
Symbolic Execution of the
Gist Specification Language

Donald Cohen

Information Sciences Institute
4676 Admiralty Way, Marina del Rey, Ca. 902911

A b s t r a c t : Symbolic execution can help clarify the behavior
implied by a program specification without implementing that
specification, and can thereby assist the difficult process of
developing a correct specification. However, symbolic execution
of specifications poses problems that do not arise in symbolic
execution of ordinary programming languages. We describe a
symbolic evaluator, named K O K O 2 , for the Gist specification
language, and show how it copes with such high-level constructs
as nondeterminism, constraints, and reference by description

1. Introduction
Current research at ISI approaches software development in

two steps. First a user translates his informal requirements into a
formal specification. The specification language. Gist [Balzer
81]. is significantly more powerful and expressive than a
programming language, allowing the user to concentrate on
specifying what is required rather than how it is to be
accomplished. The second step is the implementation of the
specification with the help of a transformation system. A sound
transformation system guarantees a correct implementation of
the specification To support this specification-based paradigm
we are developing tools to help a user create a specification, to
explain its behavior to the user, and to allow a user to guide the
implementation process at an appropriate level [London &
Feather 82] [Fickas 82]. Two tools especially relevant to this work
are the Gist to English paraphraser [Swartout 82] and the Trace
explainer [Swartout 83].

An important part of developing a specification is validation,
i.e.. trying to be sure that what is specified is what is really
desired. Specifications, like programs, may contain widely
separated parts that interact in non-obvious ways. Finding such
interactions is the job of symbolic execution. Symbolic execution
derives information about the specified behaviors and tries to
integrate it into a coherent description. This can help the user
find errors in the specification by revealing unexpected
consequences or increase his confidence by deducing
consequences he desires.

2. Overview of Gist - the Problem
Gist was designed to allow people to specify behaviors in a

natural way. It models the state of the world as a relational
database consisting of a set of objects and relations among them.

This research is supported by the Air Force Systems Command, Rome Air
Development Center under contract No F30602 B1 K 0056. and by the Defense
Advanced Research Projects Agency under contract No MDA903 81 C 0335
Views and conclusions contained in this report are the authors and should not be
interpreted as representing the official opinion or policy of RADC, DARPA. the
U.S. Government, or any person or agency connected with them

2
Koko was the Lord High Executioner in Gilbert and Sullivan's Mikado [Sullivan

65] He never actually executed anyone, but he did manage to describe in detail
what would have happened if he had.

The world may change by the addition or deletion of relations
among objects, the creation of new objects, or the destruction of
existing objects (which implies the deletion of any relationships in
which they participate). A specification defines a set of allowable
behaviors, i.e., sequences of world states. Gist allows reference
to objects by description, e.g., a box that contains a big red ball,
where Contains, Big, and Red are relations.

Gist is inherently nondeterministic. The descriptive reference
above can refer to any box containing a big red ball.
(Nondeterministic control constructs are also supported.)
However, the set of allowable behaviors may be pruned by
constraints. Any behavior which violates a constraint is excluded
from the set of permissible behaviors. For example, a constraint
that every yellow box be empty after a big red ball is put into a box
restricts which box the ball can be put into. Constraints may be
regarded as providing arbitrary look-ahead, in that all
nondeterministic choices are constrained to the subset which do
not eventually force the violation of a constraint.

In addition, Gist provides control constructs such as
conditional statements, procedure calls, demons, parallelism and
others that are less common.

It should be clear at this point that symbolic execution as the
term applies to implementation languages [Clarke 81] is out of the
question. Massive (even unbounded) nondeterminism makes the
enumeration of execution paths infeasible. Reference by
description poses severe problems of aliasing. The way the world
changes is more complex than the familiar semantics of
assignment statements, and constraints seem to have no analog
at all.

3. Example of Symbolic Execution
Following is a very small specification, translated from Gist into

English by the Gist paraphraser [Swartout 82]. (This has been
edited because the original translation raises issues that we don't
want to address here).

There are sexes and persons. Male and female are the only
sexes. Each person has one gender which is a sex. Each person
may have a spouse which is a person.

To marry a person p2 to a person p1, the following happen
atomically (simultaneously).
7. The person p2 becomes the spouse of the person p1.
2. The person p1 becomes the spouse of the person p2.

It is always » squired that for all persons y and x, if the spouse of
x is y then the spouse of y must be x.

It is always prohibited that there exists a person where the
person's gender is the gender of the person's spouse.

The results of symbolically executing the action "marry" are
paraphrased below by hand. (The Trace explainer is currently
being extended to explain such results in English.)

Since spouses cannot have the same gender and every person
has a gender, no person can ever be his own spouse.

18 D. Cohen

Suppose two persons, p1 and p2, get married. Afterwards, p1
is the spouse of p2 and p2 is the spouse of p1. Since spouses of
the same gender are prohibited, p1 must not have the same
gender as p2. Also, p1 is distinct from p2. Before the marriage
p1 must have no spouse other than p2 and p2 must have no
spouse other than p1

This example confirms some of our expectations, e.g., that a
person cannot marry himself. On the other hand, one might have
expected that the two people originally have no spouses, KOKO
shows that this is not necessarily the case. Since Gist allows the
insertion of relations that already hold, there is nothing in the
specification to prevent the marriage of people who are already
married -■ provided that they are already married to each other! If
this is not what the specifer intended, then symbolic execution
has revealed a bug in the specification.

4. Overview of the Solution
Our approach to symbolic execution regards a specification as

a large set of domain axioms, expressed in a first order temporal
logic with typed variables. The axioms define the set of
acceptable behaviors, i.e.. the specified behaviors correspond to
the models of the set of axioms. Symbolic execution is a process
of forward inference, computing consequences of these axioms
Notice that a specification need not determine the truth or
falsehood of every relation, i.e., a relation may be true in some
behaviors and false in others.

This approach factors symbolic execution into two processes.
First, each statement in the specification is translated into axioms
about successive world states. Second, these axioms are used to
derive certain interesting consequences, e.g.. hidden interactions
among different parts of the specification. The success of this
approach depends in large part upon the ability of the forward
inference engine to find interesting consequences and avoid
uninteresting ones However, the control of forward inference is
outside the scope of this paper. The rest of the paper describes
how various Gist constructs are treated as axioms. We start with
primitive constructs and then show how compound constructs
are handled in terms of their components.

5. Constraints
Constraints are the easiest Gist construct to handle, in that

they are already in the form of axioms. For example, the
constraint that the spouse relation be symmetric is expressed as

Actually, in the current implementation, facts about different
states are stored separately: more on this later.

6. Descriptive Reference
Part of the meaning of a Gist statement like the constraint

"require Contains(a box. a ball)" is that there must be referents of
the object descriptions. KOKO creates a typed "symbolic
instance" for each such description. If we call these symbolic
instances boxl and ball2, symbolic execution simply proceeds by
adding the axiom Contains(box1,ball2). The interpretation in
which this makes sense is that box l and ball2 are not actually
objects in the world, but rather names of objects. The distinction
is that several names can refer to the same object. Thus we do
not preclude the possibility that ball2 is actually the same object
as some other ball that was referred to earlier.

Descriptive reference is merely a constrained form of
nondeterministic reference, e.g., requiring a box to contain a red
ball is modelled by adding the axioms Contains(box1,ball2) and
Red(ball2).

One kind of consequence KOKO considers interesting is that
two descriptions must (or cannot) refer to the same object.

Specifications often contain constraints that imply the identity or
non-identity of such descriptions. The most common such
constraint requires that a relation be a single-valued function of
one of the arguments, e.g., Gender. Another common constraint
specifies that a relation describes an optional attribute, e.g..
Spouse.

The consequences of uniqueness constraints are found by
forward inference. For instance, from Spouse(pl,p2) and
Spouse(pl,p3) deduces p2 = p3. Conversely, from
Spouse(pl,p2) and ~Spouse(pl,p3) it deduces p2*p3 . KOKO
also uses uniqueness constraints to find consequences of facts
with universally quantified variables or several arguments to
compare, e.g., from Gender(pl ,sexl) and Gender(p2,sex2) it

7. Primitives that Change the World
The most direct effects of primitive changes are easy to

axiomatize, e.g.. in the state after "insert Spouse(pl,p2)" it is
required that Spouse(p1,p2) However, such constraints cannot
completely capture the effect of a change. In particular, first
order predicate calculus cannot represent the notion that the
before and after states are the same except for the effects of the
change.

This notion is captured by predicate transformers [Dijkstra 76].
KOKO stores each state explicitly along with the set of tacts
known to be true in that state. Facts are propagated between
neighboring states. Notice that propagating a constraint
backward in time allows KOKO to identify its implications for
earlier choices. We use Pre(S.F) to denote the consequences
KOKO derives about the state preceding execution of the
statement S given that the tact F holds afterward Similarly.
Post(S.F) denotes the consequences about the state resulting
from S given that F was true beforehand. For readability, we use
the notation "F1 before S => afterwards F2" for "Post(S,Fl) =
F2" and "F1 after S => beforehand F2" for "Pre(S.Fl) = F2" .

The computation of pre- and post-conditions'is considerably
simplified by the following considerations. For any executable
statement S and any propositions P and O

Quantifiers are eliminated by skolemization. This reduces the
problem of computing pre and post-conditions of general
propositions to the special case of literals i.e., positive or
negative instances of relations with constants, universally
quantified variables, and function applications as arguments. (In
the rest of this paper, " x " and "y" are universally quantified
variables, "f" and " g " are functions, and other unquantified
symbols are constants.) The rest of this section describes how
this is done for different kinds of primitives.

7 . 1 . Chang ing a Relat ion
In Gist, the insert and delete statements add and remove

relations. The relation is named explicitly, but the objects may be
named by description (and thus nondeterministically), e.g..
"insert Red(a ball)". Only one instance of a single relation is
changed by each such statement; "insert Red(bal l) V
Green(balM)" has no meaning. An insertion results in a new state
containing the inserted fact. Deletion is treated as insertion of a
negated fact.

The problem of computing pre- and post-conditions of other
facts with respect to insertion and deletion is simplified by the
following considerations. Gist is a first order language, i.e., there
are no variables ranging over relations. Thus any literal whose

D. Cohen 19

20 D. Cohen

represent the truth of the branch condition as of the branching
state. It should be mentioned that the branches are combined
into a common state after a conditional, i.e., rather than
producing a tree of behaviors, KOKO describes the state after the
conditional in terms of which branch was taken.
8 . 1 . Loops

We distinguish between "s imple" loops, which can currently
be handled and "non-simple" loops which cannot. Simple loops
are those in which the iterations are independent of each other,
i.e.. the same thing is done to each of a set of objects, as in
"move all old files off l ine"

Most loops in implementations are not simple, e.g.- "for each
file, if age(file)>age(oldestfile) set oldestfile to file' However,
these loops tend not to appear in Gist specifications. They are
replaced by descriptive reference, e.g.,

"a file 1 such that Vfile2 age(file l)>age(file2)"
Simple loops are symbolically executed for the entire set at

once. Basically, the loop variables turn into universally quantified
variables in the facts that are inserted. After "if filel is old move it
offl ine" we know , whereas after "for all
files F, if F is old move it offline" we know Vx f | |e old(x)Doffline(x).
All of the symbolic instances that are generated in a loop are
skolem functions of the loop variables. In general the
computation of pre- and postcondit ions introduces existential
quantifiers, but is otherwise similar to the versions described
above, e.g..

8 .2 . A tomic S ta temen ts
The Gist "atomic" construct combines the effects of several

constituent statements into a single state transition. An example
is the marriage action that simultaneously inserts two spouse
relations. It would not have been sufficient to insert one at a time
because this would have led to an intermediate state of the world
that violated the constraint that the spouse relation be symmetric
(Actually, that specification would still have been consistent, but
now it would be possible to marry two people only if they were
already each others' spouse •• another interesting result of
symbolic execution.) Of course, the constituent statements of an
atomic must themselves cause no more than one state transition.

The facts that become true because of the statements in the
atomic must all be true in the final state, e.g., if an atomic
contains both insert P(a) and delete P(b), then a and b must be
distinct. This points out a difference between executing two
statements atomically and executing them in either order. There
is no problem with inserting P(a) and then deleting it. A fact that
is propagated through an atomic can be affected by any
combination of the statements in the atomic. The pre- or post-
condition of a fact with respect to an atomic statement is the
disjunction of the pre- or post-conditions of the fact with respect
to each constituent statement.

9. Conclusion
We have described a system that characterizes the behaviors

permitted by a formal specification containing such constructs as
descriptive reference, nondeterminism, and constraints. It
translates a specification into a set of axioms and uses forward
inference to compute interesting consequences of them. It uses
predicate transformers to propagate facts between neighboring
states; the computation of pre- and post-conditions in the
relational database model has, to the author's knowledge, never
been described before.

We have been pleasantly surprised to find that, although many
problems that arise are very difficult (or even impossible) to solve
in general, the most common and useful cases tend to be the
easiest. We have also found that a high level specification can be
easier to execute symbolically than a low level program. In
retrospect this is not surprising, since the characterization of low
level implementations involves a lot of work that could be
described as de-compilation.

The decision to represent each state explicitly imposes certain
limitations. In particular, arbitrarily long sequences of states
cannot be represented. This precludes the description of non-
simple loops and certain types of historical reference Historical
reference (a special case of descriptive reference) is not yet
handled. We also currently do not attempt to handle the arbitrary
interleaving and merging of lines of control provided by Gist. We
hope to attack these problems, but a great deal can be done
without solving them. In particular, KOKO examines the
"execut ion" of one line of control in isolation

KOKO has produced fairly complete descriptions of some small
but non-trivial specifications Sample domains include a
simplified postal package router, a world of ships and a simplified
file system. Of course we expect to increase the coverage of the
specification language so that more specifications can be so
characterized. We believe that even without solving the difficult
problems that remain, KOKO can be extended to characterize the
behavior of a large class of interesting specifications.

A c k n o w l e d g e m e n t s : This work was done in the context of a
larger effort on the part of the Gist group at ISI. In particular, the
specification language and the entire approach to the
development of software defined the problem whose solution is
presented (in part) here. This paper was greatly improved by the
suggestions of Jack Mostow and other members of the group.

References

[Balzer 81] Balzer R . Design specification validation. University
of Southern California Information Sciences Institute
Technical Report. 1981. Published by Rome Air
Development Center as RADCTR-81-102

[Clarke 81] Lon A. Clarke, Debra J. Richardson. Symbolic
Evaluation Methods, University of Massachusetts at
Amherst, Technical Report COINS TR81 -8. May 1981.

[Dijkstra 76] Edsger W. Dijkstra, A Discipline of Programming,
Prentice Hall, 1976.

[Fickas 82] S Fickas. Automating the Transformational
Development of Software. Ph.D. thesis. University of
California at Irvine. 1982.

[London & Feather 82] London. P.E. & Feather. M.S..
"Implementing specification freedoms." Science of
Computer Programming, (2). 1982. 91-131.

[Sullivan 85] Sir Arthur S. Sullivan & W. S. Gilbert, The Mikado.
W. A. Pond & Co.. New York. 1885.

[Swartout 82] Bill Swartout. "Gist English Generator." in Proc.
AAAl-82, pp. 404-409. August 1982.

[Swartout 83] Bill Swartout, The Gist Behavior Explainer. 1983.
Submitted to AAAI83-

MANIPULATING DESCRIPTIONS OF PROGRAMS FOR DATABASE ACCESS

P.M.D.Gray and D.S.Moffat

Dept. of Computing Science,

Un ivers i ty of Aberdeen, Scot land, U.K..

ABSTRACT

A method is described for manipulat ing
descr ip t ions of programs to access Codasyl
Databases to meet a spec i f i ca t i on given in
r e l a t i o n a l a lgebra. The method has been
implemented as a Prolog program which is compared
wi th the previous Pascal vers ion . The methodology
is discussed as an Automatic Programming technique
which explores the t ransformat ions on a program
induced by changes of data s t ruc tu re
representat ion at two l eve l s .

I_ INTRODUCTION

The problem of generating equivalent programs
under changes of data representat ion is an
important one. In the case of l i s t processing, a
change of data s t ruc tu re represent ing sets of
objects and t h e i r re la t i onsh ips can completely
change the program. The same appl ies to Codasyl
databases which are essen t i a l l y enormous l i s t
s t ruc tu res on secondary storage. However because
of the va r i e t y of redundant po inters i t is
possible to t raverse the same l i s t s t ruc tu re in
many d i f f e r e n t ways. Thus it is not j us t a
question of changing the program but of generat ing
a l t e r n a t i v e programs whose run- t imes, because of
disc access, may d i f f e r by fac to rs of 10 or more.

This paper concerns the manipulat ion of
abst ract descr ip t ions of such programs. A query is
formulated in a func t iona l language (r e l a t i o n a l
algebra) which spec i f ies the l o g i c a l re la t i onsh ips
between the re t r i eved data values and the stored
data items but does not speci fy the sequence used
to access them (the access path). The aim is to
generate a program that produces the desired items
e f f i c i e n t l y by exp lor ing a va r i e t y of a l t e r n a t i v e
program s t ruc tu res , which are the consequence of
f o l l ow ing d i f f e r e n t access paths.

A method of doing t h i s has been developed
(Be l l 1980) and embodied in a system (ASTRID)
(Gray 1982) fo r typ ing in queries in r e l a t i o n a l
algebra and generat ing and running programs on
Codasyl databases (IDS- I I and IDMS). From the
user 's point of view the benef i ts are two fo ld .

1. It gives the user a r e l a t i o n a l view of
the Codasyl database. Thus he is able to th ink
about h is r e t r i e v a l problem in terms of tab le
manipulat ions using the high l eve l operat ions of

r e l a t i o n a l algebra instead of having to work at
the low leve l of record access operat ions
fo l l ow ing pointers through the database and
embedding these operat ions in Fortran Code.

2. He can wr i te complicated m u l t i - l i n e
queries that compute derived data both from
records and groups of records (averages, counts
e t c .) and appear to generate several in termediate
tab les . The system w i l l endeavour to f i nd an
access path that computes the same resu l t wi thout
s to r i ng these tab les , which could be very cos t l y
for large databases. The program generated may be
qu i te complicated to wr i te by hand and should be
compet i t ive wi th a t ra ined programmer's code.

The system goes through several stages.
F i r s t the user types a query in r e l a t i o n a l algebra
which is parsed and checked. Then it is
manipulated at two l e v e l s . At the top leve l the
query is r ewr i t t en s t i l l in a lgebraic form using
rewr i te ru les so as to ass is t t ransformat ions at
the next l e v e l . The lower leve l uses a concrete
representat ion of the Codasyl data s t ruc tu re by a
t rave rsa l (see below). The system reads in a
number of stored t raversa ls fo r each r e l a t i o n .
These have each to be manipulated and combined in
var ious ways to s a t i s f y the requirements of the
query. Some combinations w i l l represent very
slow and i n e f f i c i e n t programs and be discarded.
However t h i s cannot be done immediately, as a good
program for part of the query may l a t e r tu rn out
to be second best a f t e r mod i f i ca t ion to f i t the
remainder. F i n a l l y the descr ip t ions are costed
according to in format ion on database access times
and the selected version is used to generate
Fortran code to run against the ac tua l database.
The system is or iented towards complex queries
accessing thousands of records which can only run
in batch producing subs tan t i a l p r i n t o u t . Thus i t
is not the run-t ime for the t r a n s l a t o r which
matters but the complexity of query which it can
handle. Current ly other systems only handle a
very r e s t r i c t e d r e l a t i o n a l view or a ra ther
r e s t r i c t e d query language.

The ASTRID system was o r i g i n a l l y w r i t t e n in
Pascal. More recen t l y the two leve ls of
manipulat ion have been rewr i t t en in Prolog. This
paper describes the basic methodology and shows
how Prolog is we l l adapted to t h i s task.

The layout of the paper is as f o l l ows .
Section { I I } describes some t ransformat ions which
a f f ec t the resu l tan t program but are best ca r r ied

22 P. Gray and D. Moffat

out on the r e l a t i o n a l algebra in Pro log. Section
{ I I I } describes the basic not ion of a t rave rsa l
and how it is used to represent a piece of
program. Section {IV} describes the combination
of t raversa ls and how t h i s is used to bu i l d
descr ip t ions of more complex programs. Section
{V} i l l u s t r a t e s some of the Prolog used to combine
t raversa ls and discusses i t s advantages and snags
in th i s a p p l i c a t i o n . The f i n a l sect ion draws
conclusions for fu ture work.

A. Relat ion to Other Work

B u r s t a l l and Dar l ington (1977) describe a
system for spec i fy ing a program by recurs ion
equat ions. These can be manipulated and play a
ro le s i m i l a r to r e l a t i o n a l a lgebraic expressions
in our system. They discuss a way to rewr i te the
abst ract program given a concrete data
representat ion in terms of a "coding f u n c t i o n " .
However our use of a t rave rsa l represents the data
in a rather d i f f e r e n t way. Apart from Tarnlund
(1978) few have addressed the problem of e f f i c i e n t
access to r e l a t i ons using in format ion about the
mode of s torage. Tarnlund has studied ways to
answer queries e f f i c i e n t l y by represent ing them as
theorems to be derived in the f i r s t order calculus
and looking for e f f i c i e n t der i va t ions where
r e l a t i o n s are held as a binary t ree s t r u c t u r e .

II_ RELATIONAL ALGEBRA TRANSFORMATIONS

The user asks h is query in r e l a t i o n a l a lgebra.
We f i r s t describe t h i s and then see how the system
improves the query by r e w r i t i n g i t .

A. Re la t iona l Databases

A r e l a t i o n is a set of tuples each conta in ing
values for a f ixed set of a t t r i b u t e s . Viewed as a
tab le the a t t r i b u t e values are in columns. A
r e l a t i o n a l database usual ly contains several
r e l a t i o n s which have a t t r i b u t e s in common. The
examples used come from a database on World Cup
f o o t b a l l r e s u l t s . The two re l a t i ons of i n t e res t
are shown in Table 1.

Table 1. Re la t iona l View of World Cup Database

B. Rela t iona l Algebra

Relat ions can be t reated as tables and new
re l a t i ons derived from them by the operat ions of
r e l a t i o n a l a lgebra. The operat ions used are
adapted from Codd. They are s e l e c t i o n ,
p r o j e c t i o n , j o i n , extend and group_by (Gray 1981).
The j o i n operat ion is a general ised i n t e r s e c t i o n ,
formed from the car tes ian product of two re l a t i ons
by se lec t ing those tuples wi th matching values fo r
the common a t t r i b u t e s . A t y p i c a l query s t a r t s by
j o i n i n g several r e l a t i o n s , then selects tup les ,
then extends and or groups these tuples and
f i n a l l y pro jec ts to required columns.

The r e l a t i o n a l algebra can be r e w r i t t e n , j us t
l i k e standard a lgebra, by using rewr i te ru les in
PROLOG. We have 17 such ru les wi th specia l
predicates for handl ing commutation. A t y p i c a l
t ransformat ion would move a p ro jec t i on
operation(%) in an expression invo lv ing j o i n (*)
and s e l e c t i o n (;) to ease the j o i n method.

(STADIUM_ALLOCATION ; [stadium = "Cordoba''] %year,
group)*(GROUP_PLACINGS ; [p lac ing=1] *year,group)

becomes
(STADIUM_ALLOCATION ;[stadium="Cordoba"] *
GROUP_PLACINGS ; [p lac ing = 1]) %year,group

I I I TRAVERSALS of CODASYL DATABASE STRUCTURES

Although the user th inks of r e l a t i ons j us t as
tab les , they are ac tua l l y complicated doubly-
l inked l i s t s t r uc tu res . At the second leve l of
t ransformat ion we need to represent possible paths
through these s t ruc tu res by t raversa ls in order to
search for an e f f i c i e n t one. Thus we f i r s t
expla in the Codasyl " se t " r e l a t i onsh ip used to
l i n k d i f f e r e n t records. We then see how a
number of a l t e r n a t i v e "base t r ave rsa l s " can be
defined for each r e l a t i o n and held on f i l e .

A Codasyl database consis ts of sets of records
of the same type which are l inked by po in ters to
other records in the set and to a common owner
record which uniquely i d e n t i f i e s an instance of a
given set type. Figure 1 shows the l inkages
between records in the World Cup database.

A. Traversals

We can now def ine a t r ave rsa l of a r e l a t i o n
more p rec i se l y . I t is a desc r ip t i on of a piece of
code which rea l i ses the tup les of the r e l a t i o n one

P. Gray and D. Moffat 23

at a time by accessing the records in some
sequence fo l l ow ing the set po in ters and modifying
the values as necessary. Thus it is a generator
fo r a r e l a t i o n . Corresponding to each r e l a t i o n
stored in the database (e .g . GROUP_PLACINGS) we
hold on f i l e one or more base t r a v e r s a l s . Each
one is e s s e n t i a l l y a descr ip t ion of a piece of
code wi th a number of nested loops.

We have a nota t ion for t raversa ls as f o l l ows .
I n t e r n a l l y i t is represented by a Prolog l i s t
s t r u c t u r e . There are three obvious base t raversa ls
of STADIUM-ALLOCATION and two for GROUP_PLACINGS.
Each {SA} t rave rsa l v i s i t s the same number of GAME
records, generat ing one tuple fo r each.

S(YEAR) -> D(GROUP) ->
V(VENUE) -> D(GAME) ->
B(GROUP) -> U(YEAR) ->
S(YEAR) -> D(GROUP) ->
B(GROUP) -> U(YEAR) ->

D(GAME) -> U(VENUE) {SA1}
U(GROUP) -> U(YEAR) {SA2}
D(GAME) -> U(VENUE) {SA3)
D(LINK) -> U(TEAM) {GP1}
D(LINK) -> U(TEAM) {GP2}

A. Combination by JOIN

Since Join is based on a car tes ian product it
can be formed by a nested for loop wi th one
i t e r a t i o n for each record type invo lved . This is
very s im i l a r to a t raversa l s t ruc tu re and i t turns
out that the t raversa l represent ing the j o i n can
of ten be formed jus t by concatenat ing par ts of the
separate t raversa ls {Be l l 1980, Gray 1981}. The
se lec t ions for matching are then performed
automat ica l ly by the fact that a Codasyl owner
record w i l l in many cases be l inked to j us t those
records whose values would have been selected by
the j o i n operator ! Let us consider examples of
t h i s using

RES:= STADIUM-ALLOCATION jo ined_to GROUP-
PLACINGS

If we use SA1 and GP1 then these both
"common s t a r t " sec t ion .

S(YEAR) -> D(GROUP)

have

Here S means a s ingular set a
a l l records of a given type (there
owning a l l year records) , D mean
a l l member records belonging to
using the appropr iate set type
ambiguous i t is spec i f i ed) and
v i s i t the owner of a given record,
access to the record conta in ing
given by s e l e c t i o n) . B means vi
of that type in the database,
syntax we can represent the corres
SA1 as : -

ccess to v is i t -
is only one set

go down to v i s i t
the given owner

(i f t h i s i s
U means go up to

V means d i r ec t
a value (usua l ly
i t every record
In an A l g o l - l i k e
ponding code for

fo r each YEAR record do
for each GROUP record owned by YEAR do

for each GAME record owned by GROUP do
fo r the VENUE owner of GAME do

p r i n t YEAR.year, GROUP.group, GAME.game,
VENUE.stadium, GAME.date.

Thus each arrow in a t rave rsa l represents an
inner leve l of nested code. Note that the record
generat ions such as D(GAME) in SA3 must fo l low
those such as B(GROUP), which generates the owner
fo r GAME, but they need not be consecut ive.

IV COMBINATION & MODIFICATION of TRAVERSALS

which generates the common a t t r i b u t e s in the two
cases. If we concatenate the t rave rsa ls keeping
one copy of the common s t a r t we get

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) ->
D(LINK) -> U(TEAM)

we can also get in the other order :-
S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) ->

D(GAME) -> U(VENUE)

Both t rave rsa l s correspond to nested loop code
which w i l l produce the desired tuples though in a
d i f f e r e n t sequence. Which is best depends on
subsequent se lec t i ons . If a se lec t ion on
"p lac ing=1" is made a f t e r "D(LINK)" then the
second method is best as it v i s i t s fewer records.

One can also j o i n t rave rsa l s where the head of
one t raversa l matches the t a i l or middle of the
second. We can do t h i s wi th the a l t e r n a t i v e
t raversa ls SA2 & GP2 g i v i n g :-

V(VENUE) -> D(GAME) -> U(GROUP) -> U(YEAR) ->
D(LINK) -> U(TEAM)

We not ice here that a B(GROUP) since it v i s i t s
a l l records can match a U(GROUP) which v i s i t s only
ce r ta in records because j o i n has the proper t ies of
an i n t e r s e c t i o n .

Corresponding to every a lgebraic operat ion on
a given r e l a t i o n there is a mod i f i ca t i on to I t s
t r ave rsa l which produces a derived t r a v e r s a l ,
which is a generator for the new r e l a t i o n . Thus
the method is complete. This derived t r ave rsa l can
then be modif ied by the next operat ion and so on.
For example a se lec t ion can be done by i n s e r t i n g
" i f (year=1978) then" j us t a f t e r " f o r each YEAR
record do" . The r e s u l t i n g t r ave rsa l depends
somewhat on the order of app l i ca t i on of operat ions
spec i f i ed by the user. However many of these are
commutative and the order of others can be
improved by top l eve l r e w r i t i n g .

The second t r ave rsa l (using SA2,GP2) would be
preferred if a subsequent se lec t ion were made on
stadium as it could use V(VENUE) e f f i c i e n t l y .
General condi t ions fo r choosing an optimum are
discussed in (Esslemont & Gray 1982).

1 OVERVIEW of the JOIN ALGORITHM in PROLOG

The basic method is given in Figure 2. It
s t a r t s by reading in a number of t raversa ls f o r
each r e l a t i o n and holds them as un i t clauses
t r av (X) . The term X contains a record generat ion
l i s t g i v i ng the sequence of record and set
accesses, which we have symbolised. The procedure
j o i n t rav (see below) then picks the f i r s t clause

24 P. Gray and D. Moffat

f o r each r e l a t i o n and t r i e s t o f i n d a n o v e r l a p i n
accordance w i t h the c o n d i t i o n s g i v e n i n (B e l l
1980) . Prod o v e r l a p i s c a l l e d t w i c e w i t h the
r e c o r d g e n e r a t i o n l i s t s r e v e r s e d i n o r d e r t o t r y
t he two cases o f common s t a r t and l i k e w i s e f o r
head t o t a i l (I V . A) . I f t h i s i s s u c c e s s f u l t he
r e s u l t t r a v e r s a l i s a s s e r t e d . A ' f a i l ' c l a u s e then
causes b a c k t r a c k i n g and a n o t h e r p a i r o f t r a v e r s a l
c l a u s e s i s chosen thus t r y i n g a l l c o m b i n a t i o n s o f
t he operand t r a v e r s a l s . The ' f a i l ' a l s o has the
e f f e c t o f r e c l a i m i n g much-needed space once the
t r a v e r s a l i s s a f e l y a s s e r t e d . I f a l l a t t e m p t s
f a i l a n o p e r a t i o n node t o j o i n b y s o r t - m e r g e i s
i n s e r t e d .

I t i s p o s s i b l e f o r a t r a v e r s a l t o pass t h r o u g h
two i n s t a n c e s o f the same r e c o r d t y p e . In o r d e r
t o d i s t i n g u i s h wh ich i n s t a n c e i s b e i n g used f o r
a c c e s s i n g subsequent r e c o r d t ypes i t i s necessa ry
to a s s i g n a un ique number to each r e c o r d
g e n e r a t i o n e lement i n t he t r a v e r s a l .
Cor respondences are e s t a b l i s h e d by c l a u s e s o f t he
fo rm e q u i v _ c u r r (X . Y) .

A . E f f e c t o f J o i n i n g M o d i f i e d T r a v e r s a l s

T r a v e r s a l s wh ich have been m o d i f i e d by
s e l e c t i o n , e x t e n s i o n , p r o j e c t i o n o r g r o u p - b y w i l l
have e lemen ts i n t h e i r r e c o r d g e n e r a t i o n l i s t s t o
i n d i c a t e t hese o p e r a t i o n s (o p e r a t i o n n o d e s) . Such
t r a v e r s a l s a re j o i n e d a s b e f o r e bu t w i t h a l l
o p e r a t i o n nodes b e i n g cop ied d i r e c t l y i n t o the
r e s u l t t r a v e r s a l .

B. Compar ison of Pasca l and P r o l o g V e r s i o n s

The Pasca l v e r s i o n t akes s e v e r a l thousand
l i n e s whereas P r o l o g needs s e v e r a l hundred and i s
much e a s i e r to read and m o d i f y . Pasca l i s a v e r y
much w o r d i e r language f o r l i s t p r o c e s s i n g . A l so
one has t o w r i t e m u l t i p l e v e r s i o n s o f many
f u n c t i o n s such as "member" because the t ype o f
l i s t argument must be known a t c o m p i l e t i m e .
F u r t h e r t h e use o f P r o l o g D e f i n i t e C lause Grammars
saves pages o f r e c u r s i v e Pasca l p r o c e d u r e s t o
parse base t r a v e r s a l s e t c . . F i n a l l y because
Pasca l has n o b a c k t r a c k i n g f a c i l i t i e s i t has t o
keep r e t u r n i n g s e t s o f a l t e r n a t i v e combined
t r a v e r s a l s and c u r r e n t l y runs ou t o f l i s t space o n
l a r g e q u e r i e s . The P r o l o g v e r s i o n can hand le t hese
because i t r e c l a i m s space f o l l o w i n g f a i l .

VI CONCLUSIONS

A l t h o u g h the d i r e c t use o f Codasy l da tabases
f o r s t o r a g e o f f a c t s i s u n l i k e l y i n A . I . t h e
g e n e r a l p rob lem o f g e n e r a t i n g programs t h a t
t r a v e r s e and m a n i p u l a t e l i s t s t r u c t u r e s i s
i m p o r t a n t and the t e c h n i q u e s d e s c r i b e d c o u l d have
o t h e r a p p l i c a t i o n s . The methodo logy used i s : -

1 . A r range t h a t t he s p e c i f i c a t i o n o f the
r e s u l t t o be computed by t h e g e n e r a t e d program i s
g i v e n i n f u n c t i o n a l fo rm such a s r e l a t i o n a l
a l g e b r a bu t no t i n p r o c e d u r a l f o rm w i t h l o o p s and
a s s i g n m e n t . T h i s i s e a s i e r f o r t he user t o t h i n k
about and a l s o does no t commit him to an
u n s u i t a b l e r e p r e s e n t a t i o n . I t a l l o w s e a s i e r
o v e r a l l program t r a n s f o r m a t i o n ; i n p a r t i c u l a r some
t r a n s f o r m a t i o n s a re e a s i e r i n the f u n c t i o n a l fo rm
than the t r a v e r s a l f o r m .

2 . P r o l o g i s p a r t i c u l a r l y s u i t a b l e f o r t h i s
work because o f i t s good l i s t - m a t c h i n g and b a c k ­
t r a c k i n g f a c i l i t i e s . The use o f " a s s e r t and f a i l "
was n e c e s s a r y , bu t g i v e n t h i s i t o u t - p e r f o r m s
Pasca l by r u n n i n g l a r g e r p rob lems in the PDP 11
address space i n s i m i l a r t i m e .

ACKNOWLEDGEMENTS

The r e w r i t e r u l e s d e s c r i b e d i n s e c t i o n I I were
deve loped by T . N . S c o t t (now at SCICON, L o n d o n) .
Ben du Bou lay gave us many v a l u a b l e comments
d u r i n g the p r e p a r a t i o n o f t h i s pape r . The
generous a s s i s t a n c e o f the U.K. SERC is a l s o
acknow ledged .

REFERENCES

[1] B e l l R. , " A u t o m a t i c G e n e r a t i o n o f Programs
f o r R e t r i e v i n g I n f o r m a t i o n f rom CODASYL Data
B a s e s " , PhD T h e s i s , Aberdeen U n i v e r s i t y , 1 9 8 0 .

[2] B u r s t a l l R.M. & D a r l i n g t o n J . "A
T r a n s f o r m a t i o n System f o r D e v e l o p i n g
R e c u r s i v e P r o g r a m s " , JACM, (1 9 7 7) , pp 4 4 - 6 7 .

[3] Ess lemont P.E. & Gray P.M.D. "The
Per fo rmance o f a R e l a t i o n a l I n t e r f a c e to a
Codasy l Da tabase " i n P r o c . BNC0D-2, e d .
S.M.Deen and P.H. Hammersley, B r i s t o l 1982.

[4] Gray , P.M.D. "The GR0UP_BY O p e r a t i o n in
R e l a t i o n a l A l g e b r a " , i n "Databases (P r o c .
BNC0D-2)" e d . S.M. Deen & P. Hammersley
(1 9 8 1) , p p . 8 4 - 9 8 .

[5] Gray , P.M.D. "Use o f A u t o m a t i c Programming
and S i m u l a t i o n t o F a c i l i t a t e O p e r a t i o n s o n
Codasy l Da tabases " i n " S t a t e o f t he A r t
Repor t DATABASE", S e r i e s 9 N o . 8 , e d .
M . P . A t k i n s o n , Pergamon I n f o t e c h (Jan 1982) ,pp
346 -369 .

[6] T a r n l u n d S-A, "An A x i o m a t i c Data Base
T h e o r y " i n " L o g i c and Data B a s e s " , e d .
G a l l a i r e & M inke r (1 9 7 8) , p p . 2 5 9 - 2 8 9 .

