Symbolic Execution of the
Gist Specification Language

Donald Cohen

Information Sciences Institute
4676 Admiralty Way, Marina del Rey, Ca. 90291’

Abstract: Symbolic execution can help clarify the behavior
implied by a program specification without implementing that
specification, and can thereby assist the difficult process of
developing a correct specification. However, symbolic execution
of specifications poses problems that do not arise in symbolic
execution of ordinary programming languages. We describe a
symbolic evaluator, named KOKO?, for the Gist specification
language, and show how it copes with such high-level constructs
as nondeterminism, constraints, and reference by description

1. Introduction

Current research at ISI approaches software development in
two steps. First a user translates his informal requirements into a
formal specification. The specification language. Gist [Balzer
81]. is significantly more powerful and expressive than a
programming language, allowing the user to concentrate on
specifying what is required rather than how it is to be
accomplished. The second step is the implementation of the
specification with the help of a transformation system. A sound
transformation system guarantees a correct implementation of
the specification To support this specification-based paradigm
we are developing tools to help a user create a specification, to
explain its behavior to the user, and to allow a user to guide the
implementation process at an appropriate level [London &
Feather 82] [Fickas 82]. Two tools especially relevant to this work
are the Gist to English paraphraser [Swartout 82] and the Trace
explainer [Swartout 83].

An important part of developing a specification is validation,
i.e.. trying to be sure that what is specified is what is really
desired. Specifications, like programs, may contain widely
separated parts that interact in non-obvious ways. Finding such
interactions is the job of symbolic execution. Symbolic execution
derives information about the specified behaviors and tries to
integrate it into a coherent description. This can help the user
find errors in the specification by revealing unexpected
consequences or increase his confidence by deducing
consequences he desires.

2. Overview of Gist - the Problem

Gist was designed to allow people to specify behaviors in a
natural way. It models the state of the world as a relational
database consisting of a set of objects and relations among them.

This research is supported by the Air Force Systems Command, Rome Air
Development Center under contract No F30602 B1 K 0056. and by the Defense
Advanced Research Projects Agency under contract No MDA903 81 C 0335
Views and conclusions contained in this report are the authors and should not be
interpreted as representing the official opinion or policy of RADC, DARPA. the
US. Government, or any person or agency connected with them

2

Koko was the Lord High Executioner in Gilbert and Sullivan's Mikado [Sullivan
65] He never actually executed anyone, but he did manage to describe in detail
what would have happened if he had.

The world may change by the addition or deletion of relations
among objects, the creation of new objects, or the destruction of
existing objects (which implies the deletion of any relationships in
which they participate). A specification defines a set of allowable
behaviors, i.e., sequences of world states. Gist allows reference
to objects by description, e.g., a box that contains a big red ball,
where Contains, Big, and Red are relations.

Gist is inherently nondeterministic. The descriptive reference
above can refer to any box containing a big red ball.
(Nondeterministic control constructs are also supported.)
However, the set of allowable behaviors may be pruned by
constraints. Any behavior which violates a constraint is excluded
from the set of permissible behaviors. For example, a constraint
that every yellow box be empty after a big red ball is put into a box
restricts which box the ball can be put into. Constraints may be
regarded as providing arbitrary look-ahead, in that all
nondeterministic choices are constrained to the subset which do
not eventually force the violation of a constraint.

In addition, Gist provides control constructs such as
conditional statements, procedure calls, demons, parallelism and
others that are less common.

It should be clear at this point that symbolic execution as the
term applies to implementation languages [Clarke 81] is out of the
question. Massive (even unbounded) nondeterminism makes the
enumeration of execution paths infeasible. Reference by
description poses severe problems of aliasing. The way the world
changes is more complex than the familiar semantics of
assignment statements, and constraints seem to have no analog
at all.

3. Example of Symbolic Execution

Following is a very small specification, translated from Gist into
English by the Gist paraphraser [Swartout 82]. (This has been
edited because the original translation raises issues that we don't
want to address here).

There are sexes and persons. Male and female are the only
sexes. Each person has one gender which is a sex. Each person
may have a spouse which is a person.

To marry a person p2 to a person p1, the following happen
atomically (simultaneously).

7. The person p2 becomes the spouse of the person p1.
2. The person p1 becomes the spouse of the person p2.

It is always » squired that for all persons y and x, if the spouse of
X is y then the spouse of y must be x.

It is always prohibited that there exists a person where the
person's gender is the gender of the person's spouse.

The results of symbolically executing the action "marry" are
paraphrased below by hand. (The Trace explainer is currently
being extended to explain such results in English.)

Since spouses cannot have the same gender and every person
has a gender, no person can ever be his own spouse.

18 D. Cohen

Suppose two persons, p1 and p2, get married. Afterwards, p1
is the spouse of p2 and p2 is the spouse of p1. Since spouses of
the same gender are prohibited, p1 must not have the same
gender as p2. Also, p1 is distinct from p2. Before the marriage
p1 must have no spouse other than p2 and p2 must have no
spouse other than p1

This example confirms some of our expectations, e.g., that a
person cannot marry himself. On the other hand, one might have
expected that the two people originally have no spouses, KOKO
shows that this is not necessarily the case. Since Gist allows the
insertion of relations that already hold, there is nothing in the
specification to prevent the marriage of people who are already
married -m provided that they are already married to each other! If
this is not what the specifer intended, then symbolic execution
has revealed a bug in the specification.

4. Overview of the Solution

Our approach to symbolic execution regards a specification as
a large set of domain axioms, expressed in a first order temporal
logic with typed variables. The axioms define the set of
acceptable behaviors, i.e.. the specified behaviors correspond to
the models of the set of axioms. Symbolic execution is a process
of forward inference, computing consequences of these axioms
Notice that a specification need not determine the truth or
falsehood of every relation, i.e., a relation may be true in some
behaviors and false in others.

This approach factors symbolic execution into two processes.
First, each statement in the specification is translated into axioms
about successive world states. Second, these axioms are used to
derive certain interesting consequences, e.g.. hidden interactions
among different parts of the specification. The success of this
approach depends in large part upon the ability of the forward
inference engine to find interesting consequences and avoid
uninteresting ones However, the control of forward inference is
outside the scope of this paper. The rest of the paper describes
how various Gist constructs are treated as axioms. We start with
primitive constructs and then show how compound constructs
are handled in terms of their components.

5. Constraints

Constraints are the easiest Gist construct to handle, in that
they are already in the form of axioms. For example, the
constraint that the spouse relation be symmetric is expressed as

Vsstm.:oerson,ymmn {Spouse(x.y} D Spouse{y.x)) Ins

Actually, in the current implementation, facts about different
states are stored separately: more on this later.

6. Descriptive Reference

Part of the meaning of a Gist statement like the constraint
"require Contains(a box. a ball)" is that there must be referents of
the object descriptions. KOKO creates a typed "symbolic
instance" for each such description. If we call these symbolic
instances boxl and ball2, symbolic execution simply proceeds by
adding the axiom Contains(box1,ball2). The interpretation in
which this makes sense is that boxl and ball2 are not actually
objects in the world, but rather names of objects. The distinction
is that several names can refer to the same object. Thus we do
not preclude the possibility that ball2 is actually the same object
as some other ball that was referred to earlier.

Descriptive reference is merely a constrained form of
nondeterministic reference, e.g., requiring a box to contain a red
ball is modelled by adding the axioms Contains(box1,ball2) and
Red(ball2).

One kind of consequence KOKO considers interesting is that
two descriptions must (or cannot) refer to the same object.

Specifications often contain constraints that imply the identity or
non-identity of such descriptions. The most common such
constraint requires that a relation be a single-valued function of
one of the arguments, e.g., Gender. Another common constraint
specifies that a relation describes an optional attribute, e.g..
Spouse.

The consequences of uniqueness constraints are found by
forward inference. For instance, from Spouse(pl,p2) and
Spouse(pl,p3) KOKD deduces p2=p3. Conversely, from
Spouse(pl,p2) and ~Spouse(pl,p3) it deduces p2*p3. KOKO
also uses uniqueness constraints to find consequences of facts
with universally quantified variables or several arguments to
compare, e.g., from Gender(pl,sexl) and Gender(p2,sex2) it
deduces p1 = p22sex1 = sax?.

7. Primitives that Change the World

The most direct effects of primitive changes are easy to
axiomatize, e.g.. in the state after "insert Spouse(pl,p2)" it is
required that Spouse(p1,p2) However, such constraints cannot
completely capture the effect of a change. In particular, first
order predicate calculus cannot represent the notion that the
before and after states are the same except for the effects of the
change.

This notion is captured by predicate transformers [Dijkstra 76].
KOKO stores each state explicitly along with the set of tacts
known to be true in that state. Facts are propagated between
neighboring states. Notice that propagating a constraint
backward in time allows KOKO to identify its implications for
earlier choices. We use Pre(S.F) to denote the consequences
KOKO derives about the state preceding execution of the
statement S given that the tact F holds afterward Similarly.
Post(S.F) denotes the consequences about the state resulting
from S given that F was true beforehand. For readability, we use
the notation "F1 before S => afterwards F2" for "Post(S,Fl) =
F2" and "F1 after S => beforehand F2" for "Pre(S.Fl) = F2".

The computation of pre- and post-conditions'is considerably
simplified by the following considerations. For any executable
statement S and any propositions P and O

Pre(S.PAOI=Pre(S.PIAPre(S.0Q;

Pre(S.PVQ)=Pre(S.PIVPre(S.00)

Post(S.PAQ)=Post{S P)APost(S.Q)

Post(S.PVQ)=Post{S.P1VPost(S.Q)

Quantifiers are eliminated by skolemization. This reduces the
problem of computing pre and post-conditions of general
propositions to the special case of literals i.e., positive or
negative instances of relations with constants, universally
quantified variables, and function applications as arguments. (In
the rest of this paper, "x" and "y" are universally quantified
variables, "f" and "g" are functions, and other unquantified
symbols are constants.) The rest of this section describes how
this is done for different kinds of primitives.

7.1. Changing a Relation

In Gist, the insert and delete statements add and remove
relations. The relation is named explicitly, but the objects may be
named by description (and thus nondeterministically), e.g..
"insert Red(a ball)". Only one instance of a single relation is
changed by each such statement; ‘"insert Red(ball) V
Green(balM)" has no meaning. An insertion results in a new state
containing the inserted fact. Deletion is treated as insertion of a
negated fact.

The problem of computing pre- and post-conditions of other
facts with respect to insertion and deletion is simplified by the
following considerations. Gist is a first order language, i.e., there
are no variables ranging over relations. Thus any literal whose

relaticn differs from the one being inserted or deleted is
unaffected. (Gist supports “derived” relations, whose values are
changed by changing other relatiens, but the handling of these is
outside the scope of the present paper.) Also. if a posite literal
is true before an insertion or a negative literal 15 true before a
deletion, it will still be true atterward:

Red{bali1) betore insert Rediball2) = >afterwards Red({ball1)
Finally. it a positive literal is true atter a deletion or a negative
literal is true after an insertion, it must have been true before:

~Red{ball1) atter insert Red{bail2) = >beforehand ~Red(ball1)

The only cases in which nsertion or deletion changes an
existing fact are those in which a Iteral true betorehand s
changed by the insertion or deletion. or a literal that 1s true
afterward is made true by the insertion or deletion. This happens
Just when the arguments of the fact all refer to the same objects
as the corresponding arguments of the reiation being changed:

P(a.x f{x))} betore delete P(b.c.d) =>
afterwards Pla.xf(x)}V{a=bAx=cAlx)=d)
Recall that all of the variables are universally guantified. so after
deleting P(b.c.d). P{a.x.{x}} is still true for all x with the possible
exception of ¢. and that 15 only an exception # a=b and f(c) = a3
7.2. Changing the Type of an Dbject

Types in Gist may be thought of as unary relations Thus "p s
a person” corresponds to Ferson(p). An objects type can be
changed by a Gist reclassification statement. e.g.. "Pinccchio
becomes a person”. which corresponds to Vinsert
Person{Pinacchig)”.

Quantifiers in Gist always range over objects of a particular
type. Therefore a universal statemert may have exceptions in
neighporing states where more cbjects have the specified type.
e.g.

premnBywsan Mother{y x) before

Pinocchio becomes a person = > afterwards
Vxnarsonilymmn {Mother{y.x) V x = Pinocchio)

This 15 exactly the effect that arises from treatng types as

unary relations: prersor]BypemnMother{y.x) means

vxAy(Person{x) J(Person(y)AMother(y.x))),
where x and y are now untyped variables. KoKQ would skolemize
this ta {I’-‘ersc:n[;c):}(Pt'-.‘rscm[f(x)},e'\h.nlc:tl'uar[f(><),x))).4 translate " 2"
in terms of “V" and "~", and apply the rules tor computing a
post-condition:
~Person{x)V{Parson(f{x}}/AMother(f(x).x)) before
insert Person(Pinacchio) = > afterwards
~Parson(x)Vx = Pingcchio V {Person{f{x)} AMother{f{x).x}}
This is equivalent to the post-conditron above.

7.3. Creating and Destroying Objecis

In Gist. objects are slways created with a type. Creating an
object is like inserting a type relation except that (1) the created
obiect is different from any object that ever existed betore and (2)
this object is in only those relations inserted since its creation.
{Obiects in the initial state may be in arbitrary retatonships as
long as no constreints are violated.) Similarly, destroying an
object is ke deleting a type relation except that (1 '} the destroyed

aﬂenuem tamiliar with unification will notice both mmilarities and diferances.
For axample, P{f(a)) would match with P{t(E)) giving the "substitution” (f{a) = H{b)),
i@, it & not necessary that axb, jusi that fla)=1b). Alse, it 15 perecily
accaptable to unity x with {x). In & sense we have a genesalized version of
unification which can be used tor thegrem proving, e.g., P(a,b)VQ is resclved
with ~P{c.d)VR to pive aweVoed VOVA.

‘To make sholemized axioma well-defined, we freat skolem functicns as
immuteble drdi defined over 8t objects that ever axisl. but do not constrain the
valus of the skakam funciion on objacts outsiie the anginal type.

D. Cohen 19

object differs from any object that ever exists after the
destruction, and {2') destruction deletes all relations in which the
destroyed abject pamcipated.5

These properties of creation and destruction cannot be
axpressed in first order predicate logic: instead. they are
embodied in the inference engine and the predicate transformers.
For example. in simplitying an eguality KOKQ checks to see
whether one object existed before the other was created. The
pre- and post-conditions of creation and destruction combine the
effects of reclassitication with the requirement that non-extant
objects canngt partcipate in relatons.

Notice that the create and destroy statements are almost
symmetnc in the sense that each viewed backward in hme lopks
like the gther. The only difference 1s that 2 destroy statement
deletes all of the relatons mvolving the destroyed object.
whereas the create statermnent is not empowered to insert arbitrary
relations involving the created object.

The following table summarizes the conditions under which
creations and destructions invalidate literals. We use P(x.a) as a
representative literal, where "a" 15 a constant and “x” is a
universal varigble. The occurrences ot "a=c¢" represent the
condition that the created or destroyed object (c} is one of the
parameters of the relation (we exclude variables since in one
case they simplity out and in the gther case they are included by
the other condition}, e.g..

P(x.a,Hgix))) befare destroy ¢ = afterwards

Pix,a.lig{x)}Vc=aVc=flghd)
The occurrences of “x=¢" represent the condition that the
created orf destroyed object 15 (nstantiated by} any ot the
{universal) variables in the literal. .g..
P(f(x,y}) before create ¢ = > alterward P(f{x.y)}Vx=cVy=¢

Additional detail is contained n notes ' ' below.

Pre- and posi-conditions tor create and destroy

£(x,a) before create ¢ => afterwards P(x.a)Vx=¢ '

Pix.a) atter destroy ¢ = > betorehand P{x,a)Vx=c '

~P{x,a} before create ¢ => atterwards ~P(x.a) "'

~P(x.a) after destroy ¢ = > beforehand ~P(x.a)va=cVx=¢'
Pix,a) before destroy ¢ = > afterwards P(x.a)va=¢ """

P(x.a) after create ¢ = > beforenand P{x.a) "'

~Pix,a) before destroy ¢ => afterwards ~P{x.a)

~Pix,a) after create ¢ = > beforehand ~Pix.a)

"a=c is impossible unless the prior state was devoid of objects of
the same type as x. i.e.. the guantifier was vacuous. In this case
Pix.a)vx=cstillholdsita=c.

“If creations were allowed to insert relations contaming the new
object, this entry would be "~P(x.a)Va=cVx=¢".

"'v = ¢ reduces to false here since the quantified x on ty refers to
objects that axist.

" Since creation does not insert reiations. this case could only
arise if insertions were done at the same time as the creation.
See section 8.2. If creations were aliowed to insert relations of the
new object. this would be "Pi{x.a)va=c". The x=¢ reduces to
false. See " above.

VWhen P is the equality relation, x»®a, the result is x®aVx=c
Y'When P is the equality refation, x =g, the reault isx =2

8. Compound Statements

In order to save space we describe only a few problematical
constructs. i should be obvious how sequences and procedure
calls can be handled. Conditionals are not hard, given a way to

5The equality reiation can relats non-extant objscis and is conadered 1o be
immutable. The table below i guitaidy aiterad for this case

20 D. Cohen

represent the truth of the branch condition as of the branching
state. It should be mentioned that the branches are combined
into a common state after a conditional, i.e., rather than
producing a tree of behaviors, KOKO describes the state after the
conditional in terms of which branch was taken.

8.1. Loops

We distinguish between "simple" loops, which can currently
be handled and "non-simple" loops which cannot. Simple loops
are those in which the iterations are independent of each other,
i.e.. the same thing is done to each of a set of objects, as in
"move all old files off line"

Most loops in implementations are not simple, e.g.- "for each
file, if age(file)>age(oldestfile) set oldestfile to file' However,
these loops tend not to appear in Gist specifications. They are
replaced by descriptive reference, e.g.,

"a file 1 such that Vfile2 age(filel)>age(file2)"

Simple loops are symbolically executed for the entire set at
once. Basically, the loop variables turn into universally quantified
variables in the facts that are inserted. After "if filel is old move it
offline" we know woldffile1iDaMhnefhle1), whereas after "for all
files F, if F is old move it offline" we know Vxge old(x)Doffline(x).
All of the symbolic instances that are generated in a loop are
skolem functions of the loop variables. In general the
computation of pre- and postconditions introduces existential
quantifiers, but is otherwise similar to the versions described
above, e.g..

~Pia.b) betore insert Pic.d} => atterwards

~Piab)Vic=aAd=b). whereas

~P{a.b) pefore insert Pix.fix)) = > afterwards

~Pla.biVi3x x = aAf{x) = b))
8.2. Atomic Statements

The Gist "atomic" construct combines the effects of several
constituent statements into a single state transition. An example
is the marriage action that simultaneously inserts two spouse
relations. It would not have been sufficient to insert one at a time
because this would have led to an intermediate state of the world
that violated the constraint that the spouse relation be symmetric
(Actually, that specification would still have been consistent, but
now it would be possible to marry two people only if they were
already each others' spouse <+ another interesting result of
symbolic execution.) Of course, the constituent statements of an
atomic must themselves cause no more than one state transition.

The facts that become true because of the statements in the
atomic must all be true in the final state, e.g., if an atomic
contains both insert P(a) and delete P(b), then a and b must be
distinct. This points out a difference between executing two
statements atomically and executing them in either order. There
is no problem with inserting P(a) and then deleting it. A fact that
is propagated through an atomic can be affected by any
combination of the statements in the atomic. The pre- or post-
condition of a fact with respect to an atomic statement is the
disjunction of the pre- or post-conditions of the fact with respect
to each constituent statement.

9. Conclusion

We have described a system that characterizes the behaviors
permitted by a formal specification containing such constructs as
descriptive reference, nondeterminism, and constraints. It
translates a specification into a set of axioms and uses forward
inference to compute interesting consequences of them. It uses
predicate transformers to propagate facts between neighboring
states; the computation of pre- and post-conditions in the
relational database model has, to the author's knowledge, never
been described before.

We have been pleasantly surprised to find that, although many
problems that arise are very difficult (or even impossible) to solve
in general, the most common and useful cases tend to be the
easiest. We have also found that a high level specification can be
easier to execute symbolically than a low level program. In
retrospect this is not surprising, since the characterization of low
level implementations involves a lot of work that could be
described as de-compilation.

The decision to represent each state explicitly imposes certain
limitations. In particular, arbitrarily long sequences of states
cannot be represented. This precludes the description of non-
simple loops and certain types of historical reference Historical
reference (a special case of descriptive reference) is not yet
handled. We also currently do not attempt to handle the arbitrary
interleaving and merging of lines of control provided by Gist. We
hope to attack these problems, but a great deal can be done
without solving them. In particular, KOKO examines the
"execution" of one line of control in isolation

KOKO has produced fairly complete descriptions of some small
but non-trivial specifications Sample domains include a
simplified postal package router, a world of ships and a simplified
file system. Of course we expect to increase the coverage of the
specification language so that more specifications can be so
characterized. We believe that even without solving the difficult
problems that remain, KOKO can be extended to characterize the
behavior of a large class of interesting specifications.

Acknowledgements: This work was done in the context of a
larger effort on the part of the Gist group at ISI. In particular, the
specification language and the entire approach to the
development of software defined the problem whose solution is
presented (in part) here. This paper was greatly improved by the
suggestions of Jack Mostow and other members of the group.

References

[Balzer 81] Balzer R . Design specification validation. University
of Southern California Information Sciences Institute
Technical Report. 1981. Published by Rome Air
Development Center as RADCTR-81-102

[Clarke 81] Lon A. Clarke, Debra J. Richardson. Symbolic
Evaluation Methods, University of Massachusetts at
Amherst, Technical Report COINS TR81 -8. May 1981.

[Dijkstra 76] Edsger W. Dijkstra, A Discipline of Programming,
Prentice Hall, 1976.

[Fickas 82] S Fickas. Automating the Transformational
Development of Software. Ph.D. thesis. University of
California at Irvine. 1982.

[London & Feather 82] London. P.E. & Feather. M.S..
"Implementing specification freedoms." Science of
Computer Programming, (2). 1982. 91-131.

[Sullivan 85] Sir Arthur S. Sullivan & W. S. Gilbert, The Mikado.
W. A. Pond & Co.. New York. 1885.

[Swartout 82] Bill Swartout. "Gist English Generator." in Proc.
AAAI-82, pp. 404-409. August 1982.

[Swartout 83] Bill Swartout, The Gist Behavior Explainer. 1983.
Submitted to AAAI83-

MANIPULATING DESCRIPTIONS OF PROGRAMS FOR DATABASE ACCESS

P.M.D.Gray

Dept.

University of Aberdeen,

ABSTRACT
A method is described for manipulating
descriptions of programs to access Codasyl
Databases to meet a specification given in
relational algebra. The method has been

implemented as a Prolog program which is compared
with the previous Pascal version. The methodology
is discussed as an Automatic Programming technique
which explores the transformations on a program

induced by changes of data structure
representation at two levels.
|_ INTRODUCTION
The problem of generating equivalent programs

under changes of data representation is an
important one. In the case of list processing, a
change of data structure representing sets of
objects and their relationships can completely
change the program. The same applies to Codasyl
databases which are essentially enormous list
structures on secondary storage. However because
of the wvariety of redundant pointers it is
possible to traverse the same list structure in
many different ways. Thus it is not just a
question of changing the program but of generating
alternative programs whose run-times, because of
disc access, may differ by factors of 10 or more.

This paper concerns the manipulation of
abstract descriptions of such programs. A query is
formulated in a functional language (relational
algebra) which specifies the logical relationships
between the retrieved data values and the stored
data items but does not specify the sequence used
to access them (the access path). The aim is to
generate a program that produces the desired items
efficiently by exploring a variety of alternative
program structures, which are the consequence of
following different access paths.

A method of doing this has been developed
(Bell 1980) and embodied in a system (ASTRID)
(Gray 1982) for typing in queries in relational
algebra and generating and running programs on
Codasyl databases (IDS-II and IDMS). From the
user's point of view the benefits are twofold.

1. It gives the user a relational view of
the Codasyl database. Thus he is able to think
about his retrieval problem in terms of table
manipulations using the high level operations of

and D.S.Moffat

of Computing Science,

Scotland, U.K..

relational algebra instead of having to work at
the low level of record access operations
following pointers through the database and
embedding these operations in Fortran Code.

2. He can write complicated multi-line
queries that compute derived data both from
records and groups of records (averages, counts
etc.) and appear to generate several intermediate
tables. The system will endeavour to find an
access path that computes the same result without
storing these tables, which could be very costly
for large databases. The program generated may be
quite complicated to write by hand and should be
competitive with a trained programmer's code.

The system goes through several stages.
First the user types a query in relational algebra
which is parsed and checked. Then it is
manipulated at two levels. At the top level the
query is rewritten still in algebraic form using
rewrite rules so as to assist transformations at
the next level. The lower level uses a concrete
representation of the Codasyl data structure by a
traversal (see below). The system reads in a
number of stored traversals for each relation.
These have each to be manipulated and combined in
various ways to satisfy the requirements of the
query. Some combinations will represent very
slow and inefficient programs and be discarded.
However this cannot be done immediately, as a good
program for part of the query may later turn out
to be second best after modification to fit the
remainder. Finally the descriptions are costed
according to information on database access times
and the selected version is used to generate
Fortran code to run against the actual database.
The system is oriented towards complex queries
accessing thousands of records which can only run
in batch producing substantial printout. Thus it
is not the run-time for the translator which
matters but the complexity of query which it can
handle. Currently other systems only handle a
very restricted relational view or a rather
restricted query language.

The ASTRID system was originally written in
Pascal. More recently the two levels of
manipulation have been rewritten in Prolog. This
paper describes the basic methodology and shows
how Prolog is well adapted to this task.

The layout of the paper is as follows.
Section {ll} describes some transformations which
affect the resultant program but are best carried

22 P. Gray and D. Moffat

out on the relational algebra in Prolog. Section
{Ill} describes the basic notion of a traversal
and how it is wused to represent a piece of
program. Section {IV} describes the combination
of traversals and how this is wused to build
descriptions of more complex programs. Section
{V} illustrates some of the Prolog used to combine
traversals and discusses its advantages and snags
in this application. The final section draws
conclusions for future work.

A. Relation to Other Work

Burstall and Darlington (1977) describe a
system for specifying a program by recursion
equations. These can be manipulated and play a
role similar to relational algebraic expressions
in our system. They discuss a way to rewrite the
abstract program given a concrete data
representation in terms of a "coding function".
However our use of a traversal represents the data
in a rather different way. Apart from Tarnlund
(1978) few have addressed the problem of efficient
access to relations using information about the
mode of storage. Tarnlund has studied ways to
answer queries efficiently by representing them as
theorems to be derived in the first order calculus
and looking for efficient derivations where
relations are held as a binary tree structure.

II_ RELATIONAL ALGEBRA TRANSFORMATIONS
The user asks his query in relational algebra.

We first describe this and then see how the system
improves the query by rewriting it.

A. Relational Databases

A relation is a set of tuples each containing
values for a fixed set of attributes. Viewed as a
table the attribute values are in columns. A
relational database usually contains several
relations which have attributes in common. The

examples used come from a database on World Cup
football results. The two relations of interest
are shown in Table 1.

Table 1. Relational View of World Cup Database

STADIUM_ALLOCATION

| year | group | game | satadium | date |
1 1
[l]
HRE ' 1 | Buenos Alres | 2_Jun!
: 1978 1 1 ! 2 |} Mar_del Plata | 2_Jun)

s

! year | group | team ! placing !
1 1
1] 1
i 1978 | 1 ! Italy] 1
i 1 | Argentina | 2

e

B. Relational Algebra

Relations can be treated as tables and new

relations derived from them by the operations of
relational algebra. The operations used are
adapted from Codd. They are selection,

projection, join, extend and group_by (Gray 1981).
The join operation is a generalised intersection,
formed from the cartesian product of two relations
by selecting those tuples with matching values for
the common attributes. A typical query starts by
joining several relations, then selects tuples,
then extends and or groups these tuples and
finally projects to required columns.

The relational algebra can be rewritten, just
like standard algebra, by using rewrite rules in

PROLOG. We have 17 such rules with special
predicates for handling commutation. A typical
transformation would move a projection

operation(%) in an expression involving join(*)
and selection(;) to ease the join method.

(STADIUM_ALLOCATION ; [stadium = "Cordoba"] %year,

group)*(GROUP_PLACINGS ;[placing=1] *year,group)
becomes

(STADIUM_ALLOCATION ;[stadium="Cordoba"] *

GROUP_PLACINGS ; [placing=11]) %year,group

[l TRAVERSALS of CODASYL DATABASE STRUCTURES

Although the user thinks of relations just as
tables, they are actually complicated doubly-
linked list structures. At the second level of
transformation we need to represent possible paths
through these structures by traversals in order to
search for an efficient one. Thus we first
explain the Codasyl "set" relationship used to
link different records. We then see how a
number of alternative "base traversals" can be
defined for each relation and held on file.

A Codasyl database consists of sets of records
of the same type which are linked by pointers to
other records in the set and to a ocommon owner
record which uniquely identifies an instance of a
given set type. Figure 1 shows the linkages
between records in the World Cup database.

Figure 1. Bachmann diagram of World Cup Database

YEAR ear

ROUP (group)
»

[FENUE_(stadium))
N

game, date, score) |

A. Traversals

We can now define a traversal of a relation
more precisely. It is a description of a piece of
code which realises the tuples of the relation one

at a time by accessing the records in some
sequence following the set pointers and modifying
the values as necessary. Thus it is a generator
for a relation. Corresponding to each relation
stored in the database (e.g. GROUP_PLACINGS) we
hold on file one or more base traversals. Each
one is essentially a description of a piece of
code with a number of nested loops.

We have a notation for traversals as follows.
Internally it is represented by a Prolog list
structure. There are three obvious base traversals
of STADIUM-ALLOCATION and two for GROUP_PLACINGS.
Each {SA} traversal visits the same number of GAVE
records, generating one tuple for each.

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) {SA1}
V(VENUE) -> D(GAME) -> UGROUP) -> U(YEAR) {SA2}
B(GROUP) -> U(YEAR) -> D(GAME) -> U(VENUE) {SA3)
S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) {GP1}
B(GROUP) -> U(YEAR) -> D(LINK) -> U(TEAM) {GP2}

Here S means a singular set access to \visit-
all records of a given type (there is only one set
owning all year records), D mean go down to visit
all member records belonging to the given owner
using the appropriate set type (if this is
ambiguous it is specified) and U means go up to
visit the owner of a given record, V means direct
access to the record containing a value (usually
given by selection). B means vi it every record
of that type in the database, |n an Algol-like
syntax we can represent the corresponding code for
SA1 as :-

for each YEAR record do
for each GROUP record owned by YEAR do
for each GAVE record owned by GROUP do
for the VENUE owner of GAVE do
print YEAR.year, GROUP.group, GAME.game,
VENUE.stadium, GAME.date.

Thus each arrow in a traversal represents an
inner level of nested code. Note that the record
generations such as D(GAME) in SA3 must follow
those such as B(GROUP), which generates the owner
for GAME, but they need not be consecutive.

IV COMBINATION & MODIFICATION of TRAVERSALS

Corresponding to every algebraic operation on
a given relation there is a modification to Its
traversal which produces a derived traversal,
which is a generator for the new relation. Thus
the method is complete. This derived traversal can
then be modified by the next operation and so on.
For example a selection can be done by inserting
"if (year=1978) then" just after "for each YEAR
record do". The resulting traversal depends
somewhat on the order of application of operations
specified by the user. However many of these are
commutative and the order of others can be
improved by top level rewriting.

P. Gray and D. Moffat 23

A. Combination by JOIN

Since Join is based on a cartesian product it
can be formed by a nested for loop with one
iteration for each record type involved. This is
very similar to a traversal structure and it turns
out that the traversal representing the join can
often be formed just by concatenating parts of the
separate traversals {Bell 1980, Gray 1981}. The
selections for matching are then performed
automatically by the fact that a Codasyl owner
record will in many cases be linked to just those
records whose values would have been selected by
the join operator! Let us consider examples of
this using

RES:= STADIUM-ALLOCATION joined_to GROUP-
PLACINGS

If we use SA1 and GP1 then these both have
"common start" section.
S(YEAR) -> D(GROUP)

which generates the common attributes in the two
cases. If we concatenate the traversals keeping
one copy of the common start we get

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) ->
D(LINK) -> U(TEAM)

we can also get in the other order :-

S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) ->
D(GAME) -> U(VENUE)

Both traversals correspond to nested loop code
which will produce the desired tuples though in a
different sequence. Which is best depends on
subsequent selections. If a selection on
"placing=1" is made after "D(LINK)" then the
second method is best as it visits fewer records.

One can also join traversals where the head of
one traversal matches the tail or middle of the
second. We <can do this with the alternative
traversals SA2 & GP2 giving :-

V(VENUE) -> D(GAME) -> UGROUP) -> U(YEAR) ->
D(LINK) -> U(TEAM)

We notice here that a B(GROUP) since it visits
all records can match a UGROUP) which visits only
certain records because join has the properties of
an intersection.

The second traversal (using SA2,GP2) would be
preferred if a subsequent selection were made on
stadium as it could wuse V(VENUE) efficiently.
General conditions for choosing an optimum are
discussed in (Esslemont & Gray 1982).

17 OVERVIEW of the JOIN ALGORITHM in PROLOG

The basic method is given in Figure 2. It
starts by reading in a number of traversals for
each relation and holds them as unit clauses
trav(X). The term X contains a record generation
list giving the sequence of record and set
accesses, which we have symbolised. The procedure
join trav (see below) then picks the first clause

24 P. Gray and D. Moffat

for each relation and tries to find an overlap in
accordance with the <conditions given in (Bell
1980). Prod overlap is called twice with the

record generation lists reversed in order to try
the two cases of common start and likewise for
head to tail (IV.A). If this is successful the
result traversal is asserted. A 'fail' clause then

causes backtracking and another pair of traversal
clauses is chosen thus trying all combinations of

the operand traversals. The 'fail' also has the
effect of reclaiming much-needed space once the
traversal is safely asserted. If all attempts
fail an operation node to join by sort-merge is
inserted.

It is possible for a traversal to pass through
two instances of the same record type. In order
to distinguish which instance is being used for
accessing subsequent record types it is necessary
to assign a unique number to each record
generation element in the traversal.
Correspondences are established by clauses of the
form equiv_curr(X.Y).

Figure 2. PROLOG Version of Traversal Join Method

join trav(Rel?1,RelZ,Rel3) :-
coﬁmon_col umns (Rel 1,Rel2,ComCol ,NumComCol },
trav(Rell, , ,nds_list(Nds1),recg_list{Rgl)}),
trav(Rel?, , ,nds_ T list (Nds?), recg_list{Rg2)),
exists nondup llst(CcmCol Nd=1,Nd=2,Rg1,Rg2),
(r‘etr‘actall(equlv curr{_}},
prod_overlap(Rgl, Rg2,Reg3, Rgl,NumComCol) ;
r‘etractal](eqmv curr{)J,
prod overlap(Rgz Rg1,Reg3,Rgd, NumComCol } 1},
assert trav{Rel3,Rg3,Rgl},
fail.

join_trav(_, ,_).

A. Effect of Joining Modified Traversals

Traversals which have been modified by
selection, extension, projection or group-by will
have elements in their record generation lists to
indicate these operations(operation nodes). Such
traversals are joined as before but with all

operation nodes being copied directly into the
result traversal.
B. Comparison of Pascal and Prolog Versions

The Pascal version takes several thousand
lines whereas Prolog needs several hundred and is
much easier to read and modify. Pascal is a very
much wordier language for list processing. Also
one has to write multiple versions of many
functions such as "member" because the type of
list argument must be known at compile time.
Further the use of Prolog Definite Clause Grammars
saves pages of recursive Pascal procedures to
parse base traversals etc.. Finally because
Pascal has no backtracking facilities it has to
keep returning sets of alternative combined
traversals and currently runs out of list space on
large queries. The Prolog version can handle these
because it reclaims space following fail.

VI CONCLUSIONS

Although the direct use of Codasyl databases
for storage of facts is unlikely in A.l. the
general problem of generating programs that
traverse and manipulate list structures is

important and the techniques described could have
other applications. The methodology used is :-

1. Arrange that the specification of the

result to be computed by the generated program is
given in functional form such as relational
algebra but not in procedural form with loops and
assignment. This is easier for the user to think
about and also does not commit him to an
unsuitable representation. It allows easier
overall program transformation; in particular some
transformations are easier in the functional form
than the traversal form.

2. Prolog is particularly suitable for this

work because of its good list-matching and back-
tracking facilities. The use of "assert and fail"
was necessary, but given this it out-performs
Pascal by running larger problems in the PDP 11
address space in similar time.

ACKNOWLEDGEMENTS

The rewrite rules described in section |l were
developed by T.N. Scott (now at SCICON, London).
Ben du Boulay gave wus many valuable comments
during the preparation of this paper. The
generous assistance of the U.K. SERC is also
acknowledged.

REFERENCES

[1] Bell R., "Automatic Generation of Programs
for Retrieving Information from CODASYL Data

Bases", PhD Thesis, Aberdeen University,1980.
[2] Burstall R.M. & Darlington J. "A
Transformation System for Developing

Recursive Programs", JACM, (1977), pp 44-67.
[3] Esslemont P.E. & Gray P.M.D. "The
Performance of a Relational Interface to a
Codasyl Database" in Proc. BNCOD-2, ed.
S.M.Deen and P.H. Hammersley, Bristol 1982.

[4] Gray, P.M.D. "The GROUP_BY Operation in
Relational Algebra", in "Databases (Proc.
BNCOD-2)" ed. S.M. Deen & P. Hammersley
(1981),pp. 84-98.

[5] Gray, P.M.D. "Use of Automatic Programming
and Simulation to Facilitate Operations on

Codasyl Databases" in "State of the Art
Report DATABASE", Series 9 No.8, ed.
M.P.Atkinson, Pergamon Infotech (Jan 1982),pp
346-369.

[6] Tarnlund S-A, "An Axiomatic Data Base
Theory" in "Logic and Data Bases", ed.

Gallaire & Minker (1978), pp. 259-289.

