,p3) deduces p2 = p3. Conversely, from 
Spouse(pl,p2) and ~Spouse(pl,p3) it deduces p2*p3 . KOKO 
also uses uniqueness constraints to find consequences of facts 
with universally quantified variables or several arguments to 
compare, e.g., from Gender(pl ,sexl) and Gender(p2,sex2) it 

7. Primitives that Change the World 
The most direct effects of primitive changes are easy to 

axiomatize, e.g.. in the state after "insert Spouse(pl,p2)" it is 
required that Spouse(p1,p2) However, such constraints cannot 
completely capture the effect of a change. In particular, first 
order predicate calculus cannot represent the notion that the 
before and after states are the same except for the effects of the 
change. 

This notion is captured by predicate transformers [Dijkstra 76]. 
KOKO stores each state explicitly along with the set of tacts 
known to be true in that state. Facts are propagated between 
neighboring states. Notice that propagating a constraint 
backward in time allows KOKO to identify its implications for 
earlier choices. We use Pre(S.F) to denote the consequences 
KOKO derives about the state preceding execution of the 
statement S given that the tact F holds afterward Similarly. 
Post(S.F) denotes the consequences about the state resulting 
from S given that F was true beforehand. For readability, we use 
the notation "F1 before S => afterwards F2" for "Post(S,Fl) = 
F2" and "F1 after S => beforehand F2" for "Pre(S.Fl) = F2" . 

The computation of pre- and post-conditions'is considerably 
simplified by the following considerations. For any executable 
statement S and any propositions P and O 

Quantifiers are eliminated by skolemization. This reduces the 
problem of computing pre and post-conditions of general 
propositions to the special case of literals i.e., positive or 
negative instances of relations with constants, universally 
quantified variables, and function applications as arguments. (In 
the rest of this paper, " x " and "y" are universally quantified 
variables, "f" and " g " are functions, and other unquantified 
symbols are constants.) The rest of this section describes how 
this is done for different kinds of primitives. 

7 . 1 . Chang ing a Relat ion 
In Gist, the insert and delete statements add and remove 

relations. The relation is named explicitly, but the objects may be 
named by description (and thus nondeterministically), e.g.. 
"insert Red(a ball)". Only one instance of a single relation is 
changed by each such statement; "insert Red(bal l ) V 
Green(balM)" has no meaning. An insertion results in a new state 
containing the inserted fact. Deletion is treated as insertion of a 
negated fact. 

The problem of computing pre- and post-conditions of other 
facts with respect to insertion and deletion is simplified by the 
following considerations. Gist is a first order language, i.e., there 
are no variables ranging over relations. Thus any literal whose 
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represent the truth of the branch condition as of the branching 
state. It should be mentioned that the branches are combined 
into a common state after a conditional, i.e., rather than 
producing a tree of behaviors, KOKO describes the state after the 
conditional in terms of which branch was taken. 
8 . 1 . Loops 

We distinguish between "s imple" loops, which can currently 
be handled and "non-simple" loops which cannot. Simple loops 
are those in which the iterations are independent of each other, 
i.e.. the same thing is done to each of a set of objects, as in 
"move all old files off l ine" 

Most loops in implementations are not simple, e.g.- "for each 
file, if age(file)>age(oldestfile) set oldestfile to file' However, 
these loops tend not to appear in Gist specifications. They are 
replaced by descriptive reference, e.g., 

"a file 1 such that Vfile2 age(file l)>age(file2)" 
Simple loops are symbolically executed for the entire set at 

once. Basically, the loop variables turn into universally quantified 
variables in the facts that are inserted. After "if filel is old move it 
offl ine" we know , whereas after "for all 
files F, if F is old move it offline" we know Vx f | |e old(x)Doffline(x). 
All of the symbolic instances that are generated in a loop are 
skolem functions of the loop variables. In general the 
computation of pre- and postcondit ions introduces existential 
quantifiers, but is otherwise similar to the versions described 
above, e.g.. 

8 .2 . A tomic S ta temen ts 
The Gist "atomic" construct combines the effects of several 

constituent statements into a single state transition. An example 
is the marriage action that simultaneously inserts two spouse 
relations. It would not have been sufficient to insert one at a time 
because this would have led to an intermediate state of the world 
that violated the constraint that the spouse relation be symmetric 
(Actually, that specification would still have been consistent, but 
now it would be possible to marry two people only if they were 
already each others' spouse •• another interesting result of 
symbolic execution.) Of course, the constituent statements of an 
atomic must themselves cause no more than one state transition. 

The facts that become true because of the statements in the 
atomic must all be true in the final state, e.g., if an atomic 
contains both insert P(a) and delete P(b), then a and b must be 
distinct. This points out a difference between executing two 
statements atomically and executing them in either order. There 
is no problem with inserting P(a) and then deleting it. A fact that 
is propagated through an atomic can be affected by any 
combination of the statements in the atomic. The pre- or post-
condition of a fact with respect to an atomic statement is the 
disjunction of the pre- or post-conditions of the fact with respect 
to each constituent statement. 

9. Conclusion 
We have described a system that characterizes the behaviors 

permitted by a formal specification containing such constructs as 
descriptive reference, nondeterminism, and constraints. It 
translates a specification into a set of axioms and uses forward 
inference to compute interesting consequences of them. It uses 
predicate transformers to propagate facts between neighboring 
states; the computation of pre- and post-conditions in the 
relational database model has, to the author's knowledge, never 
been described before. 

We have been pleasantly surprised to find that, although many 
problems that arise are very difficult (or even impossible) to solve 
in general, the most common and useful cases tend to be the 
easiest. We have also found that a high level specification can be 
easier to execute symbolically than a low level program. In 
retrospect this is not surprising, since the characterization of low 
level implementations involves a lot of work that could be 
described as de-compilation. 

The decision to represent each state explicitly imposes certain 
limitations. In particular, arbitrarily long sequences of states 
cannot be represented. This precludes the description of non-
simple loops and certain types of historical reference Historical 
reference (a special case of descriptive reference) is not yet 
handled. We also currently do not attempt to handle the arbitrary 
interleaving and merging of lines of control provided by Gist. We 
hope to attack these problems, but a great deal can be done 
without solving them. In particular, KOKO examines the 
"execut ion" of one line of control in isolation 

KOKO has produced fairly complete descriptions of some small 
but non-trivial specifications Sample domains include a 
simplified postal package router, a world of ships and a simplified 
file system. Of course we expect to increase the coverage of the 
specification language so that more specifications can be so 
characterized. We believe that even without solving the difficult 
problems that remain, KOKO can be extended to characterize the 
behavior of a large class of interesting specifications. 

A c k n o w l e d g e m e n t s : This work was done in the context of a 
larger effort on the part of the Gist group at ISI. In particular, the 
specification language and the entire approach to the 
development of software defined the problem whose solution is 
presented (in part) here. This paper was greatly improved by the 
suggestions of Jack Mostow and other members of the group. 
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ABSTRACT 

A method is described for manipulat ing 
descr ip t ions of programs to access Codasyl 
Databases to meet a spec i f i ca t i on given in 
r e l a t i o n a l a lgebra. The method has been 
implemented as a Prolog program which is compared 
wi th the previous Pascal vers ion . The methodology 
is discussed as an Automatic Programming technique 
which explores the t ransformat ions on a program 
induced by changes of data s t ruc tu re 
representat ion at two l eve l s . 

I_ INTRODUCTION 

The problem of generating equivalent programs 
under changes of data representat ion is an 
important one. In the case of l i s t processing, a 
change of data s t ruc tu re represent ing sets of 
objects and t h e i r re la t i onsh ips can completely 
change the program. The same appl ies to Codasyl 
databases which are essen t i a l l y enormous l i s t 
s t ruc tu res on secondary storage. However because 
of the va r i e t y of redundant po inters i t is 
possible to t raverse the same l i s t s t ruc tu re in 
many d i f f e r e n t ways. Thus it is not j us t a 
question of changing the program but of generat ing 
a l t e r n a t i v e programs whose run- t imes, because of 
disc access, may d i f f e r by fac to rs of 10 or more. 

This paper concerns the manipulat ion of 
abst ract descr ip t ions of such programs. A query is 
formulated in a func t iona l language ( r e l a t i o n a l 
algebra) which spec i f ies the l o g i c a l re la t i onsh ips 
between the re t r i eved data values and the stored 
data items but does not speci fy the sequence used 
to access them ( the access path ). The aim is to 
generate a program that produces the desired items 
e f f i c i e n t l y by exp lor ing a va r i e t y of a l t e r n a t i v e 
program s t ruc tu res , which are the consequence of 
f o l l ow ing d i f f e r e n t access paths. 

A method of doing t h i s has been developed 
(Be l l 1980) and embodied in a system (ASTRID) 
(Gray 1982) fo r typ ing in queries in r e l a t i o n a l 
algebra and generat ing and running programs on 
Codasyl databases ( IDS- I I and IDMS). From the 
user 's point of view the benef i ts are two fo ld . 

1. It gives the user a r e l a t i o n a l view of 
the Codasyl database. Thus he is able to th ink 
about h is r e t r i e v a l problem in terms of tab le 
manipulat ions using the high l eve l operat ions of 

r e l a t i o n a l algebra instead of having to work at 
the low leve l of record access operat ions 
fo l l ow ing pointers through the database and 
embedding these operat ions in Fortran Code. 

2. He can wr i te complicated m u l t i - l i n e 
queries that compute derived data both from 
records and groups of records (averages, counts 
e t c . ) and appear to generate several in termediate 
tab les . The system w i l l endeavour to f i nd an 
access path that computes the same resu l t wi thout 
s to r i ng these tab les , which could be very cos t l y 
for large databases. The program generated may be 
qu i te complicated to wr i te by hand and should be 
compet i t ive wi th a t ra ined programmer's code. 

The system goes through several stages. 
F i r s t the user types a query in r e l a t i o n a l algebra 
which is parsed and checked. Then it is 
manipulated at two l e v e l s . At the top leve l the 
query is r ewr i t t en s t i l l in a lgebraic form using 
rewr i te ru les so as to ass is t t ransformat ions at 
the next l e v e l . The lower leve l uses a concrete 
representat ion of the Codasyl data s t ruc tu re by a 
t rave rsa l (see below). The system reads in a 
number of stored t raversa ls fo r each r e l a t i o n . 
These have each to be manipulated and combined in 
var ious ways to s a t i s f y the requirements of the 
query. Some combinations w i l l represent very 
slow and i n e f f i c i e n t programs and be discarded. 
However t h i s cannot be done immediately, as a good 
program for part of the query may l a t e r tu rn out 
to be second best a f t e r mod i f i ca t ion to f i t the 
remainder. F i n a l l y the descr ip t ions are costed 
according to in format ion on database access times 
and the selected version is used to generate 
Fortran code to run against the ac tua l database. 
The system is or iented towards complex queries 
accessing thousands of records which can only run 
in batch producing subs tan t i a l p r i n t o u t . Thus i t 
is not the run-t ime for the t r a n s l a t o r which 
matters but the complexity of query which it can 
handle. Current ly other systems only handle a 
very r e s t r i c t e d r e l a t i o n a l view or a ra ther 
r e s t r i c t e d query language. 

The ASTRID system was o r i g i n a l l y w r i t t e n in 
Pascal. More recen t l y the two leve ls of 
manipulat ion have been rewr i t t en in Prolog. This 
paper describes the basic methodology and shows 
how Prolog is we l l adapted to t h i s task. 

The layout of the paper is as f o l l ows . 
Section { I I } describes some t ransformat ions which 
a f f ec t the resu l tan t program but are best ca r r ied 
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out on the r e l a t i o n a l algebra in Pro log. Section 
{ I I I } describes the basic not ion of a t rave rsa l 
and how it is used to represent a piece of 
program. Section {IV} describes the combination 
of t raversa ls and how t h i s is used to bu i l d 
descr ip t ions of more complex programs. Section 
{V} i l l u s t r a t e s some of the Prolog used to combine 
t raversa ls and discusses i t s advantages and snags 
in th i s a p p l i c a t i o n . The f i n a l sect ion draws 
conclusions for fu ture work. 

A. Relat ion to Other Work 

B u r s t a l l and Dar l ington (1977) describe a 
system for spec i fy ing a program by recurs ion 
equat ions. These can be manipulated and play a 
ro le s i m i l a r to r e l a t i o n a l a lgebraic expressions 
in our system. They discuss a way to rewr i te the 
abst ract program given a concrete data 
representat ion in terms of a "coding f u n c t i o n " . 
However our use of a t rave rsa l represents the data 
in a rather d i f f e r e n t way. Apart from Tarnlund 
(1978) few have addressed the problem of e f f i c i e n t 
access to r e l a t i ons using in format ion about the 
mode of s torage. Tarnlund has studied ways to 
answer queries e f f i c i e n t l y by represent ing them as 
theorems to be derived in the f i r s t order calculus 
and looking for e f f i c i e n t der i va t ions where 
r e l a t i o n s are held as a binary t ree s t r u c t u r e . 

II_ RELATIONAL ALGEBRA TRANSFORMATIONS 

The user asks h is query in r e l a t i o n a l a lgebra. 
We f i r s t describe t h i s and then see how the system 
improves the query by r e w r i t i n g i t . 

A. Re la t iona l Databases 

A r e l a t i o n is a set of tuples each conta in ing 
values for a f ixed set of a t t r i b u t e s . Viewed as a 
tab le the a t t r i b u t e values are in columns. A 
r e l a t i o n a l database usual ly contains several 
r e l a t i o n s which have a t t r i b u t e s in common. The 
examples used come from a database on World Cup 
f o o t b a l l r e s u l t s . The two re l a t i ons of i n t e res t 
are shown in Table 1. 

Table 1. Re la t iona l View of World Cup Database 

B. Rela t iona l Algebra 

Relat ions can be t reated as tables and new 
re l a t i ons derived from them by the operat ions of 
r e l a t i o n a l a lgebra. The operat ions used are 
adapted from Codd. They are s e l e c t i o n , 
p r o j e c t i o n , j o i n , extend and group_by (Gray 1981). 
The j o i n operat ion is a general ised i n t e r s e c t i o n , 
formed from the car tes ian product of two re l a t i ons 
by se lec t ing those tuples wi th matching values fo r 
the common a t t r i b u t e s . A t y p i c a l query s t a r t s by 
j o i n i n g several r e l a t i o n s , then selects tup les , 
then extends and or groups these tuples and 
f i n a l l y pro jec ts to required columns. 

The r e l a t i o n a l algebra can be r e w r i t t e n , j us t 
l i k e standard a lgebra, by using rewr i te ru les in 
PROLOG. We have 17 such ru les wi th specia l 
predicates for handl ing commutation. A t y p i c a l 
t ransformat ion would move a p ro jec t i on 
operation(%) in an expression invo lv ing j o i n ( * ) 
and s e l e c t i o n ( ; ) to ease the j o i n method. 

(STADIUM_ALLOCATION ; [stadium = "Cordoba''] %year, 
group)*(GROUP_PLACINGS ; [p lac ing=1] *year,group) 

becomes 
(STADIUM_ALLOCATION ;[stadium="Cordoba"] * 
GROUP_PLACINGS ; [p lac ing = 1 ]) %year,group 

I I I TRAVERSALS of CODASYL DATABASE STRUCTURES 

Although the user th inks of r e l a t i ons j us t as 
tab les , they are ac tua l l y complicated doubly-
l inked l i s t s t r uc tu res . At the second leve l of 
t ransformat ion we need to represent possible paths 
through these s t ruc tu res by t raversa ls in order to 
search for an e f f i c i e n t one. Thus we f i r s t 
expla in the Codasyl " se t " r e l a t i onsh ip used to 
l i n k d i f f e r e n t records. We then see how a 
number of a l t e r n a t i v e "base t r ave rsa l s " can be 
defined for each r e l a t i o n and held on f i l e . 

A Codasyl database consis ts of sets of records 
of the same type which are l inked by po in ters to 
other records in the set and to a common owner 
record which uniquely i d e n t i f i e s an instance of a 
given set type. Figure 1 shows the l inkages 
between records in the World Cup database. 

A. Traversals 

We can now def ine a t r ave rsa l of a r e l a t i o n 
more p rec i se l y . I t is a desc r ip t i on of a piece of 
code which rea l i ses the tup les of the r e l a t i o n one 
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at a time by accessing the records in some 
sequence fo l l ow ing the set po in ters and modifying 
the values as necessary. Thus it is a generator 
fo r a r e l a t i o n . Corresponding to each r e l a t i o n 
stored in the database (e .g . GROUP_PLACINGS) we 
hold on f i l e one or more base t r a v e r s a l s . Each 
one is e s s e n t i a l l y a descr ip t ion of a piece of 
code wi th a number of nested loops. 

We have a nota t ion for t raversa ls as f o l l ows . 
I n t e r n a l l y i t is represented by a Prolog l i s t 
s t r u c t u r e . There are three obvious base t raversa ls 
of STADIUM-ALLOCATION and two for GROUP_PLACINGS. 
Each {SA} t rave rsa l v i s i t s the same number of GAME 
records, generat ing one tuple fo r each. 

S(YEAR) -> D(GROUP) -> 
V(VENUE) -> D(GAME) -> 
B(GROUP) -> U(YEAR) -> 
S(YEAR) -> D(GROUP) -> 
B(GROUP) -> U(YEAR) -> 

D(GAME) -> U(VENUE) {SA1} 
U(GROUP) -> U(YEAR) {SA2} 
D(GAME) -> U(VENUE) {SA3) 
D(LINK) -> U(TEAM) {GP1} 
D(LINK) -> U(TEAM) {GP2} 

A. Combination by JOIN 

Since Join is based on a car tes ian product it 
can be formed by a nested for loop wi th one 
i t e r a t i o n for each record type invo lved . This is 
very s im i l a r to a t raversa l s t ruc tu re and i t turns 
out that the t raversa l represent ing the j o i n can 
of ten be formed jus t by concatenat ing par ts of the 
separate t raversa ls {Be l l 1980, Gray 1981}. The 
se lec t ions for matching are then performed 
automat ica l ly by the fact that a Codasyl owner 
record w i l l in many cases be l inked to j us t those 
records whose values would have been selected by 
the j o i n operator ! Let us consider examples of 
t h i s using 

RES:= STADIUM-ALLOCATION jo ined_to GROUP-
PLACINGS 

If we use SA1 and GP1 then these both 
"common s t a r t " sec t ion . 

S(YEAR) -> D(GROUP) 

have 

Here S means a s ingular set a 
a l l records of a given type ( there 
owning a l l year records) , D mean 
a l l member records belonging to 
using the appropr iate set type 
ambiguous i t is spec i f i ed ) and 
v i s i t the owner of a given record, 
access to the record conta in ing 
given by s e l e c t i o n ) . B means vi 
of that type in the database, 
syntax we can represent the corres 
SA1 as : -

ccess to v is i t -
is only one set 

go down to v i s i t 
the given owner 

( i f t h i s i s 
U means go up to 

V means d i r ec t 
a value (usua l ly 
i t every record 
In an A l g o l - l i k e 
ponding code for 

fo r each YEAR record do 
for each GROUP record owned by YEAR do 

for each GAME record owned by GROUP do 
fo r the VENUE owner of GAME do 

p r i n t YEAR.year, GROUP.group, GAME.game, 
VENUE.stadium, GAME.date. 

Thus each arrow in a t rave rsa l represents an 
inner leve l of nested code. Note that the record 
generat ions such as D(GAME) in SA3 must fo l low 
those such as B(GROUP), which generates the owner 
fo r GAME, but they need not be consecut ive. 

IV COMBINATION & MODIFICATION of TRAVERSALS 

which generates the common a t t r i b u t e s in the two 
cases. If we concatenate the t rave rsa ls keeping 
one copy of the common s t a r t we get 

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) -> 
D(LINK) -> U(TEAM) 

we can also get in the other order :-
S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) -> 

D(GAME) -> U(VENUE) 

Both t rave rsa l s correspond to nested loop code 
which w i l l produce the desired tuples though in a 
d i f f e r e n t sequence. Which is best depends on 
subsequent se lec t i ons . If a se lec t ion on 
"p lac ing=1" is made a f t e r "D(LINK)" then the 
second method is best as it v i s i t s fewer records. 

One can also j o i n t rave rsa l s where the head of 
one t raversa l matches the t a i l or middle of the 
second. We can do t h i s wi th the a l t e r n a t i v e 
t raversa ls SA2 & GP2 g i v i n g :-

V(VENUE) -> D(GAME) -> U(GROUP) -> U(YEAR) -> 
D(LINK) -> U(TEAM) 

We not ice here that a B(GROUP) since it v i s i t s 
a l l records can match a U(GROUP) which v i s i t s only 
ce r ta in records because j o i n has the proper t ies of 
an i n t e r s e c t i o n . 

Corresponding to every a lgebraic operat ion on 
a given r e l a t i o n there is a mod i f i ca t i on to I t s 
t r ave rsa l which produces a derived t r a v e r s a l , 
which is a generator for the new r e l a t i o n . Thus 
the method is complete. This derived t r ave rsa l can 
then be modif ied by the next operat ion and so on. 
For example a se lec t ion can be done by i n s e r t i n g 
" i f (year=1978) then" j us t a f t e r " f o r each YEAR 
record do" . The r e s u l t i n g t r ave rsa l depends 
somewhat on the order of app l i ca t i on of operat ions 
spec i f i ed by the user. However many of these are 
commutative and the order of others can be 
improved by top l eve l r e w r i t i n g . 

The second t r ave rsa l (using SA2,GP2) would be 
preferred if a subsequent se lec t ion were made on 
stadium as it could use V(VENUE) e f f i c i e n t l y . 
General condi t ions fo r choosing an optimum are 
discussed in (Esslemont & Gray 1982). 

1 OVERVIEW of the JOIN ALGORITHM in PROLOG 

The basic method is given in Figure 2. It 
s t a r t s by reading in a number of t raversa ls f o r 
each r e l a t i o n and holds them as un i t clauses 
t r av (X ) . The term X contains a record generat ion 
l i s t g i v i ng the sequence of record and set 
accesses, which we have symbolised. The procedure 
j o i n t rav (see below) then picks the f i r s t clause 
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f o r each r e l a t i o n and t r i e s t o f i n d a n o v e r l a p i n 
accordance w i t h the c o n d i t i o n s g i v e n i n ( B e l l 
1980 ) . Prod o v e r l a p i s c a l l e d t w i c e w i t h the 
r e c o r d g e n e r a t i o n l i s t s r e v e r s e d i n o r d e r t o t r y 
t he two cases o f common s t a r t and l i k e w i s e f o r 
head t o t a i l ( I V . A ) . I f t h i s i s s u c c e s s f u l t he 
r e s u l t t r a v e r s a l i s a s s e r t e d . A ' f a i l ' c l a u s e then 
causes b a c k t r a c k i n g and a n o t h e r p a i r o f t r a v e r s a l 
c l a u s e s i s chosen thus t r y i n g a l l c o m b i n a t i o n s o f 
t he operand t r a v e r s a l s . The ' f a i l ' a l s o has the 
e f f e c t o f r e c l a i m i n g much-needed space once the 
t r a v e r s a l i s s a f e l y a s s e r t e d . I f a l l a t t e m p t s 
f a i l a n o p e r a t i o n node t o j o i n b y s o r t - m e r g e i s 
i n s e r t e d . 

I t i s p o s s i b l e f o r a t r a v e r s a l t o pass t h r o u g h 
two i n s t a n c e s o f the same r e c o r d t y p e . In o r d e r 
t o d i s t i n g u i s h wh ich i n s t a n c e i s b e i n g used f o r 
a c c e s s i n g subsequent r e c o r d t ypes i t i s necessa ry 
to a s s i g n a un ique number to each r e c o r d 
g e n e r a t i o n e lement i n t he t r a v e r s a l . 
Cor respondences are e s t a b l i s h e d by c l a u s e s o f t he 
fo rm e q u i v _ c u r r ( X . Y ) . 

A . E f f e c t o f J o i n i n g M o d i f i e d T r a v e r s a l s 

T r a v e r s a l s wh ich have been m o d i f i e d by 
s e l e c t i o n , e x t e n s i o n , p r o j e c t i o n o r g r o u p - b y w i l l 
have e lemen ts i n t h e i r r e c o r d g e n e r a t i o n l i s t s t o 
i n d i c a t e t hese o p e r a t i o n s ( o p e r a t i o n n o d e s ) . Such 
t r a v e r s a l s a re j o i n e d a s b e f o r e bu t w i t h a l l 
o p e r a t i o n nodes b e i n g cop ied d i r e c t l y i n t o the 
r e s u l t t r a v e r s a l . 

B. Compar ison of Pasca l and P r o l o g V e r s i o n s 

The Pasca l v e r s i o n t akes s e v e r a l thousand 
l i n e s whereas P r o l o g needs s e v e r a l hundred and i s 
much e a s i e r to read and m o d i f y . Pasca l i s a v e r y 
much w o r d i e r language f o r l i s t p r o c e s s i n g . A l so 
one has t o w r i t e m u l t i p l e v e r s i o n s o f many 
f u n c t i o n s such as "member" because the t ype o f 
l i s t argument must be known a t c o m p i l e t i m e . 
F u r t h e r t h e use o f P r o l o g D e f i n i t e C lause Grammars 
saves pages o f r e c u r s i v e Pasca l p r o c e d u r e s t o 
parse base t r a v e r s a l s e t c . . F i n a l l y because 
Pasca l has n o b a c k t r a c k i n g f a c i l i t i e s i t has t o 
keep r e t u r n i n g s e t s o f a l t e r n a t i v e combined 
t r a v e r s a l s and c u r r e n t l y runs ou t o f l i s t space o n 
l a r g e q u e r i e s . The P r o l o g v e r s i o n can hand le t hese 
because i t r e c l a i m s space f o l l o w i n g f a i l . 

VI CONCLUSIONS 

A l t h o u g h the d i r e c t use o f Codasy l da tabases 
f o r s t o r a g e o f f a c t s i s u n l i k e l y i n A . I . t h e 
g e n e r a l p rob lem o f g e n e r a t i n g programs t h a t 
t r a v e r s e and m a n i p u l a t e l i s t s t r u c t u r e s i s 
i m p o r t a n t and the t e c h n i q u e s d e s c r i b e d c o u l d have 
o t h e r a p p l i c a t i o n s . The methodo logy used i s : -

1 . A r range t h a t t he s p e c i f i c a t i o n o f the 
r e s u l t t o be computed by t h e g e n e r a t e d program i s 
g i v e n i n f u n c t i o n a l fo rm such a s r e l a t i o n a l 
a l g e b r a bu t no t i n p r o c e d u r a l f o rm w i t h l o o p s and 
a s s i g n m e n t . T h i s i s e a s i e r f o r t he user t o t h i n k 
about and a l s o does no t commit him to an 
u n s u i t a b l e r e p r e s e n t a t i o n . I t a l l o w s e a s i e r 
o v e r a l l program t r a n s f o r m a t i o n ; i n p a r t i c u l a r some 
t r a n s f o r m a t i o n s a re e a s i e r i n the f u n c t i o n a l fo rm 
than the t r a v e r s a l f o r m . 

2 . P r o l o g i s p a r t i c u l a r l y s u i t a b l e f o r t h i s 
work because o f i t s good l i s t - m a t c h i n g and b a c k ­
t r a c k i n g f a c i l i t i e s . The use o f " a s s e r t and f a i l " 
was n e c e s s a r y , bu t g i v e n t h i s i t o u t - p e r f o r m s 
Pasca l by r u n n i n g l a r g e r p rob lems in the PDP 11 
address space i n s i m i l a r t i m e . 
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